Phosphate Dynamics in an Urban Sewer: a Case Study of Nancy, France J
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Synthesis of Magnesium- and Silicon-Modified Hydroxyapatites By
www.nature.com/scientificreports OPEN Synthesis of Magnesium- and Silicon-modifed Hydroxyapatites by Microwave-Assisted Method Received: 17 January 2019 Liudmila A. Rasskazova1, Ilya V. Zhuk1, Natalia M. Korotchenko1, Anton S. Brichkov1, Accepted: 19 September 2019 Yu-Wen Chen 2, Evgeniy A. Paukshtis1, Vladimir K. Ivanov1, Irina A. Kurzina 1 & Published: xx xx xxxx Vladimir V. Kozik1 Nanopowders of hydroxyapatite (HA), modifed by magnesium (MgHA) and by silicon (SiHA) were obtained by liquid-phase microwave synthesis method. X-ray difraction and IR spectroscopy results 2+ 4− showed that Mg and SiO4 ions were present in the synthesized products both as secondary phases and as part of the HA phase. Whitlockite was found in the magnesium-modifed HA (MgHA) and larnite was found in the silicon-modifed HA (SiHA); ion substitution for both materials resulted in solid solutions. In the synthesized samples of modifed HA, the increase of particle size of powders was in the order HA < SiHA < MgHA, which was calculated through data specifc surface area and measured pycnometric density of the powders. The Lewis acid sites (Ca2+, Mg2+, Si4+) were present using spectral probes on the surface of the samples of HA, MgHA, and SiHA, and the acidity of these sites decreased in the order SiHA > MgHA > HA. The rates of calcium phosphate layer deposition on the surface of these materials at 37 °C in the model simulated body fuid solution showed similar dependence. Te problem of fnding material for implantation has existed since ancient times. However, towards the end of the twentieth century the requirements for such materials and an informed and scientifcally grounded application began to form. -
(M = Ca, Mg, Fe2+), a Structural Base of Ca3mg3(PO4)4 Phosphors
crystals Article Crystal Chemistry of Stanfieldite, Ca7M2Mg9(PO4)12 (M = Ca, Mg, Fe2+), a Structural Base of Ca3Mg3(PO4)4 Phosphors Sergey N. Britvin 1,2,* , Maria G. Krzhizhanovskaya 1, Vladimir N. Bocharov 3 and Edita V. Obolonskaya 4 1 Department of Crystallography, Institute of Earth Sciences, St. Petersburg State University, Universitetskaya Nab. 7/9, 199034 St. Petersburg, Russia; [email protected] 2 Nanomaterials Research Center, Kola Science Center of Russian Academy of Sciences, Fersman Str. 14, 184209 Apatity, Russia 3 Centre for Geo-Environmental Research and Modelling, Saint-Petersburg State University, Ulyanovskaya ul. 1, 198504 St. Petersburg, Russia; [email protected] 4 The Mining Museum, Saint Petersburg Mining University, 2, 21st Line, 199106 St. Petersburg, Russia; [email protected] * Correspondence: [email protected] Received: 1 May 2020; Accepted: 25 May 2020; Published: 1 June 2020 Abstract: Stanfieldite, natural Ca-Mg-phosphate, is a typical constituent of phosphate-phosphide assemblages in pallasite and mesosiderite meteorites. The synthetic analogue of stanfieldite is used as a crystal matrix of luminophores and frequently encountered in phosphate bioceramics. However, the crystal structure of natural stanfieldite has never been reported in detail, and the data available so far relate to its synthetic counterpart. We herein provide the results of a study of stanfieldite from the Brahin meteorite (main group pallasite). The empirical formula of the mineral is Ca8.04Mg9.25Fe0.72Mn0.07P11.97O48. Its crystal structure has been solved and refined to R1 = 0.034. Stanfieldite from Brahin is monoclinic, C2/c, a 22.7973(4), b 9.9833(2), c 17.0522(3) Å, β 99.954(2)◦, 3 V 3822.5(1)Å . -
Multiscale Characterization of Bone Mineral: New Perspectives in Structural Imaging Using X-Ray and Electron Diffraction Contrast Mariana Verezhak
Multiscale characterization of bone mineral: new perspectives in structural imaging using X-ray and electron diffraction contrast Mariana Verezhak To cite this version: Mariana Verezhak. Multiscale characterization of bone mineral: new perspectives in structural imag- ing using X-ray and electron diffraction contrast. Materials Science [cond-mat.mtrl-sci]. Communauté Universite Grenoble Alpes, 2016. English. tel-01576447 HAL Id: tel-01576447 https://hal.archives-ouvertes.fr/tel-01576447 Submitted on 23 Aug 2017 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THESIS In order to obtain the grade of DOCTOR OF GRENOBLE ALPES UNIVERSITY Specialty: Physics/Nanophysics Ministerial order: 7 August 2006 Presented by « Mariana / VEREZHAK » Thesis supervised by « Marie/PLAZANET » and co-supervised by « Aurélien/GOURRIER » Prepared at Laboratory of Interdisciplinary Physics at Doctoral School of Physics of Grenoble Multiscale characterization of bone mineral: new perspectives in structural imaging using X-ray and electron diffraction contrast Thesis is publically defended on « 28 October 2016 », in front of the jury composed of : Prof. Franz BRUCKERT Grenoble INP UGA, President of jury Dr. Aurélien GOURRIER LIPhy, Grenoble, co-Director of thesis Prof. Thomas LAGRANGE Institute of Technology of Lausanne, Examiner Dr. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Program and Abstracts
The Atlantic Geoscience Society (AGS) La Société Géoscientifique de l’Atlantique 45th Colloquium and Annual Meeting Special Sessions: • Special Session: In Memory of Dr. Trevor MacHattie (1974 - 2018) • Paleontology and Sedimentology in Atlantic Canada: In Memory of Dr. Ron Pickerill (1947 – 2018) • Current Research in Carboniferous Geology in the Atlantic Provinces • Minerals, metals, melts, and fluids associated with granitoid rocks: new insights from fundamental studies into the genesis, melt fertility, and ore-forming processes • Earth Science Outreach in the Maritime Provinces • Geohazards: Recent and Historical General Sessions: Current Research in the Atlantic Provinces February 7-9, 2019 Fredericton Inn, Fredericton, New Brunswick PROGRAM WITH ABSTRACTS We gratefully acknowledge sponsorship from the following companies and organizations: Department of Energy and Resource Development Geological Surveys Branch Department of Energy and Mines Department of Energy and Mines Geological Surveys Division Petroleum Resources Division Welcome to the 45th Colloquium and Annual Meeting of the Atlantic Geoscience Society in Fredericton, New Brunswick. This is a familiar place for AGS, having been a host several times over the years. We hope you will find something to interest you and generate discussion with old friends and new. AGS members are clearly pushing the boundaries of geoscience in all its branches! Be sure to take in the science on the posters and the displays from sponsors, and don’t miss the after-banquet jam and open mike on Saturday night. For social media types, please consider sharing updates on Facebook and Twitter (details in the program). We hope you will be able to use the weekend to renew old acquaintances, make new ones, and further the aims of your Atlantic Geoscience Society. -
Evaluation of a Fluorapatite-Spinel Ceramic As a Bone Implant Denginur Aksaci Iowa State University
Iowa State University Capstones, Theses and Retrospective Theses and Dissertations Dissertations 1981 Evaluation of a fluorapatite-spinel ceramic as a bone implant Denginur Aksaci Iowa State University Follow this and additional works at: https://lib.dr.iastate.edu/rtd Part of the Materials Science and Engineering Commons Recommended Citation Aksaci, Denginur, "Evaluation of a fluorapatite-spinel ceramic as a bone implant " (1981). Retrospective Theses and Dissertations. 6961. https://lib.dr.iastate.edu/rtd/6961 This Dissertation is brought to you for free and open access by the Iowa State University Capstones, Theses and Dissertations at Iowa State University Digital Repository. It has been accepted for inclusion in Retrospective Theses and Dissertations by an authorized administrator of Iowa State University Digital Repository. For more information, please contact [email protected]. INFORMATION TO USERS This was produced from a copy of a document sent to us for microfilming. While the most advanced technological means to photograph and reproduce this document have been used, the quality is heavily dependent upon the quality of the material submitted. The following explanation of techniques is provided to help you understand markings or notations which may appear on this reproduction. 1. The sign or "target" for pages apparently lacking from the document photographed is "Missing Page(s)". If it was possible to ubtain the missing page(s) or section, they are spliced into the film along with adjacent pages. This may have necessitated cutting through an image and duplicating adjacent pages to assure you of complete continuity. 2. When an image on the film is obliterated with a round black mark it is an indication that the film inspector noticed either blurred copy because of movement during exposure, or duplicate copy. -
0.10(PO4)2 -Tricalcium Phosphates with Me2+ = Mn, Ni, Cu
crystals Article 2+ New Ca2.90(Me )0.10(PO4)2 β-tricalcium Phosphates with Me2+ = Mn, Ni, Cu: Synthesis, Crystal-Chemistry, and Luminescence Properties Angela Altomare 1, Rosanna Rizzi 1, Manuela Rossi 2 , Asmaa El Khouri 3, Mohammed Elaatmani 3, Veronica Paterlini 4, Giancarlo Della Ventura 5 and Francesco Capitelli 6,* 1 Istituto di Cristallografia–CNR, Via G. Amendola, 122/O, 70126 Bari, Italy; [email protected] (A.A.); [email protected] (R.R.) 2 Dipartimento di Scienze della Terra dell’Ambiente e delle Risorse, Università di Napoli Federico II, Via Mezzocannone 8, 80134 Naples, Italy; [email protected] 3 Faculté des Sciences Semlalia, BP 2390, Université Cadi Ayyad, Marrakech 40000, Morocco; [email protected] (A.E.K.); [email protected] (M.E.) 4 Luminescent Materials Laboratory, Università di Verona, Ca’ Vignal, Strada Le Grazie 15, 37134 Verona, Italy; [email protected] 5 Dipartimento di Scienze, Università Roma Tre, Largo S. L. Murialdo 1, 00016 Monterotondo (Rome), Italy; [email protected] 6 Istituto di Cristallografia–CNR, Via Salaria Km 29.300, 00016 Monterotondo (Rome), Italy * Correspondence: [email protected]; Tel.: +39-06-90672161 Received: 19 April 2019; Accepted: 28 May 2019; Published: 1 June 2019 2+ ( ) β Abstract: Ca2.90Me0.10 PO4 2 (with Me = Mn, Ni, Cu) -tricalcium phosphate (TCP) powders were synthesized by solid-state reaction at T = 1200 ◦C and investigated by means of a combination of scanning electron microscopy (SEM) equipped with energy dispersive X-ray spectroscopy (EDS), powder X-ray diffraction (PXRD), Fourier transform infrared (FTIR) spectroscopy, and luminescence spectroscopy. -
Dahllite and Whitlockite from Amatuku Islet, Tuvalu
SHORT COMMUNICATIONS 123 mentale du r6le de la monazite. These de l'Institut [Manuscript received 7 March 1988; National Polytechnique de Lorraine, 117 pp. revised 5 April 1988] Radominsky, M. F. (1875) Reproduction artificielle de la monazite et de la xenotime. C. R. Aead. Sei. Paris, 80, 304-7. ~) Copyright the Mineralogical Society KEYWORDS: monazite, RE phosphates, hydrothermal synthesis, microprobe standards. Centre de Recherches Petrographiques et Gkochimiques, J. M. MONTEL* B.P. 20, 54501, Vandoeuvre Les Nancy Cedex, France F, LHOTE Universitk de Nancy I, 54500, Vandoeuvre les Nancy, France J. M. CLAUDE * Present Address: CNRS, U.A.10, 5 rue Kessler, 63000 Clermont Ferrand, France. MINERALOGICAL MAGAZINE, MARCH 1989, VOL. 53, PP. 123 5 Dahllite and whitlockite from Amatuku islet, Tuvalu PHOSPHATIC limestones and a related soil were phosphatic biocalcarenties and biocalcirudites described from collections made by the first Royal forming the phosbergs. Texturally the rocks are Society coral-reef-boring expedition to Funafuti grainstones with sorting being moderate to good in 1896 (Cooksey, 1896; David and Sweet, 1904, within any one layer. In the rudites, rounded clasts Judd, 1904; Sollas, 1904; cf. Cullis, 1904). Al- commonly vary up to 12.5 cm but the main range though there is some geographic uncertainty about is between 20 and 60 mm. Arenites are well the source of some of Judd's samples, the speci- rounded, medium to coarse sands in which gran- mens came from three localities on Funafuti, the ules consisting of entire tests of calcarinid and largest being on Amatuku. soritinid foraminifera are frequent (Fig. 1a). Fines Occurrence. -
Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective
The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective Gd Pr Ce Sm La Nd Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey Cover photo: Powders of six rare earth elements oxides. Photograph by Peggy Greb, Agricultural Research Center of United States Department of Agriculture. The Principal Rare Earth Elements Deposits of the United States—A Summary of Domestic Deposits and a Global Perspective By Keith R. Long, Bradley S. Van Gosen, Nora K. Foley, and Daniel Cordier Scientific Investigations Report 2010–5220 U.S. Department of the Interior U.S. Geological Survey U.S. Department of the Interior KEN SALAZAR, Secretary U.S. Geological Survey Marcia K. McNutt, Director U.S. Geological Survey, Reston, Virginia: 2010 For product and ordering information: World Wide Web: http://www.usgs.gov/pubprod Telephone: 1-888-ASK-USGS For more information on the USGS—the Federal source for science about the Earth, its natural and living resources, natural hazards, and the environment: World Wide Web: http://www.usgs.gov Telephone: 1-888-ASK-USGS Any use of trade, product, or firm names is for descriptive purposes only and does not imply endorsement by the U.S. Government. This report has not been reviewed for stratigraphic nomenclature. Although this report is in the public domain, permission must be secured from the individual copyright owners to reproduce any copyrighted material contained within this report. Suggested citation: Long, K.R., Van Gosen, B.S., Foley, N.K., and Cordier, Daniel, 2010, The principal rare earth elements deposits of the United States—A summary of domestic deposits and a global perspective: U.S. -
The Turquoise-Chalcosiderite-Planerite
СПИСАНИЕ НА БЪЛГАРСКОТО ГЕОЛОГИЧЕСКО ДРУЖЕСТВО, год. 80, кн. 3, 2019, с. 48–50 REVIEW OF THE BULGARIAN GEOLOGICAL SOCIETY, vol. 80, part 3, 2019, p. 48–50 Национална конференция с международно участие „ГЕОНАУКИ 2019“ National Conference with international participation “GEOSCIENCES 2019” The turquoise-chalcosiderite-planerite solid-solution series in samples from Chala deposit, Eastern Rhodopes Тюркоаз-халкосидерит-планеритова серия от твърди разтвори в образци от находище Чала, Източни Родопи Yana Tzvetanova1, Louiza Dimowa1, Elena Tacheva1, Iskra Piroeva2, Ognyan Petrov1, Aleksandar Nikolov1 Яна Цветанова1, Луиза Димова1, Елена Тачева1, Искра Пироева2, Огнян Петров1, Александър Николов1 1 Institute of Mineralogy and Crystallography, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 107, 1113 Sofia, Bulgaria; E-mail: [email protected] 2 Institute of Physical Chemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., bl. 11, 1113 Sofia, Bulgaria Keywords: turquoise, chalcosiderite, planerite, crystal chemistry, phosphates. Introduction quoise was also reported from the Obichnik depos- it, Zvezdel-Pcheloyad ore field, Eastern Rhodopes The turquoise group, as redefined by Foord and (Kunov, Mandova, 1997). Taggart (1998), consists of 6 members: planerite, The present study aims to show the crystal chem- turquoise, faustite, aheylite, chalcosiderite and an istry of green mineral from the turquoise group from 2+ 3+ unnamed Fe –Fe analogue with the general for- Chala deposit (Spahievo ore field) with particular at- mula A0–1B6(PO4)4–x(PO3OH)x(OH)8 4H2O, where tention to planerite end-member that was approved 2+ x = 0–2. Blue turquoise has Cu at the A position and by the IMA CNMMN as a revalidated mineral in 3+ Al at the B position, whereas green⋅ chalcosiderite 1984. -
Synthesis, Characterization and Process Optimization of Bone Whitlockite
nanomaterials Article Synthesis, Characterization and Process Optimization of Bone Whitlockite Sadaf Batool 1, Usman Liaqat 1 , Zakir Hussain 1,* and Manzar Sohail 2 1 School of Chemical and Materials Engineering (SCME), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; [email protected] (S.B.); [email protected] (U.L.) 2 Department of Chemistry, School of Natural Sciences (SNS), National University of Sciences & Technology (NUST), Sector H-12, 44000 Islamabad, Pakistan; [email protected] * Correspondence: [email protected]; Tel./Fax: +0092-51-9085-5200 Received: 26 July 2020; Accepted: 20 August 2020; Published: 17 September 2020 Abstract: Whitlockite, being the second most abundant bio-mineral in living bone, finds huge applications in tissue regeneration and implants and its synthesis into its pure form has remained a challenge. Although precipitation of whitlockite phase has been reported recently in many publications, effects of various parameters to control such phase as well as conditions for the bulk preparation of this extremely important bio-mineral have not been investigated so far. In this work, we report the precipitation of pure whitlockite phase using common precursors. As reported in the literature, whitlockite is stable in a narrow pH range, therefore; optimization of pH for the stabilization of whitlockite phase has been investigated. Additionally, in order to narrow down the optimum conditions for the whitlockite precipitation, effect of temperature and heating conditions has also been studied. The obtained solids were characterized using powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, scanning electron microscopy (SEM) and thermogravimetric analysis (TGA). -
Fluorwavellite Al3(PO4)2(OH)2F⋅5H2O
Fluorwavellite Al3(PO4)2(OH)2F⋅5H2O Crystal Data: Orthorhombic. Point Group: 2/m 2/m 2/m. Prismatic crystals display {010}, (110}, and {101}, to 3 mm. Commonly in radial or bow-tie-like sprays. Physical Properties: Essentially identical to wavellite in appearance and physical properties. Cleavage: Perfect on {110}, good on {101} and {010}. Tenacity: Brittle. Fracture: Uneven to conchoidal. Hardness = 3.5 D(meas.) = 2.30(1) D(calc.) = 2.345 Optical Properties: Transparent. Color: Colorless. Streak: White. Luster: Vitreous. Optical Class: Biaxial (+). α = 1.522(1) β = 1.531(1) γ = 1.549(1) 2V(meas.) = 71(1)° 2V(calc.) = 71.2° Orientation: X = b, Y = a, Z = c. Pleochroism: None. Dispersion: Weak, r > v. Cell Data: Space Group: Pcmm. a = 9.6311(4) b = 17.3731(12) c = 9.9946(3) Z = 4 X-ray Powder Pattern: Silver Coin mine or Wood mine, USA (unspecified). 8.53 (100), 3.223 (41), 3.430 (28), 2.580 (28), 5.65 (26), 4.81 (17), 2.101 (16) Chemistry: (1) (2) (3) Al2O3 36.79 36.68 36.94 P2O5 34.66 34.31 34.29 F 4.74 4.08 4.59 H2O [26.65] [26.52] 26.11 -O = F2 2.00 1.72 1.93 Total 100.84 99.87 100.00 (1) Silver Coin mine, Valmy, Humboldt County, Nevada, USA; average of 9 electron microprobe analyses supplemented by Raman and FTIR spectroscopy, H2O calculated from structure; corresponds to Al2.96(PO4)2(OH)1.98F1.02·5H2O. (2) Wood mine, Cocke County, Tennessee, USA; average of 9 electron microprobe analyses supplemented by Raman and FTIR spectroscopy and CHN analysis, H2O calculated from structure; corresponds to Al2.98(PO4)2(OH)2.11F0.89·5H2O.