02 - a FLUOR-POOR WAVELLITE in PHOSPHATE-RICH IRON CRUSTS in AMAZON - 05-29-2020 GMGA - Grupo De Mineralogia E Geoquímica Aplicada

Total Page:16

File Type:pdf, Size:1020Kb

02 - a FLUOR-POOR WAVELLITE in PHOSPHATE-RICH IRON CRUSTS in AMAZON - 05-29-2020 GMGA - Grupo De Mineralogia E Geoquímica Aplicada 02 - A FLUOR-POOR WAVELLITE IN PHOSPHATE-RICH IRON CRUSTS IN AMAZON - 05-29-2020 GMGA - Grupo de Mineralogia e Geoquímica Aplicada - http://gmga.com.br 02 - A FLUOR-POOR WAVELLITE IN PHOSPHATE-RICH IRON CRUSTS IN AMAZON http://gmga.com.br/02-a-fluor-poor-wavellite-in-phosphate-rich-iron-crusts-in-amazon/ 10.31419/ISSN.2594-942X.v72020i1a2MLC Marcondes Lima da Costa1*, Alessandro Sabá Leite2, Ronny Kaden3, Herbert Poellmann3, Nilson F. 4 5 Botelho , Daniel Chaves Santos 1Instituto de Geociências (IG), Universidade Federal do Pará, Belém, Brazil, [email protected], [email protected] 2PPGG/IG, Universidade Federal do Pará, Belém, Brazil, [email protected] 3Universität Halle-Wittenberg, Halle an der Saale, Germany, [email protected] 4 Instituto de Geociências, Universidade de Brasília, Brasília, Brazil, [email protected] 5Phosfaz, Bonito, Pará, [email protected] *Corresponding author ABSTRACT The minerals of the alunite supergroup, which comprises aluminum phosphates and sulphates (APS), which in turn constitute the groups/series of crandallite-goyazite, woodhouseite-svanbergite and wardite- millisite, involve more than forty minerals, which are formed under the hydrothermal to supergenic conditions. Among the supergenics are the lateritic formations, being the Gurupi region, or more precisely Northeast of Pará and Northwest of Maranhão, in the Eastern Amazon a world classic geological example. Here, in addition to the minerals of these groups or series, senegalite, augelite, variscite and also wavellite occur. The latter, however, is always restricted, while the others may form a characteristic horizon. At the Sapucaia phosphate mine in Bonito, Pará, this mineral is presented in beautiful centimeter druses. The work describes this mineral in terms of its morphological, crystallographic and chemical characteristics, highlighting its poverty in fluorine, and discusses why its formation is restricted in terms of volume and to aluminous phosphate iron crust, concluding that the wavellite is directly linked to the initial weathering alteration. 1 / 16 02 - A FLUOR-POOR WAVELLITE IN PHOSPHATE-RICH IRON CRUSTS IN AMAZON - 05-29-2020 GMGA - Grupo de Mineralogia e Geoquímica Aplicada - http://gmga.com.br Keywords: lateritic iron crust; crandallite-goyazite; woodhouseite-svanbergite; Sapucaia; Bonito; Gurupi. INTRODUCTION The geological occurrences of aluminum phosphates are frequent in the Earth's crust, normally associated with peraluminous rocks in different environments (Dill, 2001), and are currently denominated together with aluminum sulfates, APS (Aluminum Phosphates and Sulfates Minerals), with which are generally associated. APS comprises more than 40 species in the alunite supergroup alone (Dill et al., 1995, Jambor, 1999; Dill, 2001. The general formula of these alunite minerals is AB3(XO4)2 (OH)6, where A is a large cation (Na, U, K, Ag, NH4, Pb, Ca, Ba, Sr, REE) and B sites are occupied by cations of the x- elements Al, Fe, Cu and Zn. In nature, the anion (XO4) is dominated by P and S (Dill, 2001). The alunite supergroup comprises the series of crandallite, woodhouseite and wardite, among others. In the series of crandallite the most important minerals are, this mineral, and goyazite, florencite, gorceixite and plumbogummite; in the woodhouseite, this mineral and svanbergite; in the wardite series, wardite and millisite. The minerals from these series are frequent in lateritic aluminum phosphate deposits, with the Northeast region of Pará and Northwestern Maranhão (Costa & Costa, 1980; Costa et al., 1980, Oliveira & Schwab, 1980; Schwab et al., 1983, 1989, 1993; Pöllmann et al., 1987; Toledo et al., 2006; Costa et al., 2016), as the most significant example worldwide. Dill (1995, 2001) shows the wide range of environments in which these minerals can form and, therefore, demonstrates how frequent they are. In general, they are found as small occurrences, many of them even rare, associated with hydrothermal veins, in rocks such as phyllites and schists, mainly as venules and quartz veins; also in rocks modified by volcanic activities (Dill et al., 1995) and in tropical and paleosol soils, in cryptocrystalline, spherulite and acicular-radial and microcrystalline masses, and rarely as millimeter crystals in cavities. In addition, aluminum and aluminum-iron phosphates are known in recent organic accumulations, such as the guano deposits in Chile and Peru (Costa, 1979, 1982) and old ones in Romania in caves developed in limestone terrains (Costa, 1982; Polyak et al., 1996; Dill, 2001). In lateritic environments, complex solid solution series of these minerals occur, as already mentioned, but in addition to them, variscite, AlPO4.2H2O, wavellite, Al3 (PO4)2 (OH, F)3•5(H2O), augelite, Al2(PO4) (OH)3 and more recently Senegalite, Al2(PO4) (OH)3•(H2O) (Johan, 1976; Costa & Reymão, 1984; Pöllmann et al., 1987) also stand out. These aluminum phosphates, however, can form economical mineral deposits in lateritic formations (Costa et al., 2016). The main lateritic occurrences in Senegal, the Christmas Islands, Australia, Ghana, Florida and Brazil (Capedcomme, 1953; Slansky et al., 1964; Flicoteaux, 1982; Costa,1982; Flicoteaux & Lucas, 1984; Dill, 2001) formed mainly from sedimentary rocks with phosphorites; in Canada, Australia, Gabon and Brazil (Costa, 1979, 1982; Schwab et al 1993) from magmatic rocks mineralized in apatite, and metamorphic in Brazil, Ghana, (Costa, 1979, 1982). In Brazil alone, lateritic aluminum phosphates have found a favorable environment to form, namely: exposure of in apatite mineralized primary rocks to hot and humid tropical conditions during the Cenozoic, which are essential for the establishment of intense tropical weathering, and in the Amazon region they reached their climax. Laterite formations mineralized in aluminum phosphates have been discovered in several areas of this region, however the biggest highlight is for the eastern portion of this region, the Northeast of Pará and the Northwest of Maranhão (better known as the Gurupi region, Figure 1), in its Atlantic coast zone and not so much from it (Costa, 1979, 1982; Costa & Costa, 1980; Costa et al., 1980; Oliveira & Schwab, 1980; Schwab et al., 1983, 1987; Costa et al., 1980, 2016), as previous mentioned. The first publication with reference to bauxite with phosphorus in the region (Pirocaua and Trauira) was presented by Shaw et al. (1925) and the first 2 / 16 02 - A FLUOR-POOR WAVELLITE IN PHOSPHATE-RICH IRON CRUSTS IN AMAZON - 05-29-2020 GMGA - Grupo de Mineralogia e Geoquímica Aplicada - http://gmga.com.br detailed pioneering publication on aluminum phosphates in the region by Brandt (1932), who recognized the lateritic terrain, but did not recognize the phosphates as lateritic, but as guano deposits. In this region, aluminum phosphates constitute the upper portion of the lateritic profile, forming a horizon up to more 10 m thick, extending up to 1.5 km in length. The most common aluminum phosphates are from the crandallite-goyazite, augelite, senegalite, wardite and variscite series. Wavellite is present, but always very restricted. Augelite and senegalite were found as mm crystals lining sub-centimeter cavities, but in general they are massive and constitute in some deposits a thick horizon rich in phosphorus. By the way, senegalite was an unknown mineral until 1976, when it was discovered in Senegal (Johan, 1976) as a rarity and later as an abundant mineral in the Gurupi region (Costa & Costa, 1980; Costa et al., 1980; Costa & Reymão, 1987; Pöllmann et al., 1993). Wavellite, on the other hand, seems much more restricted, does not develop a mineral horizon, like the others. It has recently been identified in millimeter to sub-millimeter-large crystals in cavities up to 20 cm inside of the aluminum phosphate iron crust from the Sapucaia phosphate deposit in Bonito, in the northeast of Pará (Costa et al, 2016, in this BOGEAM bulletin). On this occasion, the present work describes and discusses this occurrence in the context of lateritic deposits in the Gurupi region, but especially in the Phosphorues Rectangle “Santa Maria-Bonito- Ourém-São Miguel do Guamá”, in the northeast of the state of Pará (Figure 1). In fact, the current knowledge is a result of the pioneering research work of the Phosphates Project in the Northeast of Pará and the Northwest of Maranhão, financed by the Humid Tropic/CNPQ, started in 1976 with the active participation of the first author, since that time, and coordinated by the UFPA professor Manoel Gabriel Siqueira Guerreiro, already deceased, who unfortunately was not thrilled with the theme. 3 / 16 02 - A FLUOR-POOR WAVELLITE IN PHOSPHATE-RICH IRON CRUSTS IN AMAZON - 05-29-2020 GMGA - Grupo de Mineralogia e Geoquímica Aplicada - http://gmga.com.br Figure 1 – Location of the Sapucaia aluminum phosphate deposit, in the municipality of Bonito, northeast of the state of Pará and of the other known deposits in northeast of Pará and northwest of Maranhão (Gurupi region), with emphasis on the Rectangle Santa Maria-Bonito-Ourém - São Miguel, highlighting the most recent discoveries of aluminum phosphates in this area (smaller dots in red). Modified from Leite (2014). The phosphates from Sapucaia, at Bonito The phosphates of Sapucaia and Boa Vista deposits are located in the municipality of Bonito, in the northeast of the state of Pará, 140 km far from its capital Belém (Figure 1). These deposits were discovered and studied by Costa & Costa (1987, 1991) and investigated in detail by Leite (2014),
Recommended publications
  • Mineral Collecting Sites in North Carolina by W
    .'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami­ nation, survey, and mapping of the geology, mineralogy, and topo­ graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora­ tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi­ fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa­ tional Series, Geologic Maps, and Special Publications.
    [Show full text]
  • Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective
    The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective Gd Pr Ce Sm La Nd Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey Cover photo: Powders of six rare earth elements oxides. Photograph by Peggy Greb, Agricultural Research Center of United States Department of Agriculture. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective By Keith R. Long, Bradley S. Van Gosen, Nora K. Foley, and Daniel Cordier Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This report has not been reviewed for stratigraphic nomenclature. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Long, K.R., Van Gosen, B.S., Foley, N.K., and Cordier, Daniel, 2010, The principal rare earth elements deposits of the United States—A summary of domestic deposits and a global perspective: U.S.
    [Show full text]
  • The Turquoise-Chalcosiderite-Planerite
    СПИСАНИЕ НА БЪЛГАРСКОТО ГЕОЛОГИЧЕСКО ДРУЖЕСТВО, год. 80, кн. 3, 2019, с. 48–50 REVIEW OF THE BULGARIAN GEOLOGICAL SOCIETY, vol. 80, part 3, 2019, p. 48–50 Национална конференция с международно участие „ГЕОНАУКИ 2019“ National Conference with international participation “GEOSCIENCES 2019” The turquoise-chalcosiderite-planerite solid-solution series in samples from Chala deposit, Eastern Rhodopes Тюркоаз-халкосидерит-планеритова серия от твърди разтвори в образци от находище Чала, Източни Родопи Yana Tzvetanova1, Louiza Dimowa1, Elena Tacheva1, Iskra Piroeva2, Ognyan Petrov1, Aleksandar Nikolov1 Яна Цветанова1, Луиза Димова1, Елена Тачева1, Искра Пироева2, Огнян Петров1, Александър Николов1 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria; E-mail: [email protected] 2 Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria Keywords: turquoise, chalcosiderite, planerite, crystal chemistry, phosphates. Introduction quoise was also reported from the Obichnik depos- it, Zvezdel-Pcheloyad ore field, Eastern Rhodopes The turquoise group, as redefined by Foord and (Kunov, Mandova, 1997). Taggart (1998), consists of 6 members: planerite, The present study aims to show the crystal chem- turquoise, faustite, aheylite, chalcosiderite and an istry of green mineral from the turquoise group from 2+ 3+ unnamed Fe –Fe analogue with the general for- Chala deposit (Spahievo ore field) with particular at- mula A0–1B6(PO4)4–x(PO3OH)x(OH)8 4H2O, where tention to planerite end-member that was approved 2+ x = 0–2. Blue turquoise has Cu at the A position and by the IMA CNMMN as a revalidated mineral in 3+ Al at the B position, whereas green⋅ chalcosiderite 1984.
    [Show full text]
  • Fluorwavellite Al3(PO4)2(OH)2F⋅5H2O
    Fluorwavellite Al3(PO4)2(OH)2F⋅5H2O Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Prismatic crystals display {010}, (110}, and {101}, to 3 mm. Commonly in radial or bow-tie-like sprays. Physical Properties: Essentially identical to wavellite in appearance and physical properties. Cleavage: Perfect on {110}, good on {101} and {010}. Tenacity: Brittle. Fracture: Uneven to conchoidal. Hardness = 3.5 D(meas.) = 2.30(1) D(calc.) = 2.345 Optical Properties: Transparent. Color: Colorless. Streak: White. Luster: Vitreous. Optical Class: Biaxial (+). α = 1.522(1) β = 1.531(1) γ = 1.549(1) 2V(meas.) = 71(1)° 2V(calc.) = 71.2° Orientation: X = b, Y = a, Z = c. Pleochroism: None. Dispersion: Weak, r > v. Cell Data: Space Group: Pcmm. a = 9.6311(4) b = 17.3731(12) c = 9.9946(3) Z = 4 X-ray Powder Pattern: Silver Coin mine or Wood mine, USA (unspecified). 8.53 (100), 3.223 (41), 3.430 (28), 2.580 (28), 5.65 (26), 4.81 (17), 2.101 (16) Chemistry: (1) (2) (3) Al2O3 36.79 36.68 36.94 P2O5 34.66 34.31 34.29 F 4.74 4.08 4.59 H2O [26.65] [26.52] 26.11 -O = F2 2.00 1.72 1.93 Total 100.84 99.87 100.00 (1) Silver Coin mine, Valmy, Humboldt County, Nevada, USA; average of 9 electron microprobe analyses supplemented by Raman and FTIR spectroscopy, H2O calculated from structure; corresponds to Al2.96(PO4)2(OH)1.98F1.02·5H2O. (2) Wood mine, Cocke County, Tennessee, USA; average of 9 electron microprobe analyses supplemented by Raman and FTIR spectroscopy and CHN analysis, H2O calculated from structure; corresponds to Al2.98(PO4)2(OH)2.11F0.89·5H2O.
    [Show full text]
  • Wavellite Al3(PO4)2(OH, F)3 • 5H2O C 2001-2005 Mineral Data Publishing, Version 1
    Wavellite Al3(PO4)2(OH, F)3 • 5H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Euhedral crystals uncommon, short to long prismatic, elongated and striated k [001], with {010}, {110}, {101}, {111}, {121}, with many {hk0} forms, to several mm. Commonly in flat to spherical radial aggregates, to 3 cm; may be stalactitic, in crusts, rarely opaline massive. Physical Properties: Cleavage: Perfect on {110}; good on {101}; distinct on {010}. Fracture: Uneven to subconchoidal. Tenacity: Brittle. Hardness = 3.5–4 D(meas.) = 2.36 D(calc.) = 2.37 Optical Properties: Translucent. Color: White, greenish white, green, yellow, yellowish brown, turquoise-blue, brown, brownish black, may be zoned; colorless in transmitted light. Streak: White. Luster: Vitreous to resinous, pearly. Optical Class: Biaxial (+). Pleochroism: Weak; X = greenish; Z = yellowish. Absorption: X > Z. Orientation: X = b; Y = a; Z = c. Dispersion: r> v,weak. α = 1.518–1.535 β = 1.524–1.543 γ = 1.544–1.561 2V(meas.) = 60◦–72◦ Cell Data: Space Group: P cmn. a = 9.621(2) b = 17.363(4) c = 6.994(3) Z = 4 X-ray Powder Pattern: Black River Falls, Jackson Co., Wisconsin, USA. 8.67 (100), 8.42 (100), 3.22 (60), 5.65 (50), 3.42 (42), 4.81 (25), 2.573 (25) Chemistry: (1) (2) P2O5 33.40 34.46 Al2O3 37.44 37.12 Fe2O3 0.64 F 2.79 H2O 26.45 28.42 −O=F2 1.17 Total 99.55 100.00 • (1) Clonmel, Ireland.
    [Show full text]
  • Wisconsin Wavellite
    Wisconsin Wavellite When rock hounds think of wavellite, they usually think of the green "lime slice" clusters from Arkansas. But wavellite occurs in other places, including Wisconsin. The Wisconsin material, although not as attractive as that from Arkansas, provides a valuable lesson in how this mineral forms. Wavellite is a hydrated aluminum-rich phosphate. The Wisconsin wavellite occurs as cream colored botryoidal to stalactitic crusts within sandstone of the Eau Claire Formation (Klemic and Mrose, 1972). It is found at the base of a long mound extending from Merillan to Black River Falls, Jackson County, Wisconsin. In these places scattered wavellite specimens can be collected on hill slopes or in low roadcuts. I became interested in this occurrence because I thought wavellite might be widespread within this formation. The wavellite is inconspicuous and easily overlooked by someone unaware of its presence. A student at U.W.R.F., Candy Schwantes, began work by specifically looking for wavellite at many localities where the Eau Claire Formation is exposed in western Wisconsin. After surveying over 40 spots, the Merrillan-Black River Falls sites were still the only places where wavellite was found. We concluded that its formation must relate to local, rather than regional, conditions. One thing that struck both Candy and I about the wavellite area was the spots of intense red coloration in the sandstone overlying the wavellite occurrences. This red coloration was iron oxide formed by the breakdown of pyrite or marcasite. As a result, sulfuric acid is released. This sandstone also contains fossil shell fragments made of the phosphate mineral, apatite.
    [Show full text]
  • A Vibrational Spectroscopic Study of the Phosphate Mineral Zanazziite Â
    Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 104 (2013) 250–256 Contents lists available at SciVerse ScienceDirect Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy journal homepage: www.elsevier.com/locate/saa A vibrational spectroscopic study of the phosphate mineral 2+ 2+ zanazziite – Ca2(MgFe )(MgFe Al)4Be4(PO4)6Á6(H2O) ⇑ Ray L. Frost a, , Yunfei Xi a, Ricardo Scholz b, Fernanda M. Belotti c, Luiz Alberto Dias Menezes Filho d a School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology, GPO Box 2434, Brisbane Queensland 4001, Australia b Geology Department, School of Mines, Federal University of Ouro Preto, Campus Morro do Cruzeiro, Ouro Preto, MG 35400-00, Brazil c Federal University of Itajubá, Campus Itabira, Itabira, MG 35903-087, Brazil d Geology Department, Institute of Geosciences, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil highlights graphical abstract " We have analyzed the phosphate mineral zanazziite and determined its formula. " The mineral was studied by electron microprobe, Raman and infrared spectroscopy. " Multiple bands in the bending region supports the concept of a reduction in symmetry of phosphate anion. article info abstract Article history: Zanazziite is the magnesium member of a complex beryllium calcium phosphate mineral group named Received 13 August 2012 roscherite. The studied samples were collected from the Ponte do Piauí mine, located in Itinga, Minas Ger- Accepted 5 November 2012 ais. The mineral was studied by electron microprobe, Raman and infrared spectroscopy. The chemical for- Available online 5 December 2012 mula can be expressed as Ca2.00(Mg3.15,Fe0.78,Mn0.16,Zn0.01,Al0.26,Ca0.14)Be4.00(PO4)6.09(OH)4.00Á5.69(H2O) and shows an intermediate member of the zanazziite–greinfeinstenite series, with predominance of zan- Keywords: azziite member.
    [Show full text]
  • Issues in Quantitative Phase Analysis
    Issues in Quantitative Phase Analysis Arnt Kern & Ian Madsen This document was presented at PPXRD - Pharmaceutical Powder X-ray Diffraction Symposium Sponsored by The International Centre for Diffraction Data This presentation is provided by the International Centre for Diffraction Data in cooperation with the authors and presenters of the PPXRD symposia for the express purpose of educating the scientific community. All copyrights for the presentation are retained by the original authors. The ICDD has received permission from the authors to post this material on our website and make the material available for viewing. Usage is restricted for the purposes of education and scientific research. PPXRD Website – www.icdd.com/ppxrd ICDD Website - www.icdd.com Issues in Quantitative Phase Analysis Limitations in accuracy and precision are mostly experimental • Mathematical basis and methodology of quantitative phase analysis is well established and work OK • Errors arise during application of methods ("PICNIC") Sample related errors • The material is not an "ideal powder" • Preferred orientation • Particle statistics • ... • Absorption • ... Issues in Quantitative Phase Analysis Operator errors • Incomplete / wrong phase identification The Reynolds Cup – what is needed to win? Mark D Raven and Peter G Self 29 July 2014 CSIRO LAND AND WATER / MINERALS RESOURCES FLAGSHIPS Non clay minerals (2002-2012) • Quartz (18) • Gypsum (2) • Apatite (1) • K-feldspar (13) • Anhydrite (2) • Tourmaline (2) • Plagioclase (14) • Alunite (1) • Zircon (2) • Calcite
    [Show full text]
  • Mineral Resource Inventory of Cape York Peninsula
    NATURAL RESOURCES ANALYSIS PROGRAM (NRAP) MINERAL RESOURCE INVENTORY \ OF CAPE YORK PENINSULA T.J. Denaro Department of Minerals and Energy Queensland 1995 CYPLUS is a joint initiative of the Queensland and Commonwealth Governments CAPE YORK PENINSULA LAND USE STRATEGY (CYPLUS) Natural Resources Analysis Program MINERAL RESOURCE INVENTORY OF CAPE YORK PENINSULA T.J. Denaro Department of Minerals and Energy Queensland 1995 CYPLUS is a joint initiative of the Qumland and Commonwealth Governments Final report on project: NR04 - MINERAL RESOURCE INVENTORY Recommended citation: Denaro, T. J. (1995). 'Mineral Resource Inventory of Cape York Peninsula'. (Cape York Peninsula Land Use Strategy, Office of the Co-ordinator General of Queensland, Brisbane, Department of the Environment, Sport and Temtories, Canberra, and Department of Minerals and Energy, Queensland, Brisbane.) Note: Due to the timing of publication, reports on other CYPLUS projects may not be fully cited in the BIBLIOGRAPHY section. However, they should be able to be located by author, agency or subject. ISBN 0 7242 6200 8 'g The State of Queensland and Commonwealth of Australia 1995. Copyright protects this publication. Except for purposes permitted by the Copyright Act 1968, no part may be reproduced by any means without the prior written permission of the Office of the Co-ordinator General of Queensland and the Australian Government Publishing Service. Requests and inquiries concerning reproduction and rights should be addressed to: Office of the Co-ordinator General, Government of Queensland PO Box 185 BRISBANE ALBERT STREET Q 4002 The Manager, Commonwealth Information Services GPO Box 84 CANBERRA ACT 2601 CAPE YORK PENINSULA LAND USE STRATEGY STAGE I PREFACE TO PROJECT REPORTS Cape York Peninsula Land Use Strategy (CYPLUS) is an initiative to provide a basis for public participation in planning for the ecologically sustainable development of Cape York Peninsula.
    [Show full text]
  • Proceedings of the United States National Museum
    NOTES ON MIMETITE, THAUMASITE, AND WAVELLITE. By Edgar T. Wherry, Of the Bureau of Chemistry, United States Department of Agriculture? The following brief papers are the results of studies made in the mineral collections of the United States National Museum. MIMETITE FROM UTAH. A specimen labeled " Penfieldite, Tintic District, Utah,"' in a United States Geological Survey collection, transmitted to the museum in 1902 (No. 85013), was examined by Mr. E. S. Larsen in the course of his optical study of all available minerals and found to be quite distinct from penfieldite in its optical properties.^ It has therefore been further investigated, and proves to be mimetite in a rather unusual form—transparent, colorless, acicular crystals. Crystals from what is evidently the same occurrence have been described and figured by Farrington and Tillotson,^ but very few forms were observed upon them. The crystals on the United States National Museum specimen being rich in forms, this account of them has seemed desirable. The specimen is a 5 by 5 by 8 cm. mass of siliceous rock, containing numerous small cavities lined with drusy quartz, and on one face several imbedded galena crystals in an advanced state of alteration. The mimetite crystals occur in the cavities, being especially abundant on the galena-bearing side, and are subsequent to both galena and quartz. The thinner crystals are colorless and transparent, with an adaman- tine luster; thicker ones have a faint yellowish hue and are more resinous. The mean index of refraction of one of the needles, measured on the goniometer by allowing sodium light to be refracted through faces lying 30° apart, proved to be 2.14±:0.02.
    [Show full text]
  • Minerals of the Utahlite Claim Lucin Box Elder County Utah
    ~ Minerals Utahlite Claim ~ § § § § § § by § Joe Marty Donald G. Howard Henry Barwood § § Joe M arty 3457 E. Sil ver Oak Road Salt Lake City, Utah 84108 Donald G. Howard Department of Physics Portland State University Portland, Oregon 97207 Henry Barwood Head, Mineral Resources Section Ind iana Geological Survey 611 N . Walnut Grove Bloomington, Indiana 47405 Cover photo: Metavariscite twin from Utah lite Claim Photographs by Joe Marty; SEM microphotographs by Donald G. Howard. Book design by Vicky Clarke. Introduction Phosphate minerals in northwestern Utah have been known since 1905. In 1909, Frank Edison and Edward Bird located claims on Utahlite Hill and pro­ duced variscite until 1910. Now the location is known as the Utahlite claim. This locality is important as a source of lapidary-grade variscite and well­ formed microcrystals of metavariscite and variscite. Reports of wulfenite crys­ tals occurring on variscite (personal communication, Richard W Thomssen) enticed Joe Marty to explore the location together with Jim McGlasson in March, 1993. The number of mineral species occurring at this location is lim­ ited, but interesting Currently, one small oval open pit has been developed for mining lapidary material. North of this pit is a small variscite prospect. the Alice claim. The claim is located on Utahlite Hill, in Box Elder County, Utah, about a 90 minute drive north of Wendover, Utah. From Wendover, you travel west on Interstate 80 for 32 miles to Oasis and exit north on Nevada State Highway 233 (in Utah, State Highway 30) After crossing the Utah-Nevada border you travel an additional 8.7 miles toward Grouse Creek Junction.
    [Show full text]
  • World Museum of Mining
    World Museum Of Mining Minerals of Butte, Montana Minerals are not made by humans. They have never been alive, and they are not made from plants or animals. Minerals are not a liquid or a gas. What are minerals? Minerals are found in nature and have a definite chemical composition. Where are minerals found? Minerals are found in cars, toothpaste, your clothes, clocks, desks, food, pencils, your body….EVERYWHERE! We could not exist without the presence of minerals. How can you identify a mineral? Color is one way to classify a mineral, but you can’t identify a mineral by its color alone. You must become a detective when identifying different minerals. This book describes many, but not all, of the physical properties of minerals that can be found in Butte-Silver Bow. Look at as many properties as you can in order to identify your specimen as accurately as possible. Be- come a mineral detective by looking at the different colors, shapes, hardness, streak and weight of the minerals that surround you. This book is only a partial list of minerals that have been mined in Butte. The actual mineral specimens included in Minerals of Butte, MT can be seen at the World Museum of Mining. Color: Often the first property we notice is the color of the mineral. Although color helps narrow down the field of possibilities, many minerals appear in several different colors. Hardness: How easy or difficult it is to scratch the surface of the mineral. The Mohs scale helps to identify the hardness of a mineral from softest to hardest: 1 = Talc; 2 = Gypsum; 3 = Calcite; 4 = Fluorite; 5 = Apatite; 6 = Orthoclase; 7 = Quartz; 8 = Topaz; 9 = Corundum; 10 = Diamond.
    [Show full text]