Photometry and Imaging of Comet C/2004 Q2 (Machholz) at Lulin and La Silla
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
MS V6 with Figures
Grism Spectroscopy of Comet Lulin Swift UVOT Grism Spectroscopy of Comets: A First Application to C/2007 N3 (Lulin) D. Bodewits1,2, G. L. Villanueva2,3, M. J. Mumma2, W. B. Landsman4, J. A. Carter5, and A. M. Read5 Submitted to the Astronomical Journal on 16th February, 2010 Revised version October 21st, 2010 1 NASA Postdoctoral Fellow, [email protected] 2 NASA Goddard Space Flight Center, Solar System Exploration Division, Mailstop 690.3, Greenbelt, MD 20771, USA 3 Dept. of Physics, Catholic University of America, Washington DC 20064, USA 4 NASA Goddard Space Flight Center, Astrophysics Science Division, Mailstop 667, Greenbelt, MD 20771, USA 5 Dept. of Physics and Astronomy, Leicester University, Leicester LE1 7RH, UK 8 figures, 4 tables Key words: Comets: Individual (C/2007 N3 (Lulin)) – Methods: Data Analysis – Techniques: Image Spectroscopy – Ultraviolet: planetary systems Abstract We observed comet C/2007 N3 (Lulin) twice on UT 28 January 2009, using the UV grism of the Ultraviolet and Optical Telescope (UVOT) on board the Swift Gamma Ray Burst space observatory. Grism spectroscopy provides spatially resolved spectroscopy over large apertures for faint objects. We developed a novel methodology to analyze grism observations of comets, and applied a Haser comet model to extract production rates of OH, CS, NH, CN, C3, C2, and dust. The water production rates retrieved from two visits on this date were 6.7 ± 0.7 and 7.9 ± 0.7 x 1028 molecules s-1, respectively. Jets were sought (but not found) in the white-light and ‘OH’ images reported here, suggesting that the jets reported by Knight and Schleicher (2009) are unique to CN. -
Performance and Results from the Globe at Night – Sky Brightness Monitoring Network
Performance and Results from the Globe at Night – Sky Brightness Monitoring Network Dr Chu-wing SO, The University of Hong Kong Prof Yonggi KIM, Chungbuk National University Dr Chun Shing Jason PUN, The University of Hong Kong Sze-leung CHEUNG, IAU Office for Astronomy Outreach Korean Space Science Society Conference 29.4.2016 Supported by the HKU Knowledge Exchange fund Light Pollution • Wasteful light emitted upwards directly by or reflected from artificial sources being scattered by aerosol (cloud, fog), or pollutants like suspended particulates in the atmosphere. 10 Light pollution and Night Sky Brightness (NSB) • Sky glow – Scattering of artificial light by cloud, aerosol, and suspended particulates in the atmosphere – Spreading light pollution effects to greater distance – Decreasing the brightness contrast of night sky • NSB: – Measured light intensity of the zenith sky at night – Combination of the scattered light from artificial lighting sources and natural emissions (airglow, zodiacal/star/Galactic light, etc) 13 The Globe at Night - Sky Brightness Monitoring Network (GaN-MN) • Co-organizers: – Office of Astronomy Outreach, International Astronomy Union (IAU) – National Astronomical Observatory of Japan – The University of Hong Kong – The Globe at Night project The Globe at Night - Sky Brightness Monitoring Network (GaN-MN) • Endorsed by the IAU Executive Committee Working Group for the International Year of Light 2015 as a major Cosmic Light program – Establish a worldwide night sky brightness monitoring network – In the award -
CYANOGEN JETS and the ROTATION STATE of COMET MACHHOLZ (C/2004 Q2) Tony L
The Astronomical Journal, 133:2001Y2007, 2007 May # 2007. The American Astronomical Society. All rights reserved. Printed in U.S.A. CYANOGEN JETS AND THE ROTATION STATE OF COMET MACHHOLZ (C/2004 Q2) Tony L. Farnham1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA; [email protected] Nalin H. Samarasinha2 National Optical Astronomy Observatory, Tucson, AZ 85719, USA; and Planetary Science Institute, Tucson, AZ 85719, USA Be´atrice E. A. Mueller1 Planetary Science Institute, Tucson, AZ 85719, USA and Matthew M. Knight1 Department of Astronomy, University of Maryland, College Park, MD 20742, USA Received 2006 June 16; accepted 2007 January 25 ABSTRACT Extensive observations of Comet Machholz (C/2004 Q2) from 2005 February, March, and April were used to derive a number of the properties of the comet’s nucleus. Images were obtained using narrowband comet filters to isolate the CN morphology. The images revealed two jets that pointed in roughly opposite directions relative to the nucleus and changed on hourly timescales. The morphology repeated itself in a periodic manner, and this fact was used to determine a rotation period for the nucleus of 17:60 Æ 0:05 hr. The morphology was also used to estimate a pole orientation of R:A: ¼ 50,decl: ¼þ35, and the jet source locations were found to be on opposite hemispheres at mid- latitudes. The longitudes are also about 180 apart, although this is not well constrained. The CN features were mea- sured to be moving at about 0.8 km sÀ1, which is close to the canonical value typically quoted for gas outflow. -
Chih-Hao Hsia Title: Research Fellow Space Science Institute Office
Academic Staff Resume Name: Chih-Hao Hsia Title: Research Fellow Space Science Institute Photo Office:A 505 Tel.:+853-8897 3350 E-mail:[email protected] Academic Qualification: Ph.D. in Astronomy, Graduate Institute of Astronomy, National Central University, Taiwan, 2003–2008 Master in Astronomy, Graduate Institute of Astronomy, National Central University, Taiwan, 2001–2003 Bachelor in Mathematics, Department of Mathematics, National Central University, Taiwan, 1995–2000 Teaching Area For graduate student: Introduction to Modern Astronomy (Compulsory) Research Area Planetary Nebulae, Proto-Planetary Nebulae, and AGB Stars OH/IR Masers Star Formation and Young Stellar Objects Exoplanets and Asteroids Ultraviolet, Optical, Infrared, and Radio Astronomy Chemical abundance and Interstellar Medium Novae and Supernovae Space Astronomical Chemistry Working Experience Visiting Assistant Professor at Space Science Institute, Macau University of Science and Technology, December 2015 – October 2016 Assistant Research Scientist at Shenzhen Institute of Research and Innovation, The University of Hong Kong, March 2014 – October 2016 Post-Doc at Department of Physics, The University of Hong Kong, October 2008 – October 2016 Academic Publication Journal Articles: 1. Hsia, C.-H., Ip, W.-H., & Li,J.-Z., "Evidence for a Binary Origin of the Young Planetary Nebula Hubble 12", 2006, Astronomical Journal, vol. 131, pp. 3040 - 3046 2. Kwok, S. & Hsia, C.-H., "Multiple Coaxial Rings in the Bipolar Nebula Hubble 12", 2007, Astronphysical Journal, vol. 660, pp. 341 - 345 3. Hsia, C.-H., & Li,J.-Z., "The H-alpha Halo Distribution of 10 Nearby Planetary Nebulae based on SHASSA Imaging Data", 2009, Journal of Taipei Astronomical Museum, vol. 7, pp. 9 - 23 4. -
Arxiv:1011.4313V1
Accepted to ApJ: October 23, 2010 GALEX FUV Observations of Comet C/2004 Q2 (Machholz): The Ionization Lifetime of Carbon Jeffrey P. Morgenthaler Planetary Science Institute, 1700 E. Fort Lowell, Ste 106, Tucson, AZ 85719, USA [email protected] Walter M. Harris Department of Applied Sciences, University of California at Davis, One Shields Ave., Davis, CA 95616, USA Michael R. Combi Department of Atmospheric, Oceanic and Space Sciences, The University of Michigan, 2455 Hayward St. Ann Arbor, MI 48109, Ann Arbor, MI, USA Paul D. Feldman Department of Physics and Astronomy, The Johns Hopkins University Charles and 34th Streets, Baltimore, Maryland 21218, USA Harold A. Weaver Space Department, Johns Hopkins University Applied Physics Laboratory, 11100 Johns Hopkins Road, Laurel, MD 20723-6099, USA ABSTRACT 3 arXiv:1011.4313v1 [astro-ph.EP] 18 Nov 2010 We present a measurement of the lifetime of ground state atomic carbon, C( P), against ionization processes in interplanetary space and compare it to the lifetime ex- pected from the dominant physical processes likely to occur in this medium. Our mea- surement is based on analysis of a far ultraviolet (FUV) image of comet C/2004 Q2 (Machholz) recorded by the Galaxy Evolution Explorer (GALEX) on 2005 March 1. The bright C I 1561 A˚ and 1657 A˚ multiplets dominate the GALEX FUV band. We used the image to create high signal-to-noise ratio radial profiles that extended beyond 1×106 km from the comet nucleus. Our measurements yielded a total carbon lifetime of 7.1 – 9.6×105 s (ionization rate of 1.0 – 1.4×10−6 s−1) when scaled to 1 AU. -
The Comet's Tale and (Spacewatch), 1998 M5 Need of Observation
THE COMET’S TALE Newsletter of the Comet Section of the British Astronomical Association Volume 6, No 2 (Issue 12), 1999 October THE SECOND INTERNATIONAL WORKSHOP ON COMETARY ASTRONOMY New Hall, Cambridge, 1999 August 14 - 16 After months of planning and much hard work the participants for the second International Workshop on Cometary Astronomy began to assemble at New Hall, Cambridge on the afternoon and evening of Friday, August 13th. New Hall is one of the more recent Cambridge colleges and includes a centre built for Japanese students as well as accommodation for the graduate and undergraduate students. It is a women’s college and a few participants were later disturbed by the night porter doing his rounds and making sure that all ground floor windows were closed. A hearty dinner was provided, but afterwards I had to leave to continue last minute preparations for the morning. He had searched 1000 hours since Most discoveries were from On Saturday morning, Dan Green 1994 without a discovery. If the Japan, USA and Australia. and Jon Shanklin made a few Edgar Wilson award had been in Southern Hemisphere observers opening announcements. We had operation he would have netted an only discover southern declination nine comet discoverers present average of $4000 a year, though comets, however northern and five continents were some years would be more hemisphere observers find them in represented. The next meeting rewarding and others less. His both hemispheres. There is no would take place in 4 – 5 years search technique is to scan significant trend in discovery time, possibly in America. -
The GALEX Comets
15.11: The GALEX Comets J. P. Morgenthaler, W. M. Harris, M. R. Combi, P. D. Feldman, and H. A. Weaver October 2009 DPS Meeting Abstract The Galaxy Evolution Explorer (GALEX) has observed 6 comets since 2005 (C/2004 Q2 (Machholz), 9P/Tempel 1, 73P/Schwassmann-Wachmann 3 Fragments B and C, 8P/Tuttle and C/2007 N3 (Lulin). GALEX is a NASA Small Explorer (SMEX) mission designed to map the history of star forma- tion in the Universe. It is also well suited to cometary coma studies because ◦ of its high sensitivity and large field of view (1.2 ). OH and CS in the NUV (1750 – 3100 A)˚ are clearly detected in all of the comet data. The FUV (1340 – 1790 A)˚ channel recorded data during three of the comet observations and detects the bright C I 1561 and 1657 A˚ multiplets. We also see evidence + of S I 1475 A˚ in the FUV. NEW: we clearly detect CO emission in the NUV and CO Fourth positive emission in the FUV. The GALEX data were recorded with photon counting detectors, so it has been possible to reconstruct direct-mode and objective grism images in the reference frame of the comet. We have also created software which maps coma models onto the GALEX grism images for comparison to the data. We will present the data cleaned with automated catalog-based methods and a preliminary hand-fit to the data using simple Haser-based models. A more thorough hand-cleaning of the data from the contaminating effects of background sources is the last major reduction task to be done. -
Comet C/2011 J2 (LINEAR) Nucleus Splitting: Dynamical and Structural Analysis
Planetary and Space Science 126 (2016) 8–23 Contents lists available at ScienceDirect Planetary and Space Science journal homepage: www.elsevier.com/locate/pss Comet C/2011 J2 (LINEAR) nucleus splitting: Dynamical and structural analysis Federico Manzini a,b,n, Virginio Oldani a,b, Masatoshi Hirabayashi c, Raoul Behrend d, Roberto Crippa a,b, Paolo Ochner e, José Pablo Navarro Pina f, Roberto Haver g, Alexander Baransky h, Eric Bryssinck i, Andras Dan a,b, Josè De Queiroz j, Eric Frappa k, Maylis Lavayssiere l a Stazione Astronomica – Stazione Astronomica di Sozzago, 28060 Sozzago, Italy b FOAM13, Osservatorio di Tradate, Tradate, Italy c Earth, Atmospheric and Planetary Science, Purdue University, West Lafayette, IN 47907-2051, USA d Geneva Observatory, Geneva, Switzerland e INAF Astronomical Observatory of Padova, Italy f Asociacion Astronomica de Mula, Murcia, Spain g Osservatorio di Frasso Sabino, Italy h Astronomical Observatory of Kyiv University, Ukraine i BRIXIIS Observatory, Kruibeke, Belgium j Sternwarte Mirasteilas, Falera, Switzerland k Saint-Etienne Planetarium, France l Observatoire de Dax, France article info abstract Article history: After the discovery of the breakup event of comet C/2011 J2 in August 2014, we followed the primary Received 7 February 2016 body and the main fragment B for about 120 days in the context of a wide international collaboration. Received in revised form From the analysis of all published magnitude estimates we calculated the comet's absolute magni- 24 March 2016 tude H¼10.4, and its photometric index n¼1.7. We also calculated a water production of only 110 kg/s at Accepted 18 April 2016 the perihelion. -
The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets
Space Sci Rev (2018) 214:20 DOI 10.1007/s11214-017-0446-5 The Science of Sungrazers, Sunskirters, and Other Near-Sun Comets Geraint H. Jones1,2 · Matthew M. Knight3,4 · Karl Battams5 · Daniel C. Boice6,7,8 · John Brown9 · Silvio Giordano10 · John Raymond11 · Colin Snodgrass12,13 · Jordan K. Steckloff14,15,16 · Paul Weissman14 · Alan Fitzsimmons17 · Carey Lisse18 · Cyrielle Opitom19,20 · Kimberley S. Birkett1,2,21 · Maciej Bzowski22 · Alice Decock19,23 · Ingrid Mann24,25 · Yudish Ramanjooloo1,2,26 · Patrick McCauley11 Received: 1 March 2017 / Accepted: 15 November 2017 © The Author(s) 2017. This article is published with open access at Springerlink.com Abstract This review addresses our current understanding of comets that venture close to the Sun, and are hence exposed to much more extreme conditions than comets that are typ- ically studied from Earth. The extreme solar heating and plasma environments that these objects encounter change many aspects of their behaviour, thus yielding valuable informa- tion on both the comets themselves that complements other data we have on primitive solar system bodies, as well as on the near-solar environment which they traverse. We propose clear definitions for these comets: We use the term near-Sun comets to encompass all ob- B G.H. Jones [email protected] 1 Mullard Space Science Laboratory, University College London, Holmbury St. Mary, Dorking, UK 2 The Centre for Planetary Sciences at UCL/Birkbeck, London, UK 3 University of Maryland, College Park, MD, USA 4 Lowell Observatory, Flagstaff, AZ, USA -
Arxiv:2102.13017V2 [Astro-Ph.EP] 27 Mar 2021 (Received February 22, 2021; Revised March 17, 2021; Accepted March 26, 2021) Submitted to Astrophysical Journal Letters
Draft version March 30, 2021 Typeset using LATEX default style in AASTeX62 Time-series and Phasecurve Photometry of Episodically-Active Asteroid (6478) Gault in a Quiescent State Using APO, GROWTH, P200 and ZTF Josiah N. Purdum,1 Zhong-Yi Lin∗,2 Bryce T. Bolin∗,3 Kritti Sharma,4 Philip I. Choi,5 Varun Bhalerao,6 Josef Hanuˇs,7 Harsh Kumar,6, 8 Robert Quimby,1, 9 Joannes C. Van Roestel,10 Chengxing Zhai,11 Yanga R. Fernandez,12 Carey M. Lisse,13 Dennis Bodewits,14 Christoffer Fremling,10 Nathan Ryan Golovich,15 Chen-Yen Hsu,16 Wing-Huen Ip,17 Chow-Choong Ngeow,16 Navtej S. Saini,11 Michael Shao,11 Yuhan Yao,10 Tomas´ Ahumada,18 Shreya Anand,10 Igor Andreoni,10 Kevin B. Burdge,10 Rick Burruss,19 Chan-Kao Chang,16 Chris M. Copperwheat,20 Michael Coughlin,21 Kishalay De,10 Richard Dekany,19 Alexandre Delacroix,19 Andrew Drake,22 Dmitry Duev,10 Matthew Graham,10 David Hale,19 Erik C. Kool,23, 24 Mansi M. Kasliwal,10 Iva S. Kostadinova,10 Shrinivas R. Kulkarni,10 Russ R. Laher,25 Ashish Mahabal,10, 26 Frank J. Masci,25 Przemyslaw J. Mroz,´ 10 James D. Neill,10 Reed Riddle,19 Hector Rodriguez,19 Roger M. Smith,19 Richard Walters,10 Lin Yan,19 and Jeffry Zolkower19 1Department of Astronomy, San Diego State University, 5500 Campanile Dr, San Diego, CA 92182, U.S.A. 2Institute of Astronomy, National Central University, Taoyuan 32001, Taiwan∗ 3IPAC, Mail Code 100-22, Caltech, 1200 E. California Blvd., Pasadena, CA 91125, U.S.A.∗ 4Department of Mechanical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India 5Physics and Astronomy Department, Pomona College, 333 N. -
A POSSIBLE DETECTION of OCCULTATION by a PROTO-PLANETARY CLUMP in GM Cephei
The Astrophysical Journal, 751:118 (5pp), 2012 June 1 doi:10.1088/0004-637X/751/2/118 C 2012. The American Astronomical Society. All rights reserved. Printed in the U.S.A. A POSSIBLE DETECTION OF OCCULTATION BY A PROTO-PLANETARY CLUMP IN GM Cephei W. P. Chen1,S.C.-L.Hu1,2, R. Errmann3, Ch. Adam3, S. Baar3, A. Berndt3, L. Bukowiecki4, D. P. Dimitrov5, T. Eisenbeiß3, S. Fiedler3, Ch. Ginski3,C.Grafe¨ 3,6,J.K.Guo1,M.M.Hohle3,H.Y.Hsiao1,R.Janulis7, M. Kitze3, H. C. Lin1,C.S.Lin1, G. Maciejewski3,4, C. Marka3, L. Marschall8, M. Moualla3, M. Mugrauer3, R. Neuhauser¨ 3, T. Pribulla3,9, St. Raetz3,T.Roll¨ 3, E. Schmidt3, J. Schmidt3,T.O.B.Schmidt3, M. Seeliger3, L. Trepl3, C. Briceno˜ 10, R. Chini11,E.L.N.Jensen12, E. H. Nikogossian13, A. K. Pandey14, J. Sperauskas7, H. Takahashi15, F. M. Walter16,Z.-Y.Wu17, and X. Zhou17 1 Graduate Institute of Astronomy, National Central University, 300 Jhongda Road, Jhongli 32001, Taiwan 2 Taipei Astronomical Museum, 363 Jihe Rd., Shilin, Taipei 11160, Taiwan 3 Astrophysikalisches Institut und Universitats-Sternwarte,¨ FSU Jena, Schillergaßchen¨ 2-3, D-07745 Jena, Germany 4 Torun´ Centre for Astronomy, Nicolaus Copernicus University, Gagarina 11, PL87-100 Torun,´ Poland 5 Institute of Astronomy and NAO, Bulg. Acad. Sc., 72 Tsarigradsko Chaussee Blvd., 1784 Sofia, Bulgaria 6 Christian-Albrechts-Universitat¨ Kiel, Leibnizstraße 15, D-24098 Kiel, Germany 7 Moletai Observatory, Vilnius University, Lithuania 8 Gettysburg College Observatory, Department of Physics, 300 North Washington St., Gettysburg, PA 17325, USA -
The Astronomer Magazine Index
The Astronomer Magazine Index The numbers in brackets indicate approx lengths in pages (quarto to 1982 Aug, A4 afterwards) 1964 May p1-2 (1.5) Editorial (Function of CA) p2 (0.3) Retrospective meeting after 2 issues : planned date p3 (1.0) Solar Observations . James Muirden , John Larard p4 (0.9) Domes on the Mare Tranquillitatis . Colin Pither p5 (1.1) Graze Occultation of ZC620 on 1964 Feb 20 . Ken Stocker p6-8 (2.1) Artificial Satellite magnitude estimates : Jan-Apr . Russell Eberst p8-9 (1.0) Notes on Double Stars, Nebulae & Clusters . John Larard & James Muirden p9 (0.1) Venus at half phase . P B Withers p9 (0.1) Observations of Echo I, Echo II and Mercury . John Larard p10 (1.0) Note on the first issue 1964 Jun p1-2 (2.0) Editorial (Poor initial response, Magazine name comments) p3-4 (1.2) Jupiter Observations . Alan Heath p4-5 (1.0) Venus Observations . Alan Heath , Colin Pither p5 (0.7) Remarks on some observations of Venus . Colin Pither p5-6 (0.6) Atlas Coeli corrections (5 stars) . George Alcock p6 (0.6) Telescopic Meteors . George Alcock p7 (0.6) Solar Observations . John Larard p7 (0.3) R Pegasi Observations . John Larard p8 (1.0) Notes on Clusters & Double Stars . John Larard p9 (0.1) LQ Herculis bright . George Alcock p10 (0.1) Observations of 2 fireballs . John Larard 1964 Jly p2 (0.6) List of Members, Associates & Affiliations p3-4 (1.1) Editorial (Need for more members) p4 (0.2) Summary of June 19 meeting p4 (0.5) Exploding Fireball of 1963 Sep 12/13 .