Comet C/2011 J2 (LINEAR) Nucleus Splitting: Dynamical and Structural Analysis

Total Page:16

File Type:pdf, Size:1020Kb

Comet C/2011 J2 (LINEAR) Nucleus Splitting: Dynamical and Structural Analysis Planetary and Space Science 126 (2016) 8–23 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Comet C/2011 J2 (LINEAR) nucleus splitting: Dynamical and structural analysis Federico Manzini a,b,n, Virginio Oldani a,b, Masatoshi Hirabayashi c, Raoul Behrend d, Roberto Crippa a,b, Paolo Ochner e, José Pablo Navarro Pina f, Roberto Haver g, Alexander Baransky h, Eric Bryssinck i, Andras Dan a,b, Josè De Queiroz j, Eric Frappa k, Maylis Lavayssiere l a Stazione Astronomica – Stazione Astronomica di Sozzago, 28060 Sozzago, Italy b FOAM13, Osservatorio di Tradate, Tradate, Italy c Earth, Atmospheric and Planetary Science, Purdue University, West Lafayette, IN 47907-2051, USA d Geneva Observatory, Geneva, Switzerland e INAF Astronomical Observatory of Padova, Italy f Asociacion Astronomica de Mula, Murcia, Spain g Osservatorio di Frasso Sabino, Italy h Astronomical Observatory of Kyiv University, Ukraine i BRIXIIS Observatory, Kruibeke, Belgium j Sternwarte Mirasteilas, Falera, Switzerland k Saint-Etienne Planetarium, France l Observatoire de Dax, France article info abstract Article history: After the discovery of the breakup event of comet C/2011 J2 in August 2014, we followed the primary Received 7 February 2016 body and the main fragment B for about 120 days in the context of a wide international collaboration. Received in revised form From the analysis of all published magnitude estimates we calculated the comet's absolute magni- 24 March 2016 tude H¼10.4, and its photometric index n¼1.7. We also calculated a water production of only 110 kg/s at Accepted 18 April 2016 the perihelion. These values are typical of a low-activity, long-period or new comet. Available online 20 April 2016 Analysis of the motion of fragment B over the observation period showed that the first breakout event Keywords: likely occurred between 12 July and 30 July 2014. Nucleus B remained persistently visible throughout the Comets 4-month observation period. Comet C/2011 J2 (LINEAR) The projected separation velocity of nucleus B from the parent body was 4.22 m/s at the time of the Spin axis breakup and 12.7 m/s at the end of the observation period, suggesting that nucleus B was subjected to a Rotation ¼ : ∙ À 7 = 2 Break-up constant deceleration a 6 87 10 m s . The spin period of the main nucleus was estimated as 4.56 h70.05 h by photometric analysis. The structural analysis of the comet showed a cohesive strength of the nucleus greater than 0.9 kPa; assuming a bulk density of 500 kg/m3, with a rotation period of 4.56 h the cometary nucleus might have failed structurally, especially if the body was elongated. These results suggest that the nucleus of comet C/2011 J2 has an elongated shape, with a ratio of the semi-minor axis to the semi-major axis βo0:675; the semi-major axis of the pristine nucleus could be larger than 8 km. From this study, we propose that rotational disruption, possibly combined with sublimation pressure, was a reasonable explanation for the breakup event in comet C/2011 J2. & 2016 Elsevier Ltd. All rights reserved. 1. Introduction Progressive fragmentation is one of the main events leading to n Corresponding author at: Stazione Astronomica, Cascina Guascona, 28060 complete disintegration of cometary nuclei and to their extinction Sozzago, Novara, Italy. Tel.: þ39 03408077664. (Sekanina, 1982, 2005). E-mail address: [email protected] (F. Manzini). http://dx.doi.org/10.1016/j.pss.2016.04.004 0032-0633/& 2016 Elsevier Ltd. All rights reserved. F. Manzini et al. / Planetary and Space Science 126 (2016) 8–23 9 In the case of comets that closely approach the Sun, fragmen- Given the scarcity of data in the literature on the fragmentation tation is often preceded by significant nucleus erosion, and may be of distant comets, we investigated the multiple fragmentation of associated with activity outbursts, with appearance of inner coma this comet and the evolution of the companion nuclei over the features (Sekanina et al., 2002). However, although some objects first months following the first breakup event, with the aim of such as 133P/Elst–Pizarro (Hsieh et al., 2010) may show similar better understanding the possible causes that could have led to the activities, this is not usually the case for more distant comets that detachment of the fragments and to identify the physical para- are considered to be less influenced by solar radiation. Evidence of meters typical of this cometary nucleus. nucleus splitting in such cases is usually provided through the detection of one or more secondary components (a fragment or companion) arising from the same parent body and usually mov- 2. Comet C/2011 J2 (LINEAR): discovery and evolution of its ing in close orbits. fragmentation Several fragmentation mechanisms have been proposed to explain splitting of cometary nuclei: tidal disruption, rotational 2.1. Description of discovery of the comet forces, thermal stress, internal gas pressure and impacts by other solar system bodies (Davidsson, 1999, 2001; Altenhoff et al., 2009; Comet C/2011 J2 was discovered on 4 May 2011 by M. Blythe, G. Boehnhardt, 2004). Davidsson (1999, 2001) established simple, Spitz, R. Brungard, J. Paige, P. Festler, T. McVey, and A. Valdivia with useful criteria for disruption of rotating bodies that plastically the LINEAR 1-m f/2.15 reflector (Williams, 2011). It brightened at deform and that are affected by tidal forces from larger objects, an apparent magnitude of 19.7 at the time of discovery. considering them to be either spheres or biaxial ellipsoids. This comet was successively found on earlier images taken on However, while tidal disruption has been generally accepted as 10 and 25 March 2011 with the Catalina Sky Survey 0.68-m the most likely mechanism for the splitting of comet P/Shoe- Schmidt camera by A.D. Grauer et al. (Williams, 2011). maker–Levy 9 (Weaver et al., 1997) and 16P/Brooks 2 (Sekanina The orbital elements of this comet (http://ssd.jpl.nasa.gov/hor and Yeomans, 1985), none of the other scenarios were ideally izons.cgi) give an eccentricity of 1.00051, a perihelion transit on 25 detected. Although for comet 73P/SW3 disruption of the parent December 2013 (JD 2456651.802176393) and a perihelion distance body due to a large centrifugal force was proposed following the q¼3.44 AU from the Sun. finding of a fast rotation of the nucleus, it cannot be considered as A widely accepted definition of “dynamically new” comets a proof of this scenario; in fact, the perihelion distance of the (Oort and Schmidt, 1951; Kresak, 1977; Marsden and Williams, À À comet at the time of the splitting was less than 1 AU, and the 1997; Oort, 1990) states that their 1/ao1 Â 10 4 AU 1, which is nucleus was already showing highly active (Sekanina, 2005; Dra- equivalent to a410,000 AU. In the case of comet C/2011 J2, the hus et al., 2010). orbital parameters provide a value for a of 6800 AU; thus, it can The difficulty in identifying the exact mechanism of the split- be considered a long-period comet and close to those defined as ting may come from the fact that the most important parameters dynamically new. of cometary nuclei (such as internal structure, size and rotation) There are no reports that provide particular phenomena related used in these models were not well known, and the available to this comet after its discovery. observations did not allow to ascertain the actual sequence of events, as most of the secondary components of a split comet 2.2. Description of discovery of fragmentation vanish with time, or become too faint to be detected even with the largest telescopes. On 27 August 2014 a 18th magnitude fragment was detected by In this paper, we study comet C/2011 J2 (LINEAR), which has F. Manzini, V. Oldani, A. Dan, R. Crippa and R. Behrend with the recently incurred multiple splitting events at a considerable dis- 0.4 m reflector at the SAS Observatory 0.8 arcsec east and tance from the Sun (r44 AU). This event appeared very interest- 7.5 arcsec north of the main, brighter nuclear condensation (Green, ing, as at this distance no significant heating from solar radiation is 2014)(Fig. 1). expected, such as to trigger phenomena that could lead to a Astrometry of the main nucleus and of the secondary compo- fragmentation of the nucleus. nent was reported in preliminary studies (Green, 2014; Williams, Fig. 1. Discovery of the splitting of comet C/2011 J2. Image of the discovery of nucleus B (27 August 2014), resulting from a total exposure time of 40 minutes as sum of single frames. The coma of the main nucleus appears evenly diffuse, almost circular, with a diameter of 50 arcsec. Fragment B was at a 7.6 arcsec distance from the primary nucleus, corresponding to about 19,700 km. A faint tail develops at PA 20°. Left: original image. Right: same image in false colors to enhance the tail and the coma. North is up, East left; a 30 arcsec-wide line is shown for reference. Stars are trailed due to the telescope tracking the comet. Images taken with the 0.4-m Cassegrain telescope at the Stazione Astronomica di Sozzago (Italy). 10 F. Manzini et al. / Planetary and Space Science 126 (2016) 8–23 2014c, 2014d, 2014e; Spahr and Williams, 2014). The secondary additional images of the comet, taken prior to the discovery of the component was named C/2011 J2-B. splitting and in which the fragment was already detectable, were At the time of discovery of the fragmentation, the comet was at successively retrieved.
Recommended publications
  • CYANOGEN JETS and the ROTATION STATE of COMET MACHHOLZ (C/2004 Q2) Tony L
    The Astronomical Journal, 133:2001Y2007, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2) Tony L. Farnham1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA; [email protected] Nalin H. Samarasinha2 National Optical Astronomy Observatory, Tucson, AZ 85719, USA; and Planetary Science Institute, Tucson, AZ 85719, USA Be´atrice E. A. Mueller1 Planetary Science Institute, Tucson, AZ 85719, USA and Matthew M. Knight1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 2006 June 16; accepted 2007 January 25 ABSTRACT Extensive observations of Comet Machholz (C/2004 Q2) from 2005 February, March, and April were used to derive a number of the properties of the comet’s nucleus. Images were obtained using narrowband comet filters to isolate the CN morphology. The images revealed two jets that pointed in roughly opposite directions relative to the nucleus and changed on hourly timescales. The morphology repeated itself in a periodic manner, and this fact was used to determine a rotation period for the nucleus of 17:60 Æ 0:05 hr. The morphology was also used to estimate a pole orientation of R:A: ¼ 50,decl: ¼þ35, and the jet source locations were found to be on opposite hemispheres at mid- latitudes. The longitudes are also about 180 apart, although this is not well constrained. The CN features were mea- sured to be moving at about 0.8 km sÀ1, which is close to the canonical value typically quoted for gas outflow.
    [Show full text]
  • Arxiv:1011.4313V1
    Accepted to ApJ: October 23, 2010 GALEX FUV Observations of Comet C/2004 Q2 (Machholz): The Ionization Lifetime of Carbon Jeffrey P. Morgenthaler Planetary Science Institute, 1700 E. Fort Lowell, Ste 106, Tucson, AZ 85719, USA [email protected] Walter M. Harris Department of Applied Sciences, University of California at Davis, One Shields Ave., Davis, CA 95616, USA Michael R. Combi Department of Atmospheric, Oceanic and Space Sciences, The University of Michigan, 2455 Hayward St. Ann Arbor, MI 48109, Ann Arbor, MI, USA Paul D. Feldman Department of Physics and Astronomy, The Johns Hopkins University Charles and 34th Streets, Baltimore, Maryland 21218, USA Harold A. Weaver Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA ABSTRACT 3 arXiv:1011.4313v1 [astro-ph.EP] 18 Nov 2010 We present a measurement of the lifetime of ground state atomic carbon, C( P), against ionization processes in interplanetary space and compare it to the lifetime ex- pected from the dominant physical processes likely to occur in this medium. Our mea- surement is based on analysis of a far ultraviolet (FUV) image of comet C/2004 Q2 (Machholz) recorded by the Galaxy Evolution Explorer (GALEX) on 2005 March 1. The bright C I 1561 A˚ and 1657 A˚ multiplets dominate the GALEX FUV band. We used the image to create high signal-to-noise ratio radial profiles that extended beyond 1×106 km from the comet nucleus. Our measurements yielded a total carbon lifetime of 7.1 – 9.6×105 s (ionization rate of 1.0 – 1.4×10−6 s−1) when scaled to 1 AU.
    [Show full text]
  • The 10 Parsec Sample in the Gaia Era?,?? C
    A&A 650, A201 (2021) Astronomy https://doi.org/10.1051/0004-6361/202140985 & c C. Reylé et al. 2021 Astrophysics The 10 parsec sample in the Gaia era?,?? C. Reylé1 , K. Jardine2 , P. Fouqué3 , J. A. Caballero4 , R. L. Smart5 , and A. Sozzetti5 1 Institut UTINAM, CNRS UMR6213, Univ. Bourgogne Franche-Comté, OSU THETA Franche-Comté-Bourgogne, Observatoire de Besançon, BP 1615, 25010 Besançon Cedex, France e-mail: [email protected] 2 Radagast Solutions, Simon Vestdijkpad 24, 2321 WD Leiden, The Netherlands 3 IRAP, Université de Toulouse, CNRS, 14 av. E. Belin, 31400 Toulouse, France 4 Centro de Astrobiología (CSIC-INTA), ESAC, Camino bajo del castillo s/n, 28692 Villanueva de la Cañada, Madrid, Spain 5 INAF – Osservatorio Astrofisico di Torino, Via Osservatorio 20, 10025 Pino Torinese (TO), Italy Received 2 April 2021 / Accepted 23 April 2021 ABSTRACT Context. The nearest stars provide a fundamental constraint for our understanding of stellar physics and the Galaxy. The nearby sample serves as an anchor where all objects can be seen and understood with precise data. This work is triggered by the most recent data release of the astrometric space mission Gaia and uses its unprecedented high precision parallax measurements to review the census of objects within 10 pc. Aims. The first aim of this work was to compile all stars and brown dwarfs within 10 pc observable by Gaia and compare it with the Gaia Catalogue of Nearby Stars as a quality assurance test. We complement the list to get a full 10 pc census, including bright stars, brown dwarfs, and exoplanets.
    [Show full text]
  • Comparative Planetology and the Search for Life Beyond the Solar System
    Beichman et al.: The Search for Life Beyond the Solar System 915 Comparative Planetology and the Search for Life Beyond the Solar System Charles A. Beichman California Institute of Technology Malcolm Fridlund European Space Agency Wesley A. Traub and Karl R. Stapelfeldt Jet Propulsion Laboratory Andreas Quirrenbach University of Leiden Sara Seager Carnegie Institute of Washington The study of planets beyond the solar system and the search for other habitable planets and life is just beginning. Groundbased (radial velocity and transits) and spacebased surveys (tran- sits and astrometry) will identify planets spanning a wide range of size and orbital location, from Earth-sized objects within 1 AU to giant planets beyond 5 AU, orbiting stars as near as a few parsec and as far as a kiloparsec. After this initial reconnaissance, the next generation of space observatories will directly detect photons from planets in the habitable zones of nearby stars. The synergistic combination of measurements of mass from astrometry and radial velocity, of radius and composition from transits, and the wealth of information from the direct detection of visible and mid-IR photons will create a rich field of comparative planetology. Information on protoplanetary and debris disks will complete our understanding of the evolution of habitable environments from the earliest stages of planet formation to the transport into the inner solar system of the volatiles necessary for life. The suite of missions necessary to carry out the search for nearby, habitable planets and life requires a “Great Observatories” program for planet finding (SIM PlanetQuest, Terrestrial Planet Finder-Coronagraph, and Terrestrial Planet Finder-Interfer- ometer/Darwin), analogous to the highly successful “Great Observatories Program” for astro- physics.
    [Show full text]
  • Orders of Magnitude (Length) - Wikipedia
    03/08/2018 Orders of magnitude (length) - Wikipedia Orders of magnitude (length) The following are examples of orders of magnitude for different lengths. Contents Overview Detailed list Subatomic Atomic to cellular Cellular to human scale Human to astronomical scale Astronomical less than 10 yoctometres 10 yoctometres 100 yoctometres 1 zeptometre 10 zeptometres 100 zeptometres 1 attometre 10 attometres 100 attometres 1 femtometre 10 femtometres 100 femtometres 1 picometre 10 picometres 100 picometres 1 nanometre 10 nanometres 100 nanometres 1 micrometre 10 micrometres 100 micrometres 1 millimetre 1 centimetre 1 decimetre Conversions Wavelengths Human-defined scales and structures Nature Astronomical 1 metre Conversions https://en.wikipedia.org/wiki/Orders_of_magnitude_(length) 1/44 03/08/2018 Orders of magnitude (length) - Wikipedia Human-defined scales and structures Sports Nature Astronomical 1 decametre Conversions Human-defined scales and structures Sports Nature Astronomical 1 hectometre Conversions Human-defined scales and structures Sports Nature Astronomical 1 kilometre Conversions Human-defined scales and structures Geographical Astronomical 10 kilometres Conversions Sports Human-defined scales and structures Geographical Astronomical 100 kilometres Conversions Human-defined scales and structures Geographical Astronomical 1 megametre Conversions Human-defined scales and structures Sports Geographical Astronomical 10 megametres Conversions Human-defined scales and structures Geographical Astronomical 100 megametres 1 gigametre
    [Show full text]
  • Supernova Remnants: the X-Ray Perspective
    Astron Astrophys Rev (2012) 20:49 DOI 10.1007/s00159-011-0049-1 Supernova remnants: the X-ray perspective Jacco Vink Published online: 8 December 2011 © The Author(s) 2011. This article is published with open access at Springerlink.com Abstract Supernova remnants are beautiful astronomical objects that are also of high scientific interest, because they provide insights into supernova explosion mecha- nisms, and because they are the likely sources of Galactic cosmic rays. X-ray obser- vations are an important means to study these objects. And in particular the advances made in X-ray imaging spectroscopy over the last two decades has greatly increased our knowledge about supernova remnants. It has made it possible to map the prod- ucts of fresh nucleosynthesis, and resulted in the identification of regions near shock fronts that emit X-ray synchrotron radiation. Since X-ray synchrotron radiation re- quires 10–100 TeV electrons, which lose their energies rapidly, the study of X-ray synchrotron radiation has revealed those regions where active and rapid particle ac- celeration is taking place. In this text all the relevant aspects of X-ray emission from supernova remnants are reviewed and put into the context of supernova explosion properties and the physics and evolution of supernova remnants. The first half of this review has a more tutorial style and discusses the basics of supernova remnant physics and X-ray spectroscopy of the hot plasmas they contain. This includes hydrodynamics, shock heating, thermal conduction, radiation processes, non-equilibrium ionization, He-like ion triplet lines, and cosmic ray acceleration. The second half offers a review of the advances made in field of X-ray spectroscopy of supernova remnants during the last 15 year.
    [Show full text]
  • The Comet's Tale and (Spacewatch), 1998 M5 Need of Observation
    THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 6, No 2 (Issue 12), 1999 October THE SECOND INTERNATIONAL WORKSHOP ON COMETARY ASTRONOMY New Hall, Cambridge, 1999 August 14 - 16 After months of planning and much hard work the participants for the second International Workshop on Cometary Astronomy began to assemble at New Hall, Cambridge on the afternoon and evening of Friday, August 13th. New Hall is one of the more recent Cambridge colleges and includes a centre built for Japanese students as well as accommodation for the graduate and undergraduate students. It is a women’s college and a few participants were later disturbed by the night porter doing his rounds and making sure that all ground floor windows were closed. A hearty dinner was provided, but afterwards I had to leave to continue last minute preparations for the morning. He had searched 1000 hours since Most discoveries were from On Saturday morning, Dan Green 1994 without a discovery. If the Japan, USA and Australia. and Jon Shanklin made a few Edgar Wilson award had been in Southern Hemisphere observers opening announcements. We had operation he would have netted an only discover southern declination nine comet discoverers present average of $4000 a year, though comets, however northern and five continents were some years would be more hemisphere observers find them in represented. The next meeting rewarding and others less. His both hemispheres. There is no would take place in 4 – 5 years search technique is to scan significant trend in discovery time, possibly in America.
    [Show full text]
  • Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model
    Scan to know paper details and author's profile Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ABSTRACT The high Energy Cosmic Rays can have multiple origins. In this paper we will consider their origins due to Frequency Upshifting of distant electro- magnetic radiation coming from distant galaxies or the radiation coming from stars inside the Milkyway, by using the Dynamic universe Model. We will see a simulation using a Subbarao path or Multiple bending of light rays, where a ray started at some star will go on bend and its frequency gets upshifted and gains energy at every star in its path. We also will present a table of types of stars that are existing in Milkyway which will be used in next subsequent papers. ​ Keywords: cosmic rays, origins of cosmic rays, dynamic universe model, sita calculations, multiple bending of ​ light, frequency upshifting of electromagnetic radiation, subbarao paths. ​ Classification: FOR Code: 240102 ​ ​ ​ ​ Language: English ​ LJP Copyright ID: 925624 Print ISSN: 2631-8490 Online ISSN: 2631-8504 London Journal of Research in Science: Natural and Formal 465U Volume 20 | Issue 3 | Compilation 1.0 © 2020. Satyavarapu Naga Parameswara Gupta (snp Gupta). This is a research/review paper, distributed under the terms of the Creative Commons Attribution-Noncom-mercial 4.0 Unported License http://creativecommons.org/licenses/by-nc/4.0/), permitting all ​ noncommercial use, distribution, and reproduction in any medium, provided the original work is properly cited. ​ Cosmic Ray Origins: Part 1. Frequency Upshifting of Light Rays/Electromagnetic Radiation Near Stars in Dynamic Universe Model Satyavarapu Naga Parameswara Gupta (snp Gupta) ____________________________________________ ABSTRACT 2018.[4][5] ); Dynamic Universe Model proposes three additional sources like frequency upshifting The high Energy Cosmic Rays can have multiple of light rays, astronomical jets from Galaxy origins.
    [Show full text]
  • Report 2017 Research, Education and Public Outreach Activity Report 2017 Research, Education and Public Outreach
    Activity Report 2017 Research, Education and Public Outreach Activity Report 2017 Research, Education and Public Outreach Nathalie A. Cabrol Director, Carl Sagan Center, Pamela Harman, Acting Director, Center for Education Rebecca McDonald Director, Center for Outreach Bill Diamond President & CEO The SETI Institute: 189 N Bernardo Avenue Suite 200, Mountain View, CA 94043. Phone: (650) 961-6633 Activity Report 2017 Research, Education and Public Outreach TABLE OF CONTENTS Peer-reviewed publications 10 Conferences: Abstracts & Proceedings 18 Technical Reports & Data Releases 29 Outreach, Media Coverage, Web Stories & Interviews 31 Invited Talks (Professional & Public) 39 Highlights, Significant Events & Activities 46 Fieldwork 52 Honors & Awards 54 Missions, Observations & Strategic Planning 56 Acknowledgements 60 The SETI Institute: 189 N Bernardo Avenue Suite 200, Mountain View, CA 94043. Phone: (650) 961-6633 Activity Report 2017 Research, Education and Public Outreach FROM THE SETI INSTITUTE President and CEO Dear friends, The scientists, educators and outreach professionals of the SETI Institute had yet another banner year of productivity in 2017. We are delighted to present our 2nd annual report, cataloging the research and education programs of the Institute, as well as the myriad of mainstream media stories about our people and our work. Among the highlights from this year’s report are 147 peer-reviewed articles in scientific journals, 225 conference proceedings and abstracts, 172 media stories and interviews, and 177 invited talks.
    [Show full text]
  • The GALEX Comets
    15.11: The GALEX Comets J. P. Morgenthaler, W. M. Harris, M. R. Combi, P. D. Feldman, and H. A. Weaver October 2009 DPS Meeting Abstract The Galaxy Evolution Explorer (GALEX) has observed 6 comets since 2005 (C/2004 Q2 (Machholz), 9P/Tempel 1, 73P/Schwassmann-Wachmann 3 Fragments B and C, 8P/Tuttle and C/2007 N3 (Lulin). GALEX is a NASA Small Explorer (SMEX) mission designed to map the history of star forma- tion in the Universe. It is also well suited to cometary coma studies because ◦ of its high sensitivity and large field of view (1.2 ). OH and CS in the NUV (1750 – 3100 A)˚ are clearly detected in all of the comet data. The FUV (1340 – 1790 A)˚ channel recorded data during three of the comet observations and detects the bright C I 1561 and 1657 A˚ multiplets. We also see evidence + of S I 1475 A˚ in the FUV. NEW: we clearly detect CO emission in the NUV and CO Fourth positive emission in the FUV. The GALEX data were recorded with photon counting detectors, so it has been possible to reconstruct direct-mode and objective grism images in the reference frame of the comet. We have also created software which maps coma models onto the GALEX grism images for comparison to the data. We will present the data cleaned with automated catalog-based methods and a preliminary hand-fit to the data using simple Haser-based models. A more thorough hand-cleaning of the data from the contaminating effects of background sources is the last major reduction task to be done.
    [Show full text]
  • Quantum Mechanics Nuclear Astrophysics
    Quantum Mechanics_Nuclear astrophysics Nuclear astrophysics is an interdisciplinary branch of physics involving close collaboration among researchers in various subfields of nuclear physics andastrophysics, with significant emphasis in areas such as stellar modeling, measurement and theoretical estimation of nuclear reaction rates, cosmology,cosmochemistry, gamma ray, optical and X-ray astronomy, and extending our knowledge about nuclear lifetimes and masses. In general terms, nuclear astrophysics aims to understand the origin of the chemical elements and the energy generation in stars. History The basic principles of explaining the origin of the elements and the energy generation in stars were laid down in the theory of nucleosynthesis which came together in the late 1950s from the seminal works of Burbidge, Burbidge, Fowler, and Hoyle in a famous paper[1] and independently by Cameron.[2] Fowler is largely credited with initiating the collaboration between astronomers, astrophysicists, and experimental nuclear physicists which is what we now know as nuclear astrophysics. The basic tenets of nuclear astrophysics are that only isotopes of hydrogen andhelium (and traces of lithium, beryllium, and boron) can be formed in a homogeneous big bang model (see big bang nucleosynthesis), and all other elements are formed in stars. The conversion of nuclear mass to kinetic energy (by merit of Einstein's famous mass-energy relation in relativity) is the source of energy which allows stars to shine for up to billions of years. Many notable physicists of the 19th century, such as Mayer, Waterson, von Helmholtz, and Lord Kelvin, postulated that the Sun radiates thermal energy based on convertinggravitational potential energy into heat.
    [Show full text]
  • Planets Solar System Paper Contents
    Planets Solar system paper Contents 1 Jupiter 1 1.1 Structure ............................................... 1 1.1.1 Composition ......................................... 1 1.1.2 Mass and size ......................................... 2 1.1.3 Internal structure ....................................... 2 1.2 Atmosphere .............................................. 3 1.2.1 Cloud layers ......................................... 3 1.2.2 Great Red Spot and other vortices .............................. 4 1.3 Planetary rings ............................................ 4 1.4 Magnetosphere ............................................ 5 1.5 Orbit and rotation ........................................... 5 1.6 Observation .............................................. 6 1.7 Research and exploration ....................................... 6 1.7.1 Pre-telescopic research .................................... 6 1.7.2 Ground-based telescope research ............................... 7 1.7.3 Radiotelescope research ................................... 8 1.7.4 Exploration with space probes ................................ 8 1.8 Moons ................................................. 9 1.8.1 Galilean moons ........................................ 10 1.8.2 Classification of moons .................................... 10 1.9 Interaction with the Solar System ................................... 10 1.9.1 Impacts ............................................ 11 1.10 Possibility of life ........................................... 12 1.11 Mythology .............................................
    [Show full text]