A Novel Translational Repressor Mrna Is Edited Extensively in Livers Containing Tumors Caused by the Transgene Expression of the Apob Mrna-Editing Enzyme

Total Page:16

File Type:pdf, Size:1020Kb

A Novel Translational Repressor Mrna Is Edited Extensively in Livers Containing Tumors Caused by the Transgene Expression of the Apob Mrna-Editing Enzyme Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press A novel translational repressor mRNA is edited extensively in livers containing tumors caused by the transgene expression of the apoB mRNA-editing enzyme Shinya Yamanaka/ Karen S. Poksay,^ Kay S. Arnold/ and Thomas L. Innerarity 2-5 ^Gladstone Institute of Cardiovascular Disease, -^Cardiovascular Research Institute, and "^Department of Pathology, University of California, San Francisco, California 94141-9100 USA Transgene expression of the apoUpoprotein B mRNA-editing enzyme (APOBEC-1) causes dysplasia and carcinoma in mouse and rabbit livers. Using a modified differential display technique, we identified a novel mRNA (NATl for novel APOBEC-1 target no. 1) that is extensively edited at multiple sites in these livers. The aberrant editing alters encoded amino acids, creates stop codons, and results in markedly reduced levels of the NATl protein in transgenic mouse livers. NATl is expressed ubiquitously and is extraordinarily conserved among species. It has homology to the carboxy-terminal portion of the eukaryotic translation initiation factor (elF) 4G that binds eIF4A and eIF4E to form eIF4F. NATl binds eIF4A but not eIF4E and inhibits both cap-dependent and cap-independent translation. NATl is likely to be a fundamental translational repressor, and its aberrant editing could contribute to the potent oncogenesis induced by overexpression of APOBEC-1. [Key Words: APOBEC-1; RNA editing; translation repressor; transgenic mice] Received October 28, 1996; revised version accepted December 18, 1996. ApoUpoprotein B (apoB) mRNA editing is the deamination and tissues (Driscoll and Zhang 1994; Giannoni et al. of a specific cytidine (nucleotide 6666) to form uridine in 1994; Yamanaka et al. 1994). Thus, APOBEC-1 appears the 14-kb apoB mRNA (Chen et al. 1987; Powell et al. to be part of a multiprotein complex (Harris et al. 1993; 1987). This deamination changes a glutamine codon Giannoni et al. 1994). (CAA) to a translation termination codon (UAA) and re­ Quite unexpectedly, we found that the overexpression sults in the formation of an apoB protein (apoB48) con­ of APOBEC-1 causes dysplasia and hepatocellular carci­ sisting of the amino-terminal 48% of the full-length ge- noma in transgenic mouse livers (Yamanaka et al. 1995). nomically encoded apoB (apoBlOO) (Scott 1995; Innerar­ It also induced hepatic dysplasia in a transgenic rabbit ity et al. 1996). ApoB mRNA is edited in the small founder. Overexpression of APOBEC-1 resulted in the intestines of mammalian species as well as in the livers development of hepatocellular carcinoma as early as 21 of some mammals such as mice and rats (Greeve et al. days after birth in transgenic mice. This potent oncogen­ 1993). The enzyme APOBEC-1 (apoB mRNA-editing esis was not attributable to transforming elements in the catalytic subunit polypeptide 1) that catalyzes the cyti­ vector, insertion effects of transgenes, or the increased dine deamination has been cloned (Teng et al. 1993). formation of the apoB48 protein. We hypothesized that APOBEC-1 possesses RNA-binding activity (Anant et al. the oncogenesis is a result of the aberrant editing of other 1995; Navaratnam et al. 1995) and cytidine deaminase mRNA(s) encoding protein(s) with important cellular activity (Navaratnam et al. 1993) but is inactive without function(s). If this hypothesis is correct, the identifica­ the addition of protein extracts that presumably contain tion of other target mRNAs of overexpressed APOBEC-1 missing auxiliary or complementary factors necessary could lead to the discovery of molecules important in for editing. These unidentified auxiliary proteins are regulating cell growth. widely but not ubiquitously distributed in many organs To identify other targets of APOBEC-1, we initially took a candidate mRNA approach (Yamanaka et al. 1995, 1996). Mutagenesis studies suggested that the sequence specificity of apoB mRNA editing is provided by a moor­ ^Present address: Department of Pharmacology, Osaka City University ing sequence—an 11-nucleotide sequence motif located Medical School, Osaka 545, Japan. ^Corresponding author. five nucleotides downstream from the edited cytidine E-MAIL [email protected]; FAX (415) 285-5632. ((-6666| -j^ ^pQg mRNA (Shah et al. 1991; Backus et al. GENES & DEVELOPMENT 11:321-333 © 1997 by Cold Spring Harbor Laboratory Press ISSN 0890-9369/97 $5.00 321 Downloaded from genesdev.cshlp.org on September 26, 2021 - Published by Cold Spring Harbor Laboratory Press Yamanaka et al. 1994). In vitro, the mooring sequence was sufficient to sequence and amplified the 92-bp sequence from control induce editing of cytidines four to six nucleotides up­ mouse liver RNA, transgenic mouse liver RNA, and stream in chimeric RNA (Driscoll et al. 1993; Backus mouse genomic DNA. When sequenced, the PCR prod­ and Smith 1994). We searched genomic databases for ucts from control mouse liver RNA and the genomic other mRNAs containing the mooring sequence and DNA were identical to the human sequence. In contrast, found six mRNA candidates that have a mooring-like the PCR products from the APOBEC-1 transgenic mouse sequence as well as cytidines four to six nucleotides up­ liver RNA had thymidines in the place of several cyti­ stream. The upstream cytidines of these mRNAs were dines, as in the DNA from differential display, further examined for editing. In the APOBEC-1 transgenic suggesting that these cytidines are edited in the trans­ mouse livers, only one of these six candidates [a tyrosine genic mouse livers. Primer extension analysis also con­ kinase mRNA (Mano et al. 1990)] showed detectable ed­ firmed the editing of multiple cytidines in both trans­ iting (-1%), which did not change the encoded amino genic mouse livers and in the transgenic rabbit founder acid. No cytidines in any of the six candidate mRNAs that overexpressed rabbit APOBEC-1 in their livers and were edited in control mouse livers. This candidate ap­ developed severe hepatic dysplasia (Fig. IC). This mRNA proach suggests that the pathological editing by overex- has been designated NATl. pressed APOBEC-1 remains selective and requires other Northern blot analyses revealed that NATl is ex­ unidentified element(s) in addition to the mooring se­ pressed at high levels in adult human heart, brain, pla­ quence. It became apparent that better approaches would centa, lung, liver, skeletal muscle, kidney, and pancreas be required to identify other target mRNAs, especially (Fig. ID), as well as in spleen, thymus, prostate, testis, those that are not in the genomic databases. ovary, small intestine, colon, and peripheral blood leu­ In this study, we used a modified differential display kocytes (data not shown). NATl is also expressed in fetal technique (Liang and Pardee 1992) to search for edited human brain, lung, liver, and kidney (data not shown). mRNAs. We identified, cloned, and characterized a All human cell lines examined expressed NATl at ap­ novel mRNA that is extensively edited in transgenic proximately the same levels, including HL-60 (promy- mouse and rabbit livers. This mRNA, NATl (novel elocytic leukemia), HeLa S3, K-562 (chronic myeloge­ APOBEC-1 target 1), encodes a protein that appears to be nous leukemia), MOLT-4 (lymphoblastic leukemia), Raji involved in the regulation of translation initiation. In (Burkitt's lymphoma), SW480 (colorectal adenocarci­ addition, comparison of apoB mRNA and NATl se­ noma), A549 (lung carcinoma), and G361 (melanoma) quences gave us new insights into the mechanism of (data not shown). Southern blot analysis (Fig. IE), in APOBEC-1-mediated mRNA editing. which human EST cDNA was used as a probe under highly stringent conditions, demonstrated that the NATl sequence is highly conserved among mammalian Results species (human, monkey, rat, mouse, dog, bovine, and rabbit). A weaker band present in chicken suggested the Identification of NATl existence of a NATl homolog in this species. No band We modified the differential display technique to selec­ was detected in yeast. The high degree of conservation tively amplify mRNAs that were edited in the livers of and the ubiquitous distribution of the mRNA suggest transgenic mice overexpressing APOBEC-1. Primers that NATl has critical functions in cellular physiology. (mooring primers) were designed that consisted of a se­ quence complementary to the mooring sequence, three to five degenerate nucleotides, and an adenosine at the 3' end (Fig. lA). Cytidines four to six nucleotides upstream Cloning of the full-length NATl cDNA of the mooring sequence can be edited in vitro (Driscoll We sequenced the longest clone (2.4 kb) of five human et al. 1993; Backus and Smith 1994). These mooring EST clones derived from NATl mRNA. That it was not primers served as antisense primers for cDNA synthesis a full-length clone was revealed when Northern blot and PCR instead of the anchored oligo-dT primers usu­ analysis demonstrated a 4-kb transcript (Fig. ID). Using ally used in the differential display procedure (Liang and 5'-RACE-PCR (Frohman et al. 1988), we obtained a full- Pardee 1992). Using this modified technique, we identi­ length cDNA of human NATl (3.8 kb). Mouse and rabbit fied differentially amplified bands on agarose gels (Fig. NATl full-length cDNAs were obtained by RT-PCR IB) from which DNAs were eluted, subcloned, and se­ with primers based on the human sequence (Fig. 2). At quenced. A search of genomic databases revealed that the nucleotide level, human and rabbit sequences are two of the three clones shown in Figure IB (clones 3-13 95.5% and 94.8% identical, respectively, to the mouse and 3-13') were nearly identical to each other and to sequences. The 3' sequence of NATl mRNA contains several human expressed sequence tags (ESTs) (Adams et five sequence motifs that are only one or two nucleotides al. 1992). Importantly, the mouse sequences derived different from the apoB mRNA mooring sequence (Figs.
Recommended publications
  • Structures of Yeast 80S Ribosome-Trna Complexes in the Rotated and Nonrotated Conformations
    Structure Short Article Structures of Yeast 80S Ribosome-tRNA Complexes in the Rotated and Nonrotated Conformations Egor Svidritskiy,1,4 Axel F. Brilot,2,4 Cha San Koh,1 Nikolaus Grigorieff,2,3,5,* and Andrei A. Korostelev1,5,* 1RNA Therapeutics Institute, Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 368 Plantation Street, Worcester, MA 01605, USA 2Department of Biochemistry, Rosenstiel Basic Medical Sciences Research Center, Brandeis University, Waltham, MA 02454, USA 3Janelia Farm Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA 20147, USA 4Co-first author 5Co-senior author *Correspondence: [email protected] (N.G.), [email protected] (A.A.K.) http://dx.doi.org/10.1016/j.str.2014.06.003 SUMMARY upstream of the open reading frame (Dalgarno and Shine, 1973) forms base-pairing interactions with the complimentary The structural understanding of eukaryotic translation anti-Shine-Dalgarno region of the ribosomal 16S RNA. The for- lags behind that of translation on bacterial ribosomes. mation of this specific contact results in positioning of the down- Here, we present two subnanometer resolution struc- stream AUG start codon in the P site of the small 30S subunit, tures of S. cerevisiae 80S ribosome complexes thus determining the open reading frame of the mRNA for trans- formed with either one or two tRNAs and bound in lation (Kaminishi et al., 2007; Korostelev et al., 2007; Yusupova response to an mRNA fragment containing the Kozak et al., 2006). By contrast, initiation in eukaryotes depends on at least a dozen initiation factors (Aitken and Lorsch, 2012).
    [Show full text]
  • Ribosome and Translational Control in Stem Cells
    cells Review Ribosome and Translational Control in Stem Cells Mathieu Gabut 1,2 , Fleur Bourdelais 1,2 and Sébastien Durand 1,2,* 1 Equipe ‘Transcriptome Diversity in Stem Cells’, Cancer Cell Plasticity Department, INSERM 1052, CNRS 5286, Cancer Research Center of Lyon, Centre Léon Bérard, 69008 Lyon, France; [email protected] (M.G.); fl[email protected] (F.B.) 2 Université Claude Bernard Lyon 1, 69100 Villeurbanne, France * Correspondence: [email protected]; Tel.: +33-469-856-092 Received: 15 January 2020; Accepted: 17 February 2020; Published: 21 February 2020 Abstract: Embryonic stem cells (ESCs) and adult stem cells (ASCs) possess the remarkable capacity to self-renew while remaining poised to differentiate into multiple progenies in the context of a rapidly developing embryo or in steady-state tissues, respectively. This ability is controlled by complex genetic programs, which are dynamically orchestrated at different steps of gene expression, including chromatin remodeling, mRNA transcription, processing, and stability. In addition to maintaining stem cell homeostasis, these molecular processes need to be rapidly rewired to coordinate complex physiological modifications required to redirect cell fate in response to environmental clues, such as differentiation signals or tissue injuries. Although chromatin remodeling and mRNA expression have been extensively studied in stem cells, accumulating evidence suggests that stem cell transcriptomes and proteomes are poorly correlated and that stem cell properties require finely tuned protein synthesis. In addition, many studies have shown that the biogenesis of the translation machinery, the ribosome, is decisive for sustaining ESC and ASC properties. Therefore, these observations emphasize the importance of translational control in stem cell homeostasis and fate decisions.
    [Show full text]
  • Disome-Seq Reveals Widespread Ribosome Collisions That Recruit Co-Translational Chaperones
    SUPPLEMENTARY INFORMATION FOR Disome-seq reveals widespread ribosome collisions that recruit co-translational chaperones T. Zhao, Y.-M. Chen, Y. Li, J. Wang, S. Chen, N. Gao, and W. Qian Supplementary information includes Supplementary Figures S1-11 and Supplementary Tables S1-5. Supplementary Figures Figure S1. Disomes persisted after RNase digestion. Samples containing an equal amount of ribosome-bound mRNA (5000 A260 unit) were treated with 100 U, 250 U, and 500 U RNase I, respectively. As the concentration of RNase I increased, the abundance of monosome reduced, and that of free ribonucleoprotein (RNP) increased, suggesting the disruption of ribosomes by the excessive RNase I digestion. However, the disome persisted – the mRNA fragment in- between was resistant to the RNase digestion likely due to the steric effect. Figure S2. Correlations between libraries of disome-seq, monosome-seq, and mRNA-seq. (A) The top three charts are the scatter plots of the number of mapped reads in each gene between biological replicates. The bottom chart shows the correlation of reads in each gene between disome-seq and monosome-seq, in the unit of reads per million. The average of two replicates is shown. All libraries were obtained from 3-AT treated yeast cells. Each dot represents a gene. The P-values were given by Pearson’s correlation. (B) Same to (A), except yeast cells were cultured in the rich medium. Figure S3. The size distribution of monosome and disome footprints. (A-B) We mapped the monosome (A) and disome (B) footprints obtained from 3-AT treated yeast cells to the yeast genome.
    [Show full text]
  • Viral and Cellular Mrna-Specific Activators Harness PABP and Eif4g to Promote Translation Initiation Downstream of Cap Binding
    Viral and cellular mRNA-specific activators harness PABP and eIF4G to promote translation initiation downstream of cap binding Richard W. P. Smitha,b,c,1, Ross C. Andersona,b,2, Osmany Larraldec,3, Joel W. S. Smithb, Barbara Gorgonia,b,4, William A. Richardsona,b, Poonam Malikc,d,5, Sheila V. Grahamc, and Nicola K. Graya,b,1 aMedical Research Council Centre for Reproductive Health, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, United Kingdom; bMedical Research Council Human Genetics Unit, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom; cMedical Research Council-University of Glasgow Centre for Virus Research, Garscube Campus, Glasgow G61 1QH, United Kingdom; and dWellcome Trust Centre for Cell Biology and Institute of Cell Biology, University of Edinburgh, Edinburgh EH9 3BF, United Kingdom Edited by Nahum Sonenberg, McGill University, Montreal, QC, Canada, and approved April 28, 2017 (received for review July 4, 2016) Regulation of mRNA translation is a major control point for gene ribosomal subunit to form an 80S ribosome. Like the cap, the poly expression and is critical for life. Of central importance is the (A) tail serves as a primary determinant of translational efficiency (3) complex between cap-bound eukaryotic initiation factor 4E via the action of poly(A)-binding protein (PABP). Analysis of (eIF4E), eIF4G, and poly(A) tail-binding protein (PABP) that circu- mRNA-ribosomal subunit association has shown that PABP pro- larizes mRNAs, promoting translation and stability. This complex is motes small subunit recruitment, an activity attributed to its ability to often targeted to regulate overall translation rates, and also by stimulate cap binding by eIF4E (4).
    [Show full text]
  • The Female Post-Mating Response Requires Genes Expressed in the Secondary Cells of the Male Accessory Gland in Drosophila Melanogaster
    | INVESTIGATION The Female Post-Mating Response Requires Genes Expressed in the Secondary Cells of the Male Accessory Gland in Drosophila melanogaster Jessica L. Sitnik,*,1 Dragan Gligorov,†,1 Robert K. Maeda,† François Karch,†,2 and Mariana F. Wolfner*,2 *Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York 14853, and †Department of Genetics and Evolution, University of Geneva, 1211 Geneva, Switzerland ORCID ID: 0000-0003-2701-9505 (M.F.W.) ABSTRACT Seminal proteins from the Drosophila male accessory gland induce post-mating responses (PMR) in females. The PMR comprise behavioral and physiological changes that include increased egg laying, decreased receptivity to courting males, and changes in the storage and use of sperm. Many of these changes are induced by a “sex peptide” (SP) and are maintained by SP’s binding to, and slow release from, sperm. The accessory gland contains two secretory cell types with distinct morphological and developmental characteristics. Products of these “main” and “secondary” cells work interdependently to induce and maintain the PMR. To identify individual genes needed for the morphology and function of secondary cells, we studied iab-6cocu males, whose secondary cells have abnormal morphology and fail to provide products to maintain the PMR. By RNA-seq, we identified 77 genes that are downregulated by a factor of .53 in iab-6cocu males. By functional assays and microscopy, we tested 20 candidate genes and found that at least 9 are required for normal storage and release of SP in mated females. Knockdown of each of these 9 genes consequently leads to a reduction in egg laying and an increase in receptivity over time, confirming a role for the secondary cells in maintaining the long-term PMR.
    [Show full text]
  • Eif1 Discriminates Against Suboptimal Initiation Sites to Prevent Excessive Uorf Translation Genome-Wide
    Downloaded from rnajournal.cshlp.org on September 24, 2021 - Published by Cold Spring Harbor Laboratory Press eIF1 discriminates against suboptimal initiation sites to prevent excessive uORF translation genome-wide FUJUN ZHOU, HONGEN ZHANG, SHARDUL D. KULKARNI, JON R. LORSCH, and ALAN G. HINNEBUSCH Division of Molecular and Cellular Biology, Eunice Kennedy Shriver National Institute of Child Health and Development, National Institutes of Health, Bethesda, Maryland 20892, USA ABSTRACT The translation preinitiation complex (PIC) scans the mRNA for an AUG codon in a favorable context. Previous findings sug- gest that the factor eIF1 discriminates against non-AUG start codons by impeding full accommodation of Met-tRNAi in the P site of the 40S ribosomal subunit, necessitating eIF1 dissociation for start codon selection. Consistent with this, yeast eIF1 substitutions that weaken its binding to the PIC increase initiation at UUG codons on a mutant his4 mRNA and par- ticular synthetic mRNA reporters; and also at the AUG start codon of the mRNA for eIF1 itself owing to its poor Kozak con- text. It was not known however whether such eIF1 mutants increase initiation at suboptimal start codons genome-wide. By ribosome profiling, we show that the eIF1-L96P variant confers increased translation of numerous upstream open reading frames (uORFs) initiating with either near-cognate codons (NCCs) or AUGs in poor context. The increased uORF translation is frequently associated with the reduced translation of the downstream main coding sequences (CDS). Initiation is also elevated at certain NCCs initiating amino-terminal extensions, including those that direct mitochondrial localization of the GRS1 and ALA1 products, and at a small set of main CDS AUG codons with especially poor context, including that of eIF1 itself.
    [Show full text]
  • Identification and Cloning of a Protein Kinase-Encoding Mouse Gene, Plk, Related to the Polo Gene Ofdrosophila (Serine-Threonine Kinase/Polo-Like Kinase) FIONA J
    Proc. Natl. Acad. Sci. USA Vol. 90, pp. 4882-4886, June 1993 Biochemistry Identification and cloning of a protein kinase-encoding mouse gene, Plk, related to the polo gene ofDrosophila (serine-threonine kinase/polo-like kinase) FIONA J. CLAY*, STEPHEN J. MCEWEN*, IVAN BERTONCELLOt, ANDREW F. WILKS*, AND ASHLEY R. DUNN*t *Melbourne Tumour Biology Branch, Ludwig Institute for Cancer Research, PO Royal Melbourne Hospital, Victoria 3050, Australia; and tPeter MacCallum Cancer Institute, 481 Little Lonsdale Street, Melbourne, Victoria 3001, Australia Communicated by G. J. V. Nossal, January 14, 1993 (received for review November 23, 1992) ABSTRACT We have determined the nucleotide sequence to emerge from this study encodes a protein kinase that of a cDNA encoding a protein kinase that is closely related to shares extensive homology with the enzyme encoded by the the enzyme encoded by the Drosophila melanogaster mutant Drosophila melanogaster mutant polo (11).§ polo and that we have designated Plk (polo-like kinase). Plk is also related to the products of the Saccharomyces cerevisiae cell MATERIALS AND METHODS cycle gene MSD2 (CDC5) and the recently described early growth response gene Snk. Together, Plk, polo, Snk, and DNA Amplification. Poly(A)+ mRNA prepared from puri- MSD2 define a subfamily of serine/threonine protein kinases. fied primitive hemopoietic cells isolated from the bone mar- Plk is expressed at high levels in a number offetal and newborn rows of C57BL/6 mice (12-14) was used to generate cDNA, in the corresponding adult using a cDNA Synthesis System Plus kit (Amersham). PCR mouse tissues but is not expressed was performed with the degenerate oligonucleotide primers organs.
    [Show full text]
  • Rps3/Us3 Promotes Mrna Binding at the 40S Ribosome Entry Channel and Stabilizes Preinitiation Complexes at Start Codons
    Rps3/uS3 promotes mRNA binding at the 40S ribosome entry channel and stabilizes preinitiation complexes at start codons Jinsheng Donga, Colin Echeverría Aitkenb, Anil Thakura, Byung-Sik Shina, Jon R. Lorschb,1, and Alan G. Hinnebuscha,1 aLaboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892; and bLaboratory on the Mechanism and Regulation of Protein Synthesis, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892 Contributed by Alan G. Hinnebusch, January 24, 2017 (sent for review December 15, 2016; reviewed by Jamie H. D. Cate and Matthew S. Sachs) Met The eukaryotic 43S preinitiation complex (PIC) bearing Met-tRNAi rearrangement to PIN at both near-cognate start codons (e.g., in a ternary complex (TC) with eukaryotic initiation factor (eIF)2-GTP UUG) and cognate (AUG) codons in poor Kozak context; hence scans the mRNA leader for an AUG codon in favorable “Kozak” eIF1 must dissociate from the 40S subunit for start-codon rec- context. AUG recognition provokes rearrangement from an open ognition (Fig. 1A). Consistent with this, structural analyses of PIC conformation with TC bound in a state not fully engaged with partial PICs reveal that eIF1 and eIF1A promote rotation of the “ ” the P site ( POUT ) to a closed, arrested conformation with TC tightly 40S head relative to the body (2, 3), thought to be instrumental bound in the “P ” state. Yeast ribosomal protein Rps3/uS3 resides IN in TC binding in the POUT conformation, but that eIF1 physically in the mRNA entry channel of the 40S subunit and contacts mRNA Met clashes with Met-tRNAi in the PIN state (2, 4), and is both via conserved residues whose functional importance was unknown.
    [Show full text]
  • Genome-Wide Investigation of Cellular Functions for Trna Nucleus
    Genome-wide Investigation of Cellular Functions for tRNA Nucleus- Cytoplasm Trafficking in the Yeast Saccharomyces cerevisiae DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Hui-Yi Chu Graduate Program in Molecular, Cellular and Developmental Biology The Ohio State University 2012 Dissertation Committee: Anita K. Hopper, Advisor Stephen Osmani Kurt Fredrick Jane Jackman Copyright by Hui-Yi Chu 2012 Abstract In eukaryotic cells tRNAs are transcribed in the nucleus and exported to the cytoplasm for their essential role in protein synthesis. This export event was thought to be unidirectional. Surprisingly, several lines of evidence showed that mature cytoplasmic tRNAs shuttle between nucleus and cytoplasm and their distribution is nutrient-dependent. This newly discovered tRNA retrograde process is conserved from yeast to vertebrates. Although how exactly the tRNA nuclear-cytoplasmic trafficking is regulated is still under investigation, previous studies identified several transporters involved in tRNA subcellular dynamics. At least three members of the β-importin family function in tRNA nuclear-cytoplasmic intracellular movement: (1) Los1 functions in both the tRNA primary export and re-export processes; (2) Mtr10, directly or indirectly, is responsible for the constitutive retrograde import of cytoplasmic tRNA to the nucleus; (3) Msn5 functions solely in the re-export process. In this thesis I focus on the physiological role(s) of the tRNA nuclear retrograde pathway. One possibility is that nuclear accumulation of cytoplasmic tRNA serves to modulate translation of particular transcripts. To test this hypothesis, I compared expression profiles from non-translating mRNAs and polyribosome-bound translating mRNAs collected from msn5Δ and mtr10Δ mutants and wild-type cells, in fed or acute amino acid starvation conditions.
    [Show full text]
  • Trans-Splicing Enhances Translational Efficiency in C. Elegans
    Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press Trans-splicing enhances translational efficiency in C. elegans Yu-Fei Yang1, 3, 5, 6, Xiaoqing Zhang1, 3, 5, 6, Xuehua Ma2, 3, 6, Taolan Zhao1, 3, 6, Qiushi Sun1, 3, 4, Qing Huan1, 3, Shaohuan Wu1, 3, 5, Zhuo Du2, 3, 7, and Wenfeng Qian1, 3, 5, 7 1 State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China 2 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China 3 Key Laboratory of Genetic Network Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China 4 Beijing Key Laboratory of Traffic Data Analysis and Mining, School of Computer and Information Technology, Beijing Jiaotong University, Beijing 100044, China 5 University of Chinese Academy of Sciences, Beijing 100049, China 6 These authors contribute equally to this work 7 Correspondence to: Wenfeng Qian Institute of Genetics and Developmental Biology Chinese Academy of Sciences Phone: 86-10-64806550 Email: [email protected] Or Zhuo Du Institute of Genetics and Developmental Biology Chinese Academy of Sciences Phone: 86-10-64801699 Email: [email protected] Running title: Trans-splicing enhances translational efficiency Keywords: translational efficiency, trans-splicing 1 Downloaded from genome.cshlp.org on September 23, 2021 - Published by Cold Spring Harbor Laboratory Press ABSTRACT Translational efficiency is subject to extensive regulation. However, the factors influencing such regulation are poorly understood. In Caenorhabditis elegans, ~62% genes are trans-spliced to a specific spliced leader (SL1), which replaces part of the native 5’ untranslated region (5’ UTR).
    [Show full text]
  • Codon Context Controls Translation Initiation in the Fungal Kingdom
    bioRxiv preprint doi: https://doi.org/10.1101/654046; this version posted May 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Start codon context controls translation initiation in the fungal kingdom Edward Wallace2*, Corinne Maufrais1,3, Jade Sales-Lee4, Laura Tuck2, Luciana de Oliveira1, Frank Feuerbach6, Frédérique Moyrand1, Prashanthi Natarajan4, Hiten D. Madhani4,5*, Guilhem Janbon1* 1. Institut Pasteur, Unité Biologie des ARN des Pathogènes Fongiques, Département de Mycologie, F-75015, Paris, France 2. Institute for Cell Biology and SynthSys, School of Biological Sciences, University of Edinburgh, UK 3. Institut Pasteur, HUB Bioinformatique et Biostatistique, C3BI, USR 3756 IP CNRS, F-75015, Paris, France 4. Department of Biochemistry and Biophysics, University of California at San Francisco, San Francisco, California 94158, USA 5. Chan-Zuckerberg Biohub, San Francisco, CA 94158, USA 6 Institut Pasteur, Unité Génétique des Interactions Macromoléculaire, Département Génome et Génétique, F-75015, Paris, France * Corresponding authors these authors contribute equality to this work and should be considered as co-first authors 1 bioRxiv preprint doi: https://doi.org/10.1101/654046; this version posted May 31, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Eukaryotic protein synthesis initiates at a start codon defined by an AUG and its surrounding Kozak sequence context, but studies of S.
    [Show full text]
  • Cleavage of Eukaryotic Translation Initiation Factor 4GII Correlates with Translation Inhibition During Apoptosis
    Cell Death and Differentiation (2000) 7, 1234 ± 1243 ã 2000 Macmillan Publishers Ltd All rights reserved 1350-9047/00 $15.00 www.nature.com/cdd Cleavage of eukaryotic translation initiation factor 4GII correlates with translation inhibition during apoptosis WE Marissen1,3, A Gradi2, N Sonenberg2 and RE Lloyd*,3 until recently. The components of the apoptotic machinery, i.e. the caspases, are already present in the cell, and therefore, 1 Department of Microbiology & Immunology, University of Oklahoma Health de novo protein synthesis is not required for induction of Sciences Center, Oklahoma City, Oklahoma, OK 73104, USA apoptosis in most systems.1±4 However, there are several 2 Department of Biochemistry and McGill Cancer Center, McGill University, other systems in which protein synthesis is required for Montreal, Quebec, Canada apoptosis to occur.5±8 In addition, drastic inhibition of cellular 3 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, TX 77030, USA translation in virus-infected cells has long been considered a * Corresponding author: RE Lloyd, Department of Molecular Virology and major mechanism of cell death. Therefore, regulation of Microbiology, Baylor College of Medicine, Houston, Texas, TX 77030, USA. translation could potentially play an important role in the Tel: 713-798-8993; Fax: 713-798-5075; E-mail: [email protected] induction or execution of apoptosis. Eukaryotic translation initiation factor 4F (eIF4F) is Received 26.4.00; revised 21.6.00; accepted 1.8.00 required for binding the vast majority of capped mRNAs Edited by BA Osborne to ribosomes during the initial steps of translation.
    [Show full text]