7 Diatoms of National Botanical Garden IRAN

Total Page:16

File Type:pdf, Size:1020Kb

7 Diatoms of National Botanical Garden IRAN A STUDY ON DIATOMS OF THE ARTIFICIAL PONDS AND LAKES OF THE NATIONAL BOTANICAL GARDEN, IRAN T. Nejadsattari, Z. Shariatmadari, & Z. Jamzad Nejadsattari,T., Z. Shariatmadari, and Z. Jamzad 2007 008 01: A study on Diatoms of the artificial ponds and lakes of National Botanical Garden, Iran. – Iran. Journ. Bot. 13 (1): 6-11. Tehran. Five aquatic sites of National Botanical Garden of Iran monthly were sampled from December 2003 to November 2004. Total number of 68 genera in 18 families and 11 orders of the planktonic Diatoms were identified. Among the families Bacillariaceae with 19 genera and species showed the highest species richness. Cymbellaceae (11 species), Naviculaceae (7 species), Surirellaceae (6 species), Pleurosigmataceae (4 species), Fragilariaceae and Achnanthaceae each with 4 species, Pinnulariaceae and Gomphonemaceae each with 2 species and Rhopalodiaceae, Cosmioneidaceae, Diadesmidiaceae, Amphipleuraceae, Catenulaceae, Melosiraceae, Mastogloiaceae, Stephanodiscaceae, Anomoeoneidaceae each with 1 species respectively presented in the studied sites. High population densities of species were observed in the cold seasons. Taher Nejadsattari and Zeinab Shariatmadari (coresponding author), Islamic Azad University, Research and Science Branch, Faculty of Sciences, Department of Biology, Tehran, Iran. –Ziba Jamzad, Reasearch Institute of Forests and Rangelands, Department of Botany, Tehran, Iran. Key words. Phytoplankton, Diatom, Population, Botanical Garden, Iran. ﻣﻄﺎﻟﻌﻪاي در ﻣﻮرد دﻳﺎﺗﻮﻣﻬﺎي درﻳﺎﭼﻪ ﻫﺎ و ﺑﺮﻛﻪﻫﺎي ﺑﺎغ ﮔﻴﺎﻫﺸﻨﺎﺳﻲ ﻣﻠﻲ اﻳﺮان ﻃﺎﻫﺮ ﻧﮋاد ﺳﺘﺎري، زﻳﻨﺐ ﺷﺮﻳﻌﺘﻤﺪاري و زﻳﺒﺎ ﺟﻢ زاد در ﻃﻲ اﻳﻦ ﺗﺤﻘﻴﻖ دﻳﺎﺗﻮﻣﻬﺎي 5 ﺑﺮﻛﻪ ﻣﺼﻨﻮﻋﻲ در ﺑﺎغ ﮔﻴﺎﻫﺸﻨﺎﺳﻲ ﻣﻠﻲ اﻳﺮان ﺑﺎ ﻧﻤﻮﻧﻪ ﺑﺮداري ﻣﺎﻫﻴﺎﻧﻪ از آذر 1382 ﺗﺎ آﺑﺎن 1383 ﻣﻮرد ﻣﻄﺎﻟﻌﻪ و ﺷﻨﺎﺳﺎﻳﻲ ﻗﺮار ﮔﺮﻓﺘﻨﺪ. در اﻳﻦ ﻣﻄﺎﻟﻌﻪ 68 ﺟﻨﺲ وﮔﻮﻧﻪ ﻣﺘﻌﻠﻖ ﺑﻪ 18 ﺗﻴﺮه و 11 راﺳﺘﻪ از دﻳﺎﺗﻮﻣﻬﺎ ﺷﻨﺎﺳﺎﻳﻲ ﮔﺮدﻳﺪﻛﻪ ﺗﻴﺮه Bacillariaceae ﺑﺎ 19 ﺟﻨﺲ و ﮔﻮﻧﻪ ﺑﺎﻻﺗﺮﻳﻦ ﺗﻨﻮع ﮔﻮﻧﻪاي را ﻧﺸﺎن داد. ﺗﻴﺮه ﻫﺎي Cymbellaceae (11 ﮔﻮﻧﻪ)، Naviculaceae (7 ﮔﻮﻧﻪ) ، Surirellaceae (6 ﮔﻮﻧﻪ)، Pleurosigmataceae (4 ﮔﻮﻧﻪ)،Fragilariaceae و Achnanthaceae (ﻫﺮ ﻛﺪام ﺑﺎ 4 ﮔﻮﻧﻪ)، Pinnulariaceae و Gomphonemaceae (ﻫﺮ ﻛﺪام ﺑﺎ 2 ﮔﻮﻧﻪ) و ﺗﻴﺮهﻫﺎي ,Rhopalodiaceae, Cosmioneidaceae, Diadesmidiaceae, Amphipleuraceae, Catenulaceae Melosiraceae, Mastogloiaceae, Stephanodiscaceae, Anomoeoneidaceae ﻫﺮ ﻛﺪام ﺑﺎ ﻳﻚ ﮔﻮﻧﻪ در ﻣﺮاﺗﺐ ﺑﻌﺪي ﻗﺮار ﮔﺮﻓﺘﻨﺪ. ﺣﺪاﻛﺜﺮ ﺗﺮاﻛﻢ ﺟﻤﻌﻴﺖ ﮔﻮﻧﻪ ﻫﺎي ﻣﻮرد ﻣﻄﺎﻟﻌﻪ در ﻣﺎﻫﻬﺎي ﺳﺮد ﺳﺎل ﻣﺸﺎﻫﺪه ﺷﺪ . INTRODUCTION b, 2003). Diatom flora of Neure lake was reported by Algae are major constituents of aquatic ecosystems Nejadsattari (2005) and Epiphytic algal flora of Anzali (Zimba & Hopson 1997). Due to their minute size they lagoon were studied by Nejadsattari, & al. (2005). are often overlooked in limnological studies. Their Also, algal flora of lotic waters of Zayandehrood river importance in terms of productivity and as a food were investigated by Afsharzadeh & al. (2003). S source in higher trophic levels is well known sseveral lakes, ponds, wetlands and rivers in different (Burkholder & WetzelArchive 1990). Studies on algal flora areasof were studiedSID from 1997. In this work Diatoms have received little attention in Iran and there are few flora of five artificial ponds and lakes in National published surveys of algal floras (Hirono 1973, Botanical Garden of Iran were studied. The present Wasylik 1975, Compere 1981). Moghaddam (1976) has study is an attempt to contribute to the knowledge reported diatoms from small portion of Zayandeh Rood about Diatoms and their distribution in these aquatic river. Löffler (1961) reported different algal groups ecosystems. from several geographical areas of Iran. Depth distribution of epipelic algae, seasonal distribution of MATERIALS AND METHODS epiphytic algae in Anzali Lagoon and vertical Five aquatic sites were selected for sampling. distribution of epiphytic diatoms on Typha latifolia L. Approximate area and depth of sites and their and Phragmites austuralis Trim. in Amir Kalayeh substratum were given in table 1. Lagoon, were reported by Nejadsattari & al. (2002a and www.SID.ir 7 Diatoms of National Botanical Garden Table 1. Approximate area and depth of study sites. Ponds & Lakes Area (m 1 Rock garden 2500 2.5 Plastic (Keltan) 2 Systematic garden 110 1 Cement 3 Trial area 102 1.2 Plastic (isogam) 4 Japanese garden 3000 2.5 Cement 5 Salt lake 1975 1.5 Plastic (Keltan) Monthly Samples were obtained from each site from December 2003 through November 2004. All samples were collected between 10 AM-13 PM. Sampling procedure collected in a 1 liter bottle from 0.5m depth of shore IRAN. JOURN. BOT. line. Water temperature and pH were measured immediately after collection. All samples were fixed in 3% formalin, labeled, and were carried to the laboratory in cool containers. Algal samples were allowed to settle for at least 7 days and the super liquid section moved, the final volume of concentrated sample . was 130 ml. Diatoms was cleaned using the At method each site three samples were 2 described by Patrick & Reimer (1975). Oxidation by ) Depth (m) Substratum hydrogen peroxide and potassium dichromate was done. Slides of diatoms for microscopic analysis were prepared. Identification of algae was done using a Sairan model Identification was based on (1973), Prescott (1970), Eileen J. Cox (1996), 13 (1), 2007 Krammer and Lange-Bertalot (1985) and Patrick & Reimer (1966, 1975). Enumeration of algae was done using Sedgwick-Rafter cell. At least 300 cells were 20 (BM-22h) 18 counted and population density was reported as cell/ml. Fig. 1. Number of species among families of diatoms. 16 14 All statistical analysis was done using Excel ver. 2000. No of species 12 10 8 RESULTS AND DISCUSSION 6 4 In this study 68 taxa of Bacillariophyta were identified. microscope at 400-1000X. 2 Whittford and Schumacher 0 These belong to 11 orders and 18 families which 53 were identified at species level and other in generic Bacillariaceae level (Figs 1, 2). Cymbellaceae Naviculaceae Surirellaceae Pleurosigmataceae Fragilariaceae 18 familia Achnanthaceae Fig. 2. Number Archive of SID Gomphonemataceae Pinnulariaceae Stephanodiscaceae Melosiraceae Mastogloiaceae of species, families and orders. 11 orders 28 genera Anomoeoneidaceae Cosmioneidaceae Diadesmidiaceae Amphipleuraceae Catenulaceae Rhopalodiaceae 68 species Species genus familia order www.SID.ir IRAN. JOURN. BOT. 13 (1), 2007 Nejadsattari & al. 8 List of Diatom species Pinnularia sp. Bacillariophyta Naviculaceae Coscinodiscophyceae Navicula accommoda Hustedt Thalassiosirales Navicula cincta (Ehrenberg) Kützing Stephanodiscaceae Navicula cryptocephala Kützing Cyclotella meneghiniana Kützing Navicula gregaria Donkin Melosirales Navicula lanceolata var. phyllepta (Kützing) Cleve Melosiraceae Navicula subrhynchocephala Hustedt Melosira varians C. Agardh Navicula veneta Kützing Fragilariophyceae Pleurosigmataceae Fragilariales Gyrosigma acuminatum (Kützing) Rabenhorst Fragilariaceae Gyrosigma sp.1 Fragilaria sp. Gyrosigma sp.2 Ulnaria acus (Kützing) M. Aboal Gyrosigma spencerii (W. Smith) Griffith & Henfrey Synedra rumpens Kützing. Thalassiophysales Synedrella parasitica (W. Smith) Round & Maidana Catenulaceae Bacillariophyceae Amphora ovalis (Kützing) Kützing Mastoglolales Bacillariales Mastogloiaceae Bacillariaceae Aneumastus sp. Denticula elegans Kützing Cymbellales Denticula kuetzingii Grunow Cymbellaceae Denticula sp. Cymbella lanceolata (Ehrenberg) Kirchner Denticula tenuis Kützing Cymbella grecilis (Rabenhorst.) Cleve Nitzschia frustulum (Kützing) Grunow Cymbella turgida W.Gregory Nitzschia fonticola (Grunow) Grunow Cymbella naviculiformis (Auerswald) Cleve Nitzschia fossilis (Grun) Grun Cymbella affinis Kützing Nitzschia baciliformis Hustedt Cymbella cistula (Hemprich & Ehrenberg) O. Kirchner Nitzschia communis Grunow Cymbella tumida (Brébisson.) von Heurck Nitzschia hantzschiana Rabenhorst Cymbella sp.1 Nitzschia intermedia Hantzsch Cymbella sp.2 Nitzschia lacuum Lange-Bertalot Cymbella sp.3 Nitzschia ovalis H. J. Arnott Placoneis clementioides (Hustedt) E. J. Cox Nitzschia palea (Kutzing) W. Smith Gomphonemataceae Nitzschia paleacea Grunow Gomphonema sp1. Nitzschia radicula Hustedt Gomphonema sp2. Nitzschia recta Hantzsch Anomoeoneidaceae Nitzschia solita Hustedt Anomoeoneis sphaerophora (Kützing) Pfitz. Nitzschia subacicularis Hustedt Achnanthales Rhopalodiales Achnanthaceae Rhopalodiaceae Achnanthes delicatula Kützing Epithemia sp. Achnanthes exigua Grunow Surirellales Achnanthes pseudoswaziArchive J. A.Carter Surirellaceaeof SID Achnanthidium minutissima (Kützing) Czarnecki Campylodiscus sp. Naviculales Cymatopleura solea (Breb.) W. Smith Cosmioneidaceae Stenopterobia sigmatella (W. Gregory) R. Ross Cosmioneis pusilla (W. Smith) D. G. Mann & A. J. Surirella capronii Brebisson Stickle Surirella robusta Ehrenberg Diadesmidiaceae Surirella sp. Diadesmis spp. Amphipleuraceae Results showed in sites 3 and 4 diatoms have high Frustulia rhomboids var. saxonica (Rabenhorst) Detoni density in spring and in site 2 the highest density of Pinnulariaceae diatoms occurred in autumn and winter (Figs. 4, 5, 6). Caloneis amphisbaena (Bory) Cleve. In sites 1 and 5 there were distinct population change www.SID.ir 9 Diatoms of National Botanical Garden IRAN. JOURN. BOT. 13 (1), 2007 8000 6000 4000 2000 Date Number in mililiter 0 March February 83 82 Figure 3. Monthly Variation graph of Bacillariophyceae ion station 1 n = 3, X± SD 500 400 300 200 100 Date number in mililiter 0 March February 83 82 Figure 4. Monthly Variation graph of Bacillariophyceae in station 2 n = 3, X± SD 6000 5000 4000 3000 2000 ِ Date
Recommended publications
  • Protocols for Monitoring Harmful Algal Blooms for Sustainable Aquaculture and Coastal Fisheries in Chile (Supplement Data)
    Protocols for monitoring Harmful Algal Blooms for sustainable aquaculture and coastal fisheries in Chile (Supplement data) Provided by Kyoko Yarimizu, et al. Table S1. Phytoplankton Naming Dictionary: This dictionary was constructed from the species observed in Chilean coast water in the past combined with the IOC list. Each name was verified with the list provided by IFOP and online dictionaries, AlgaeBase (https://www.algaebase.org/) and WoRMS (http://www.marinespecies.org/). The list is subjected to be updated. Phylum Class Order Family Genus Species Ochrophyta Bacillariophyceae Achnanthales Achnanthaceae Achnanthes Achnanthes longipes Bacillariophyta Coscinodiscophyceae Coscinodiscales Heliopeltaceae Actinoptychus Actinoptychus spp. Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Akashiwo Akashiwo sanguinea Dinoflagellata Dinophyceae Gymnodiniales Gymnodiniaceae Amphidinium Amphidinium spp. Ochrophyta Bacillariophyceae Naviculales Amphipleuraceae Amphiprora Amphiprora spp. Bacillariophyta Bacillariophyceae Thalassiophysales Catenulaceae Amphora Amphora spp. Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Anabaenopsis Anabaenopsis milleri Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema Anagnostidinema amphibium Anagnostidinema Cyanobacteria Cyanophyceae Oscillatoriales Coleofasciculaceae Anagnostidinema lemmermannii Cyanobacteria Cyanophyceae Oscillatoriales Microcoleaceae Annamia Annamia toxica Cyanobacteria Cyanophyceae Nostocales Aphanizomenonaceae Aphanizomenon Aphanizomenon flos-aquae
    [Show full text]
  • Scarica La Pubblicazione
    1 Informazioni legali L’istituto Superiore per la Protezione e la Ricerca Ambientale (ISPRA) e le persone che agiscono per conto dell’Istituto non sono responsabili per l’uso che può essere fatto delle informazioni contenute in questo manuale. ISPRA - Istituto Superiore per la Protezione e la Ricerca Ambientale Via Vitaliano Brancati, 48 – 00144 Roma www.isprambiente.gov.it ISPRA, Manuali e Linee Guida 110/2014 ISBN 978-88-448-0650 Riproduzione autorizzata citando la fonte Elaborazione grafica ISPRA Grafica di copertina: Alessia Marinelli Foto di copertina: Cristina Martone Coordinamento editoriale: Daria Mazzella ISPRA – Settore Editoria Giugno 2014 2 Autori Simona De Meo (ISS), Floriana Grassi (ISS), Stefania Marcheggiani (ISS), Camilla Puccinelli (ISS),Claudia Vendetti (ISS), Laura Mancini (ISS). Cristina Martone (ISPRA), Stefania Balzamo (ISPRA), Maria Belli (ISPRA). Referee Maurizio Battegazzore (ARPA Piemonte), Rosalba Padula (ARPA Umbria), Camilla Puccinelli (ISS). 3 INDICE PREMESSA .......................................................................................................................................... 5 1. CHIAVI DICOTOMICHE REALIZZATE PER L’IDENTIFICAZIONE A LIVELLO DI GENERE (PRIMA PARTE) ................................................................................................................................. 6 2. VETRINI DI RIFERIMENTO ........................................................................................................ 13 3. SCHEDE DELLE SPECIE DI DIATOMEE RELATIVE A CAMPIONI DELLA
    [Show full text]
  • Ordem Surirellales (Bacillariophyceae) No Estado De São Paulo: Levantamento Florístico
    Krysna Stephanny de Morais Ferreira Ordem Surirellales (Bacillariophyceae) no Estado de São Paulo: levantamento florístico Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo como parte dos requisitos para obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, Área de Concentração Plantas Avasculares em Análises Ambientais. SÃO PAULO 2016 Krysna Stephanny de Morais Ferreira Ordem Surirellales (Bacillariophyceae) no Estado de São Paulo: levantamento florístico Dissertação apresentada ao Instituto de Botânica da Secretaria do Meio Ambiente do Estado de São Paulo como parte dos requisitos para obtenção do título de MESTRE em BIODIVERSIDADE VEGETAL E MEIO AMBIENTE, Área de Concentração Plantas Avasculares em Análises Ambientais. ORIENTADOR: PROF. DR. CARLOS EDUARDO DE MATTOS BICUDO i ii À minha mãe Aurilene e ao meu pai Edilson, família e amigos, dedico. iii Tudo que é seu encontrará uma maneira de chegar até você. (Chico Xavier) iv AGRADECIMENTOS Em primeiro lugar gostaria de agradecer a Deus por ser minha base e nunca ter me abandonado nos momentos difíceis. Ao meu queridíssimo Prof. Dr. Carlos Eduardo de Mattos Bicudo pela confiança, incentivo e apoio. Obrigada, de coração, por tudo que me foi passado, pelos conhecimentos científicos e pelas agradáveis conversas e conselhos. Obrigada por fazer mais leve essa caminhada e pelas palavras certas nos momentos de “aperreio”. Obrigada mesmo, de verdade. À Profª Drª Denise de Campos Bicudo pelo conhecimento a mim passado, pelos conselhos e por ser essa pessoa simpática, amável e gentil que sempre nos recebe de braços abertos. À Profª Drª Carla Ferragut por todo conhecimento e experiência a nós passada em laboratório, nas aulas e no dia-a-dia.
    [Show full text]
  • Protistology Diatom Assemblages of the Brackish Bolshaya Samoroda
    Protistology 13 (4), 215–235 (2019) Protistology Diatom assemblages of the brackish Bolshaya Samoroda River (Russia) studied via light micro- scopy and DNA metabarcoding Elena A. Selivanova, Marina E. Ignatenko, Tatyana N. Yatsenko-Stepanova and Andrey O. Plotnikov Institute for Cellular and Intracellular Symbiosis of the Ural Branch of the Russian Academy of Sciences, Orenburg 460000, Russia | Submitted October 15, 2019 | Accepted December 10, 2019 | Summary Diatoms are highly diverse and widely spread aquatic photosynthetic protists. Studies of regional patterns of diatom diversity are substantial for understanding taxonomy and biogeography of diatoms, as well as for ecological perspectives and applied purposes. DNA barcoding is a modern approach, which can resolve many problems of diatoms identification and can provide valuable information about their diversity in different ecosystems. However, only few studies focused on diatom assemblages of brackish rivers and none of them applied the genetic tools. Herein, we analyzed taxonomic composition and abundance of diatom assemblages in the brackish mixohaline Bolshaya Samoroda River flowing into the Elton Lake (Volgograd region, Russia) using light microscopy and high-throughput sequencing of the V4 region of the 18S rDNA gene amplicons. In total, light microscopy of the samples taken in 2011–2014 and 2018 allowed to distinguish 39 diatom genera, represented by 76 species and infraspecies taxa. Twenty three species of diatoms were recorded in the river for the first time. Next-generation sequencing revealed a larger number of diatom taxa (26 genera and 47 OTUs in two samples vs. 20 genera and 37 species estimated by light microscopy). As a result, sequences of Haslea, Fistulifera, Gedaniella were recorded in the river for the first time.
    [Show full text]
  • Cymbella Pamirensis Sp. Nov. (Bacillariophyceae) from an Alpine Lake in the Pamir Mountains, Northwestern China
    Phytotaxa 308 (2): 249–258 ISSN 1179-3155 (print edition) http://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2017 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.308.2.6 Cymbella pamirensis sp. nov. (Bacillariophyceae) from an alpine lake in the Pamir Mountains, Northwestern China ZHONGYAN ZHANG1, 2, PATRICK RIOUAL1*, YUMEI PENG2,3, XIAOPING YANG4, ZHANGDONG JIN3,5 & LUC ECTOR6 1 Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China 2University of Chinese Academy of Sciences, Beijing 100049, China 3 State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, Chinese Academy of Sciences, Xi’an 710075, China 4School of Earth Sciences, Zhejiang University, Hangzhou 310027, China 5Institute of Global Environmental Change, Xi’an Jiaotong University, Xi’an 710049, China 6Luxembourg Institute of Science and Technology, Department of Environmental Research and Innovation, 41 rue du Brill, L-4422 Belvaux, Luxembourg *Corresponding author: E-mail: [email protected] Abstract This paper describes a new Cymbella species from an alpine lake in the Pamir Mountains, NW China, with the aid of light and scanning electron microscopy and morphometric analyses. The morphology of the new species, named Cymbella pami- rensis, is discussed and compared to similar species. The main morphometric features distinguishing Cymbella pamirensis from similar species of Cymbella are the outline and size of the valves. Cymbella pamirensis has been observed in surface sediment and core samples from Lake Sate Baile Dikuli, an alkaline, mesotrophic lake of the Pamir Mountains. Key words: China, Cymbella, diatom, morphometric analysis, taxonomy Introduction The genus Cymbella was established almost 200 years ago by Agardh (1830: 1), but no generitype species was designated.
    [Show full text]
  • Marine Phytoplankton Atlas of Kuwait's Waters
    Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas Marine Phytoplankton Atlas of Kuwait’s Waters Marine Phytoplankton Atlas of Kuwait’s of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie ISBN: 99906-41-24-2 Kuwait Institute for Scientific Research P.O.Box 24885, Safat - 13109, Kuwait Tel: (965) 24989000 – Fax: (965) 24989399 www.kisr.edu.kw Marine Phytoplankton Atlas of Kuwait’s Waters Published in Kuwait in 2009 by Kuwait Institute for Scientific Research, P.O.Box 24885, 13109 Safat, Kuwait Copyright © Kuwait Institute for Scientific Research, 2009 All rights reserved. ISBN 99906-41-24-2 Design by Melad M. Helani Printed and bound by Lucky Printing Press, Kuwait No part of this work may be reproduced or utilized in any form or by any means electronic or manual, including photocopying, or by any information or retrieval system, without the prior written permission of the Kuwait Institute for Scientific Research. 2 Kuwait Institute for Scientific Research - Marine phytoplankton Atlas Kuwait Institute for Scientific Research Marine Phytoplankton Atlas of Kuwait’s Waters Manal Al-Kandari Dr. Faiza Y. Al-Yamani Kholood Al-Rifaie Kuwait Institute for Scientific Research Kuwait Kuwait Institute for Scientific Research - Marine phytoplankton Atlas 3 TABLE OF CONTENTS CHAPTER 1: MARINE PHYTOPLANKTON METHODOLOGY AND GENERAL RESULTS INTRODUCTION 16 MATERIAL AND METHODS 18 Phytoplankton Collection and Preservation Methods 18 Sample Analysis 18 Light Microscope (LM) Observations 18 Diatoms Slide Preparation
    [Show full text]
  • Surirella Wulingensis Sp. Nov. and Fine Structure of S. Tientsinensis Skvortzov (Bacillariophyceae) from China
    Fottea, Olomouc, 19(2): 151–162, 2019 151 DOI: 10.5507/fot.2019.006 Surirella wulingensis sp. nov. and fine structure of S. tientsinensis Skvortzov (Bacillariophyceae) from China Bing Liu1*, Saúl Blanco2,3, Luc Ector4, Zhu–xiang Liu1 & Juan Ai1 1College of Biology and Environmental Science, Jishou University, Jishou 416000, China; *Corresponding author e–mail: [email protected] 2Departamento de Biodiversidad y Gestión Ambiental, Facultad de Ciencias Biológicas y Ambientales, Universidad de León, Campus de Vegazana s/n, 24071, León, España 3Laboratorio de diatomología y calidad de aguas, Instituto de Investigación de Medio Ambiente, Recursos Naturales y Biodiversidad, La Serna 58, 24007, León, España 4Luxembourg Institute of Science and Technology (LIST), Department of Environmental Research and Innovation, 41 rue du Brill, L–4422 Belvaux, Luxembourg Abstract: Two Surirella species from China are studied using light and scanning electron microscopy. Surirella wulingensis sp. nov., discovered from Li River (located in Wuling Mountains, China), bears five undulations from pole to pole throughout the whole valve diminution series and parallel valve margins, which differ from other similar taxa. Based on the observations of the fine structure, an amended description is provided for S. tientsinensis which possesses a unique character within the genus Surirella: rounded and rimmed outer openings of areolae. Three new morphological terms are proposed: costa–stria bundle (CSB), over–fibula costa (OFC), and mantle sinking against a fibula (MSAF), which can be used for describing someSurirella taxa more succinctly and explicitly including these taxa in this study. Key words: corresponding relationship, diatom, fine structure, new species, rimmed opening Introduction Surirella sensu stricto, they are still a distinctive group with unique valve surface undulations from pole to Surirella Turpin is a diversified diatom genus that in- pole.
    [Show full text]
  • Download Full Article in PDF Format
    Cryptogamie, Algologie, 2018, 39 (1): 35-62 © 2018 Adac. Tous droits réservés Epithemia hirudiniformis and related taxa within the subgenus Rhopalodiella subg. nov.in comparison to Epithemia subg. Rhopalodia stat nov. (Bacillariophyceae) from East Africa Christine CoCQUYt a* Wolf-Henning kUSBer b &regine JAHn b aBotanic Garden meise, Nieuwelaan 38, BE-1860 meise, Belgium bBotanischerGarten und BotanischesMuseum Berlin, Freie UniversitätBerlin, königin-luise-Str.6-8, D-14195 Berlin, Germany Abstract – epithemia hirudiniformis and three morphologically related taxa, described in rhopalodia by O. Müller from material collected in East Africa at the end of the 19th and the beginning of the 20th century were re-evaluated and lectotypes designated. rhopalodiella as anew subgenus is proposed which refines O. Müller’s infrageneric classification and to which all these taxa belong. In addition, the type of epithemiarhopala,described by Ehrenbergfrom Egypt, was studied to examine the assumed synonymy,introduced by Hustedt, with some of Müller’s species. This study,using light and scanning electron microscopy,was not only based on historic material but also more recent material from Africa, including samples from the Island of Reunion from which the new species epithemia vandevijveri is described. The distribution of epithemia subg. rhopalodiella,known to be restricted to tropical Africa, is discussed based on literature data and own observations. Corresponding to recent molecular-based studies, rhopalodia is given anew status as subgenus. Classification /diatoms /East Africa /new species /new subgenera / Rhopalodia / taxonomy /typification INTRODUCTION rhopalodia O. Müll. taxa are, like the representatives of the genus Iconella Jurily,formerly subsumed under the genus name Surirella Turpin (Ross, 1983; Jahn et al.,2017), typical components of the East African Rift diatom flora.
    [Show full text]
  • A Preliminary Check-List of the Algae of Ireland Michael D. Guiry
    A Preliminary Check-list of the Algae of Ireland Michael D. Guiry Ryan Institute NUI Galway September 2019 i Introduction The present check-list is an initial attempt to provide an up-to-date list of the current names for freshwater, marine and terrestrial (including aerophytic) algae of Ireland. The list is extracted from the distributional data in AlgaeBase (https://www.algaebase.org) as of September 2019, and each name and its source is traceable on line there. Some 2879 current species names are presently included. Taxa at the subspecies, varieties and formae level are not provided. The list is current as of September 2019. Nine phyla/divisions are included, eight of them from the Eukaryota and one (Cyanobacteria) from the Prokaryota. Table 1. Included taxa. Phylum Species General name(s) Habitat Estimated included (Marine, completeness Freshwater, (%) Terrestrial) Bacillariophyta 1065 Diatoms M/F/T 50 Charophyta 639 Charophytes F 80 Desmids Chlorophyta 300 Green algae M/F/T 60 Cryptophyta 1 Cryptophytes F ? Cyanobacteria 221 Blue-green algae F/M/T 70 Glaucophyta 1 Glaucophytes F ? Miozoa 55 Dinoflagellates M/F 25 Ochrophyta 238 Ochrophytes; M/F/T 80 Tribophytes; brown algae; seaweeds Rhodophyta 359 Red algae, seaweed M/F 90 Total 2879 Recent lists exist for: desmids (John, Williamson & Guiry 2011) and seaweeds (Guiry 2012), and for diatoms by Carter in Wolnik & Carter (2014). The final list is likely to exceed 5000 species, or about 10% of the world’s species of algae. Poor coverage is apparent for diatoms, some green algae, Cryptophytes and Glaucophytes, and dinoflagellates. The list is arranged in alphabetical order within phyla, classes, orders, families and genera.
    [Show full text]
  • Phytoplankton in a Tropical Estuary, Northeast Brazil: Composition and Life Forms
    11 3 1633 the journal of biodiversity data April 2015 Check List NOTES ON GEOGRAPHIC DISTRIBUTION Check List 11(3): 1633, April 2015 doi: http://dx.doi.org/10.15560/11.3.1633 ISSN 1809-127X © 2015 Check List and Authors Phytoplankton in a tropical estuary, Northeast Brazil: composition and life forms Eveline P. Aquino*, Gislayne C. P. Borges, Marcos Honorato-da-Silva, José Z. O. Passavante and Maria G. G. S. Cunha Universidade Federal de Pernambuco, Avenida Professor Moraes Rego, 123, Cidade Universitaria, Recife, Pernambuco, 50670-901, Brazil * Corresponding author. Email: [email protected] Abstract: We aimed verify the composition of the oscillations in the environmental, which can resuspend phytoplankton community and this life forms that or deposit cells on the bottom. The knowledge of occur in the Capibaribe River estuary, Pernambuco, composition and life forms of the biotic communities is Brazil. This is a highly impacted ecosystem by anthropic a necessary tool to understand the mechanism and the activities. We collected samples of the phytoplankton ecological importance of aquatic ecosystems (Eskinazi- community at three stations, during three months of Leça et al. 2004; Cloern and Jassby 2010). each season: dry, from October to December 2010; rainy, In this context, our study aimed to analyze the from May to July 2011. We collected samples during the composition of the phytoplankton community and the low and high tide, at the spring tide. We classified the main life forms of species occurring in the Capibaribe species based on life forms. We identified 127 taxa, and River estuary (Pernambuco), which is an important the majority of species were freshwater planktonic form aquatic body in Northeast Brazil.
    [Show full text]
  • Gomphonema Coronatum Ehrenberg
    Fifteenth NAWQA Workshop on Harmonization of Algal Taxonomy April 28-May 1, 2005 Report No. 06-07 Phycology Section/Diatom Analysis Laboratory Patrick Center for Environmental Research The Academy of Natural Sciences of Philadelphia 1900 Benjamin Franklin Parkway Philadelphia, PA 19027-1195 Edited by Eduardo A. Morales August 2006 This page is intentionally left blank. Table of Contents Page Introduction..................................................................................................................................... 1 Criteria for Adopting New Names.................................................................................................. 2 Procedure for Evaluating Names .................................................................................................... 4 Workshop Outcomes....................................................................................................................... 5 Adopted Genera Names .............................................................................................................. 6 Genus Names that were not Adopted or that were Deleted from List........................................ 8 Additional Workshop Outcomes................................................................................................... 11 Summary of the Discussion on Gyrosigma Taxonomy at the Fifteenth NAWQA Workshop on Harmonization of Algal Taxonomy.............................................................................................. 13 Conclusions..............................................................................................................................
    [Show full text]
  • Research Article
    Ecologica Montenegrina 20: 24-39 (2019) This journal is available online at: www.biotaxa.org/em Biodiversity of phototrophs in illuminated entrance zones of seven caves in Montenegro EKATERINA V. KOZLOVA1*, SVETLANA E. MAZINA1,2 & VLADIMIR PEŠIĆ3 1 Department of Ecological Monitoring and Forecasting, Ecological Faculty of Peoples’ Friendship University of Russia, 115093 Moscow, 8-5 Podolskoye shosse, Ecological Faculty, PFUR, Russia 2 Department of Radiochemistry, Chemistry Faculty of Lomonosov Moscow State University 119991, 1-3 Leninskiye Gory, GSP-1, MSU, Moscow, Russia 3 Department of Biology, Faculty of Sciences, University of Montenegro, Cetinjski put b.b., 81000 Podgorica, Montenegro *Corresponding autor: [email protected] Received 4 January 2019 │ Accepted by V. Pešić: 9 February 2019 │ Published online 10 February 2019. Abstract The biodiversity of the entrance zones of the Montenegro caves is barely studied, therefore the purpose of this study was to assess the biodiversity of several caves in Montenegro. The samples of phototrophs were taken from various substrates of the entrance zone of 7 caves in July 2017. A total of 87 species of phototrophs were identified, including 64 species of algae and Cyanobacteria, and 21 species of Bryophyta. Comparison of biodiversity was carried out using Jacquard and Shorygin indices. The prevalence of cyanobacteria in the algal flora and the dominance of green algae were revealed. The composition of the phototrophic communities was influenced mainly by the morphology of the entrance zones, not by the spatial proximity of the studied caves. Key words: karst caves, entrance zone, ecotone, algae, cyanobacteria, bryophyte, Montenegro. Introduction The subterranean karst forms represent habitats that considered more climatically stable than the surface.
    [Show full text]