A Vibrational Spectroscopic Study of the Phosphate Mineral Zanazziite Â
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Mineral Processing
Mineral Processing Foundations of theory and practice of minerallurgy 1st English edition JAN DRZYMALA, C. Eng., Ph.D., D.Sc. Member of the Polish Mineral Processing Society Wroclaw University of Technology 2007 Translation: J. Drzymala, A. Swatek Reviewer: A. Luszczkiewicz Published as supplied by the author ©Copyright by Jan Drzymala, Wroclaw 2007 Computer typesetting: Danuta Szyszka Cover design: Danuta Szyszka Cover photo: Sebastian Bożek Oficyna Wydawnicza Politechniki Wrocławskiej Wybrzeze Wyspianskiego 27 50-370 Wroclaw Any part of this publication can be used in any form by any means provided that the usage is acknowledged by the citation: Drzymala, J., Mineral Processing, Foundations of theory and practice of minerallurgy, Oficyna Wydawnicza PWr., 2007, www.ig.pwr.wroc.pl/minproc ISBN 978-83-7493-362-9 Contents Introduction ....................................................................................................................9 Part I Introduction to mineral processing .....................................................................13 1. From the Big Bang to mineral processing................................................................14 1.1. The formation of matter ...................................................................................14 1.2. Elementary particles.........................................................................................16 1.3. Molecules .........................................................................................................18 1.4. Solids................................................................................................................19 -
SYMMETRY of PHOSPHOSIDERITE Duncelc Mcconnbr.L, The
SYMMETRY OF PHOSPHOSIDERITE DuNcelc McCoNNBr.l, The Uniaersity of Teras, Austin, Teras INrnooucuoN Prior to the description of crystals lrom Sardinia by M. de Angelis (l) in 1926, phosphosiderite was supposed to exhibit the external sym- metry of a substance belonging to the orthorhombic holohedral class. This mineral had been investigated by H. Laubmann and H. Steinmetz (2) as well as the authors who originally described the mineral, W. Bruhns and K. Busz (3). More recently phosphosideritehas been de- scribedfrom Kirunavara, Sweden,by R. Koechlin (4). De Angelis demonstrated that the symmetry is monoclinic on the basis of three difierent types of evidence: (1) The etch figures on the basal pinakoid do not exhibit planar symmetry with respect to a plane normal to the o axis, nor axial sym- metry with respect to the c axis (Fig. 4). (2) The goniometric measurementscannot be reconciled with ortho- rhombic axes of reference,but are quite amenable to monoclinic axes wittr B:89"24t. Certain prominent faces are not repeated as required by orthorhombic symmetry. (3) The optical data are not consistent with orthorhombic symmetry, becauseX Ac> J-3". Before the appearanceof the work by De Angelis, W. T. Schaller (5) had pointed out the marked similarity between the compositions,crystal habits and axial ratios of phosphosiderite and metavariscite [formerly called variscite (6)] and he had suggestedthe possibility of an isodimor- phous series: Octahedral Habit Tabular Habit Scorodite Strengite Phosphosiderite Variscite Metavariscite P. Kokkoros (7) has recently shown that scorodite and strengite are isostructural and the writer has found that variscite produces a powder diffraction pattern sufficiently similar to indicate that it also belongs to this group. -
The Secondary Phosphate Minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): Substitutions of Triphylite and Montebrasite Scholz, R.; Chaves, M
The secondary phosphate minerals from Conselheiro Pena Pegmatite District (Minas Gerais, Brazil): substitutions of triphylite and montebrasite Scholz, R.; Chaves, M. L. S. C.; Belotti, F. M.; Filho, M. Cândido; Filho, L. Autor(es): A. D. Menezes; Silveira, C. Publicado por: Imprensa da Universidade de Coimbra URL persistente: URI:http://hdl.handle.net/10316.2/31441 DOI: DOI:http://dx.doi.org/10.14195/978-989-26-0534-0_27 Accessed : 2-Oct-2021 20:21:49 A navegação consulta e descarregamento dos títulos inseridos nas Bibliotecas Digitais UC Digitalis, UC Pombalina e UC Impactum, pressupõem a aceitação plena e sem reservas dos Termos e Condições de Uso destas Bibliotecas Digitais, disponíveis em https://digitalis.uc.pt/pt-pt/termos. Conforme exposto nos referidos Termos e Condições de Uso, o descarregamento de títulos de acesso restrito requer uma licença válida de autorização devendo o utilizador aceder ao(s) documento(s) a partir de um endereço de IP da instituição detentora da supramencionada licença. Ao utilizador é apenas permitido o descarregamento para uso pessoal, pelo que o emprego do(s) título(s) descarregado(s) para outro fim, designadamente comercial, carece de autorização do respetivo autor ou editor da obra. Na medida em que todas as obras da UC Digitalis se encontram protegidas pelo Código do Direito de Autor e Direitos Conexos e demais legislação aplicável, toda a cópia, parcial ou total, deste documento, nos casos em que é legalmente admitida, deverá conter ou fazer-se acompanhar por este aviso. pombalina.uc.pt digitalis.uc.pt 9 789892 605111 Série Documentos A presente obra reúne um conjunto de contribuições apresentadas no I Congresso Imprensa da Universidade de Coimbra Internacional de Geociências na CPLP, que decorreu de 14 a 16 de maio de 2012 no Coimbra University Press Auditório da Reitoria da Universidade de Coimbra. -
38Th RMS Program Notes
E.fu\wsoil 'og PROGRAM Thursday Evening, April 14, 2011 PM 4:00-6:00 Cocktails and Snacks – Hospitality Suite 400 (4th Floor) 6:00-7:45 Dinner – Baxter’s 8:00-9:15 THE GUALTERONI COLLECTION: A TIME CAPSULE FROM A CENTURY AGO – Dr. Renato Pagano In 1950, the honorary curator of the Museum of Natural History in Genoa first introduced Dr. Renato Pagano to mineral collecting as a Boy Scout. He has never looked back. He holds a doctorate in electrical engineering and had a distinguished career as an Italian industrialist. His passion for minerals has produced a collection of more than 13,000 specimens, with both systematic and aesthetic subcollections. His wife Adriana shares his passion for minerals and is his partner in collecting and curating. An excellent profile of Renato, Adriana, and their many collections appeared earlier this year in Mineralogical Record (42:41-52). Tonight Dr. Pagano will talk about an historic mineral collection assembled between 1861 and 1908 and recently acquired intact by the Museum of Natural History of Milan. We most warmly welcome Dr. Renato Pagano back to the speakers’ podium. 9:15 Cocktails and snacks in the Hospitality Suite on the 4th floor will be available throughout the rest of the evening. Dealers’ rooms will be open at this time. All of the dealers are located on the 4th floor. Friday Morning, April 15, 2011 AM 9:00 Announcements 9:15-10:15 CRACKING THE CODE OF PHLOGOPITE DEPOSITS IN QUÉBEC (PARKER MINE), MADAGASCAR (AMPANDANDRAVA) AND RUSSIA (KOVDOR) – Dr. Robert F. Martin Robert François Martin is an emeritus professor of geology at McGill University in Montreal. -
The Use of Raman Spectroscopy in the Characterization of Variscite Provenance: the Gavà Case
Chapitre III : Apport des méthodes d’analyses à l’étude de la diffusion des productions The use of Raman spectroscopy in the characterization of variscite provenance: the Gavà case Joan Carlos Melgarejo, Laia Arqués, Cristina Villanova-de-Benavent, Tariq Jahwari, Lisard Torró, Josep Bosch Argilagós, Montgarri Castillo-Oliver, Marc Campeny, Sandra Amores, Aleu Andreazini, Saleh Lehbib, Antoni Camprubí Abstract. The Gavà phosphate deposit, mined during the Neolithic, was produced by weathering processes affecting primary apatite beds. It exhibits a neat vertical zoning, related to chemical gradients during weathering. Strengite, yellowish Al-rich strengite and ferroan variscite are found at the top, pale- green variscite at the intermediate levels, and green variscite in depth. Fe values are very low in the greenish samples, as well as Cr and V. Raman spectrums of the Gavà variscite show differences with samples from other occurrences worldwide. Moreover, some spectral differences can also be observed in the Raman spectra of variscite coming from different depths in the deposit. Raman spectroscopy can be an efficient tool to discriminate not only samples from different geographical localities, but also from its original position in a given deposit. Key-words: variscite, Raman, microprobe, veins, supergene. Résumé. Le gîte de phosphates de Gavà, exploité au Néolithique, s’est formé par des processus de météorisation qui auraient affecté des strates primaires d’apatite. Ce gîte a une zonation chimique verticale, qui aurait été produite par des gradations chimiques lors de la météorisation. La partie haute du gîte contient de la strengite, de l’Al-strengite et de la Fe-variscite jaunâtres ; les niveaux intermédiaires contiennent de la variscite verdâtre et les niveaux plus profonds, de la variscite verte. -
NEW MINERALS It Is Proposed Hereafter to Indicate In.A General Way the Classification of All New Minerals Recoided in This Department
JOURNAL MINERALOGICAL SOCIETY OF AMENICA 63 Dr. Kunz then spoke of the various city localities and the minerals found therein. He stated that the East Side, from 37 to 110 St., probably afforded the most specimens. The various tunnels and their minerals were spoken of. Capt. Miller called attention to the fine collection of Brooklyn Drift Minerals and Rocks in the collection of the Long Island Historical Society. Ife abo mentioned the occurrence of monazite and xenotime crystals, on the Speedway,Harlem River. Dr. Kunz emphasizedthe irnportance of complete records being kept of all finds. Tnou,q,s L Mrr,r,nn, SecretaryPro, Tem. NEW MINERALS It is proposed hereafter to indicate in.a general way the classification of all new minerals recoided in this department. Subdivision will be first into "families," of which nine may be recognized,as listed in the January number (Am. Min.6 (1), 12,1921). Eachfamilywillbe separatedinto "subfamilies " based on special features of composition. This arrangement is tentative and open to modification, and criticism of it will be welcome, [Eo.] FAMILY 2. SULFIDES, ETC. SosreMrr,v 3. Doust,u suLFrDEs oF METALSAND sEMr-METAr,s. I'LTRABASITE V. Rosrcxf and J. Srnnse-Btinu. Ultrabasit, ein neues Mineral aus Freiberg in Sachsen. (Ultrabasite, a new mineral from Freiberg, Saxony). Rozpr.Eeslcd Ako,il. Prag,25, No. 45, 1916;Z. Krgst. Min., 55,43H39, 1920, Neun: From its extremely basic chemical composition. Pnrsrcar, Pnopnnrrus Color black, somewhat grayish; luster metallic; streak black; cleavage none; fracture scaly, with somewhat greasy luster on the surface. H. : 5; sp. gr. -
Strengite.Pdf
3+ Strengite Fe PO4 • 2H2O c 2001-2005 Mineral Data Publishing, version 1 Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Crystals are variable in habit, may be dominated by {111}, lathlike along [001], or elongated along [100] or [010], to 5 cm, with many forms. Generally radial fibrous, as botryoidal or spherical aggregates and crusts. Twinning: Rarely on {201}. Physical Properties: Cleavage: On {010}, good; on {001}, poor. Hardness = 3.5 D(meas.) = 2.84–2.87 D(calc.) = 2.84 Optical Properties: Transparent to translucent. Color: Purple, violet, pink, peach-blossom- red, carmine, greenish white; may be nearly colorless. Streak: White. Luster: Vitreous. Optical Class: Biaxial (+). Orientation: X = a; Y = c; Z = b. Dispersion: r< v,strong. α = 1.697–1.708 β = 1.708–1.719 γ = 1.741–1.745 2V(meas.) = Moderate to small. Cell Data: Space Group: P cab. a = 10.122(1) b = 9.886(1) c = 8.7233(7) Z = 8 X-ray Powder Pattern: The Kreuzberg, Germany. (ICDD 33–667). 3.114 (100), 4.383 (85), 5.509 (60), 2.546 (50), 3.996 (45), 3.002 (45), 2.949 (45) Chemistry: (1) (2) P2O5 38.24 37.99 Fe2O3 43.40 42.73 H2O 18.89 19.28 Total 100.53 100.00 • (1) Pleystein, Germany. (2) FePO4 2H2O. Polymorphism & Series: Dimorphous with phosphosiderite, forms a series with variscite. Mineral Group: Variscite group. Occurrence: A late secondary mineral in complex granite pegmatites; in “limonite” iron ores and gossans; with magnetite iron ores; rarely a cave mineral. Association: Beraunite, hur´eaulite,dufr´enite,bermanite, stewartite, cacoxenite, rockbridgeite, vivianite, apatite, leucophosphite, phosphosiderite. -
Minerals Named After Scientists
Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 1 MINERALS NAMED AFTER PEOPLE AND PLACES © Dr. John Andraos, 2003-2011 Department of Chemistry, York University 4700 Keele Street, Toronto, ONTARIO M3J 1P3, CANADA For suggestions, corrections, additional information, and comments please send e-mails to [email protected] http://www.chem.yorku.ca/NAMED/ PEOPLE MINERAL PERSON OR PLACE DESCRIPTION Abelsonite ABELSON, Philip Hauge (1913 - ?) geochemist Abenakiite ABENAKI people, Quebec, Canada Abernathyite ABERNATHY, Jess Mine operator American, b. ? Abswurmbachite ABS-WURMBACH, IRMGARD (1938 - ) mineralogist German, b. ? Adamite ADAM, Gilbert Joseph Zn3(AsO3)2 H2O (1795 - 1881) mineralogist French, b. ? Aegirine AEGIR, Scandinavian god of the sea Afwillite WILLIAMS, Alpheus Fuller (1874 - ?) mine operator DeBeers Consolidated Mines, Kimberley, South Africa Agrellite AGRELL, Stuart O. (? - 1996) mineralogist British, b. ? Agrinierite AGRINIER, Henri (1928 - 1971) mineralogist French, b. ? Aguilarite AGUILAR, P. Superintendent of San Carlos mine, Guanajuato, Mexico Mexican, b. ? Aikenite 2 PbS Cu2S Bi2S5 Andersonite ANDERSON, Dr. John Andraos, http://www.careerchem.com/NAMED/Minerals.pdf 2 Andradite ANDRADA e Silva, Jose B. Ca3Fe2(SiO4)3 de (? - 1838) geologist Brazilian, b. ? Arfvedsonite ARFVEDSON, Johann August (1792 - 1841) Swedish, b. Skagerholms- Bruk, Skaraborgs-Län, Sweden Arrhenite ARRHENIUS, Svante Silico-tantalate of Y, Ce, Zr, (1859 - 1927) Al, Fe, Ca, Be Swedish, b. Wijk, near Uppsala, Sweden Avogardrite AVOGADRO, Lorenzo KBF4, CsBF4 Romano Amedeo Carlo (1776 - 1856) Italian, b. Turin, Italy Babingtonite (Ca, Fe, Mn)SiO3 Fe2(SiO3)3 Becquerelite BECQUEREL, Antoine 4 UO3 7 H2O Henri César (1852 - 1908) French b. Paris, France Berzelianite BERZELIUS, Jöns Jakob Cu2Se (1779 - 1848) Swedish, b. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Brandãoite, [Beal2(PO4)2(OH)2(H2O
Mineralogical Magazine (2019), 83, 261–267 doi:10.1180/mgm.2018.121 Article Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), a new Be–Al phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras County, Minas Gerais State, Brazil: description and crystal structure † Luiz A. D. Menezes Filho1 , Mário L. S. C. Chaves1, Mark A. Cooper2, Neil A. Ball2, Yassir A. Abdu2,3, Ryan Sharpe2, Maxwell C. Day2 and Frank C. Hawthorne2* 1Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; 2Department of Geological Sciences, University of Manitoba, Winnipeg, Manitoba R3T 2N2, Canada; and 3Department of Applied Physics and Astronomy, University of Sharjah, P.O. Box 27272, Sharjah, United Arab Emirates Abstract – Brandãoite, [BeAl2(PO4)2(OH)2(H2O)4](H2O), is a new Be Al phosphate mineral from the João Firmino mine, Pomarolli farm region, Divino das Laranjeiras County, Minas Gerais State, Brazil, where it occurs in an albite pocket with other secondary phosphates, including beryllonite, atencioite and zanazziite, in a granitic pegmatite. It occurs as colourless acicular crystals <10 µm wide and <100 µm long that form compact radiating spherical aggregates up to 1.0–1.5 mm across. It is colourless and transparent in single crystals and white in aggregates, has a white streak and a vitreous lustre, is brittle and has conchoidal fracture. Mohs hardness is 6, and the calculated density 3 α β γ is 2.353 g/cm . Brandãoite is biaxial (+), = 1.544, = 1.552 and = 1.568, all ± 0.002; 2Vobs = 69.7(10)° and 2Vcalc = 71.2°. -
Crystal Structure Transformations in Inorganic Sulfates, Phosphates, Perchlorates, and Chromates Based on the Literature up to 1974
A111D1 ^65756 NATL INST OF STANDARDS & TECH R. .C. All 101 985758 Rao C. N. R. (Chlnt/Crystal structure t 4 A50.R28 1975 C.1 NSRDS 1975 NSRDS % Of U.S. DEPARTMENT OF COMMERCE National Bureau of Standards " / ' ' N N SRD S Crystal Structure Transformations in Inorganic Sulfates, Phosphates, Perchlorates, and Chromates NATIONAL BUREAU OF STANDARDS The National Bureau of 1 Standards was established by an act of Congress March 3, 1901. The Bureau's overall goal is to strengthen and advance the Nation’s science and technology and facilitate their effective application for public benefit. To this end, the Bureau conducts research and provides: (1) a basis for the Nation's physical measurement system, (2) scientific and technological services for industry and government, (3) a technical basis for equity in trade, and (4) technical services to promote public safety. The Bureau consists of the Institute for Basic Standards, the Institute for Materials Research, the Institute for Applied Technology, the Institute for Computer Sciences and Technology, and the Office for Information Programs. iHE INSTITUTE FOR BASIC STANDARDS provides the central basis within the United States of a complete and consistent system of physical measurement; coordinates that system with measurement systems of other nations; and furnishes essential services leading to accurate and uniform physical measurements throughout the Nation’s scientific community, industry, and commerce. The Institute consists of the Office of Measurement Services, the Office of Radiation Measurement and the following Center and divisions: Applied Mathematics — Electricity — Mechanics — Heat — Optical .Physics — Center for Radiation Research: Nuclear Sciences; Applied Radiation — Laboratory Astrophysics 2 — Cryogenics 2 — Electromagnetics 2 2 — Time and Frequency . -
Roscherite-Group Minerals from Brazil
■ ■ Roscherite-Group Minerals yÜÉÅ UÜté|Ä Daniel Atencio* and José M.V. Coutinho Instituto de Geociências, Universidade de São Paulo, Rua do Lago, 562, 05508-080 – São Paulo, SP, Brazil. *e-mail: [email protected] Luiz A.D. Menezes Filho Rua Esmeralda, 534 – Prado, 30410-080 - Belo Horizonte, MG, Brazil. INTRODUCTION The three currently recognized members of the roscherite group are roscherite (Mn2+ analog), zanazziite (Mg analog), and greifensteinite (Fe2+ analog). These three species are monoclinic but triclinic variations have also been described (Fanfani et al. 1977, Leavens et al. 1990). Previously reported Brazilian occurrences of roscherite-group minerals include the Sapucaia mine, Lavra do Ênio, Alto Serra Branca, the Córrego Frio pegmatite, the Lavra da Ilha pegmatite, and the Pirineus mine. We report here the following three additional occurrences: the Pomarolli farm, Lavra do Telírio, and São Geraldo do Baixio. We also note the existence of a fourth member of the group, an as-yet undescribed monoclinic Fe3+-dominant species with higher refractive indices. The formulas are as follows, including a possible formula for the new species: Roscherite Ca2Mn5Be4(PO4)6(OH)4 • 6H2O Zanazziite Ca2Mg5Be4(PO4)6(OH)4 • 6H2O 2+ Greifensteinite Ca2Fe 5Be4(PO4)6(OH)4 • 6H2O 3+ 3+ Fe -dominant Ca2Fe 3.33Be4(PO4)6(OH)4 • 6H2O ■ 1 ■ Axis, Volume 1, Number 6 (2005) www.MineralogicalRecord.com ■ ■ THE OCCURRENCES Alto Serra Branca, Pedra Lavrada, Paraíba Unanalyzed “roscherite” was reported by Farias and Silva (1986) from the Alto Serra Branca granite pegmatite, 11 km southwest of Pedra Lavrada, Paraíba state, associated with several other phosphates including triphylite, lithiophilite, amblygonite, tavorite, zwieselite, rockbridgeite, huréaulite, phosphosiderite, variscite, cyrilovite and mitridatite.