Meteorites By: Prof

Total Page:16

File Type:pdf, Size:1020Kb

Meteorites By: Prof Ask a Geologist: Meteorites By: Prof. Sonia Tikoo-Schantz Department of Geophysics Stanford University About Me Sonia Tikoo-Schantz ● I love traveling, history, and SPACE! ● I am a huge sci-fi nerd (PHOTO Fun fact: the actor who plays Commander OF YOU) Ben Sisko on Star Trek DS9 (Avery Brooks) graduated from Rutgers and has been a professor there! Ask A Geologist Series Growing up I’m from Cape Girardeau, MO. Voted “Most Likely to Become an Astronaut” in my graduating class. Ask A Geologist Series College I went to college near Los Angeles Did a summer engineering internship at the NASA Jet Propulsion Laboratory ----> switched to Geology major Ask A Geologist Series Did my doctoral studies at MIT, where I started studying meteorites Grad School and Moon rocks (Apollo samples). with the Gibeon With an Apollo 15 iron meteorite rock at NASA JSC Ask A Geologist Series My work magnetism.stanford.edu I use Apollo samples and meteorites to study magnetic fields in the solar system. I also work on the formation of impact craters by studying Earth rocks. image credit: Alamy image credits: Ben Weiss (MIT), artist Hernan Canellas What are meteorites? Objects originating from space that survived entering Earth’s atmosphere and fell to the ground. fusion crust Spacecraft heat shield (ESA artist depiction) Ask A Geologist Series Why study meteorites? Excluding Apollo(+), they’re basically the only space rocks we have! nb: there have been a few successful robotic sample returns from the Moon/asteroids. Artist rendering of JAXA Hayabusa at asteroid Itokawa Ask A Geologist Series Why study meteorites? They are collectively a treasure trove of information spanning 4.568 billion years of solar system history: Ask A Geologist Series Meteorite falls Chelyabinsk, Russia (2013) ● 66 feet diameter (20 meters) ● 40,000 mph (19 kilometers/second) ● Exploded mid-air (airburst), energy of ½ a 1950s nuke Ask A Geologist Series Chelyabinsk meteorite Wikipedia theregister.co.uk Recovered about 2,200 lbs (~1 metric ton) of material. Ask A Geologist Series Meteorite finds Antarctica Atacama Desert Sahara/NW Africa Rutgers EPS Professor Juliane Gross Ask A Geologist Series Atacama meteorite hunting https://youtu.be/iNKMoxAYFv4 Ask A Geologist Series Where do they come from? Most are asteroids with Earth-crossing orbits. image credit: Planetary Resources Ask A Geologist Series Where do they come from? Also get them from the Moon and Mars, and other bodies (like comets). Martian meteorite ALH84001 ©NASA Lunar Meteorite NWA 2727 Image credit: M. Kayama, M. Sasaoka image credit: Planetary Resources Ask A Geologist Series In the beginning... Ask A Geologist Series The solar nebula Ask A Geologist Series Chondrites (~90% of finds) Contain some of the earliest solid materials in the solar system! Allende CAIs give age of solar system: ~4.568 billion years ago Ask A Geologist Series Growing planetesimals Gas and dust in the disk develop clumps that lead to forming larger bodies. Jacob Simon Ask A Geologist Series Gravitational collisions Once bodies get > 1 km (>~½ a mile), gravity can take over and things collide to form bigger planetesimals. Eventually, some get big enough to attract stuff in their vicinity and grow rapidly. Don Dixon Katamari Damacy video game Ask A Geologist Series Big planetesimals melt Segregate into dense metallic core and overlying silicate mantle. Melting produced by heating from gravitational energy and radioactivity. Earth’s structure Ask A Geologist Series Iron meteorites The cores of bodies that underwent melting and differentiation. Commonly used in jewelry, like: jewelrybyjohan Ask A Geologist Series Iron meteorites Famous example: one produced Meteor Crater (Arizona) ● about ¾ of a mile across ● 560 feet deep ● 50,000 years old ● Impactor was ~160 feet diameter Ask A Geologist Series Achondrites The crusts of bodies that underwent melting and differentiation. Ask A Geologist Series Stony-iron meteorites Ask A Geologist Series Meteorites tell us about the different types of bodies they come from ...as well as what we’re made out of! Annual Review in Earth and Planetary Sciences Ask A Geologist Series Linking meteorites to each other Scientists use mineral similarities, as well as oxygen isotopes to link meteorites into groups. Earth/Moon fall on the same line. Ask A Geologist Series Linking meteorites to asteroids Meteorites and asteroids are characterized by spectroscopy (how much light is reflected off a surface at different wavelengths). Meteorite Millbillillie vs. Asteroid 4 Vesta Ask A Geologist Series Linking meteorites to asteroids Meteorite Millbillillie vs. Asteroid 4 Vesta Artist rendering: Dawn spacecraft Ask A Geologist Series Meteorites and life’s origins Rotelli et al. (2016) Ask A Geologist Series Question Time!.
Recommended publications
  • Handbook of Iron Meteorites, Volume 3
    Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu­ DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given.
    [Show full text]
  • Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
    Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock­ The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock­ annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation.
    [Show full text]
  • Lost Lake by Robert Verish
    Meteorite-Times Magazine Contents by Editor Like Sign Up to see what your friends like. Featured Monthly Articles Accretion Desk by Martin Horejsi Jim’s Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob’s Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Galactic Lore by Mike Gilmer Meteorite Calendar by Anne Black Meteorite of the Month by Michael Johnson Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2010 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • Ron Hartman and the Lucerne Valley Meteorites by Robert Verish Ron Hartman and the Lucerne Valley Meteorites
    Meteorite Times Magazine Contents by Editor Featured Monthly Articles Accretion Desk by Martin Horejsi Jim's Fragments by Jim Tobin Meteorite Market Trends by Michael Blood Bob's Findings by Robert Verish IMCA Insights by The IMCA Team Micro Visions by John Kashuba Meteorite Calendar by Anne Black Meteorite of the Month by Editor Tektite of the Month by Editor Terms Of Use Materials contained in and linked to from this website do not necessarily reflect the views or opinions of The Meteorite Exchange, Inc., nor those of any person connected therewith. In no event shall The Meteorite Exchange, Inc. be responsible for, nor liable for, exposure to any such material in any form by any person or persons, whether written, graphic, audio or otherwise, presented on this or by any other website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. does not endorse, edit nor hold any copyright interest in any material found on any website, web page or other cyber location linked to from this website. The Meteorite Exchange, Inc. shall not be held liable for any misinformation by any author, dealer and or seller. In no event will The Meteorite Exchange, Inc. be liable for any damages, including any loss of profits, lost savings, or any other commercial damage, including but not limited to special, consequential, or other damages arising out of this service. © Copyright 2002–2011 The Meteorite Exchange, Inc. All rights reserved. No reproduction of copyrighted material is allowed by any means without prior written permission of the copyright owner.
    [Show full text]
  • To Thermal History of Metallic Asteroids
    44th Lunar and Planetary Science Conference (2013) 1129.pdf TO THERMAL HISTORY OF METALLIC ASTEROIDS. E.N. Slyuta, Vernadsky Institute of Geochemistry and Analytical Chemistry, Russian Academy of Sciences, 119991, Kosygin St. 19, Moscow, Russia. [email protected]. Introduction: Physical-mechanical properties of interval of temperatures T-transition from plastic to a iron meteorites depend on structure, chemical and min- fragile condition in iron meteorites is not observed that eralogical composition, from short-term shock loading usually is not characteristic for technical alloys and and from temperature [1]. The yield strength increases, steels at which at decreasing of temperature the plas- if size of kamacite and rhabdites crystals decreases, ticity can decrease down to 0. For example, for iron- and nickel and carbon contents increases. The more Ni nickel alloy at Ni content about 5% the curve T-bend is content, the more taenite, microhardness of which is observed already about 200 K [5]. The mechanism of more than one of kamacite, and accordingly more yield plastic deformation in iron meteorites at low tempera- strength. Short-term shock loading up to 25 GPа also tures varies only. Deformation at 300 K occurs by slid- increases the yield strength. The temperature of small ing, and at 4.2 K and 77 K is accompanied by forma- bodies which unlike planetary bodies have no en- tion and development of static twins, i.e. mechanical dogenic activity and an internal thermal flux, is de- twinning as the basic mechanism of deformation in fined by insolation level and depends on a body posi- iron meteorites at low temperatures dominates [6].
    [Show full text]
  • September 17, 2010 -- Oregon's Sixth Meteorite, Named Fitzwater Pass
    NEWS RELEASE EMBARGOED UNTIL 1 PM P.S.T., SEPTEMBER 27, 2010 By: Alex Ruzicka, Melinda Hutson, Dick Pugh Source: Cascadia Meteorite Laboratory, Department of Geology, Portland State University, 503- 725-3372, email [email protected] Oregon’s sixth meteorite, named Fitzwater Pass, is discovered to be a rare type of iron. (Portland, Ore.) – September 27, 2010 After spending over 30 years in a Folgers coffee can, a thumb-sized chunk of metal has been identified by researchers as a rare type of iron meteorite. Named Fitzwater Pass, this meteorite adds to five other known meteorites from Oregon. Previous meteorites include Sam’s Valley (found 1894), Willamette (found 1902), Klamath Falls (found 1952), Salem (fell 1981), and Morrow County (recognized 2010). Meteorites are named for the nearest geographical feature. The meteorite was found in the early summer of 1976 by Mr. Paul Albertson of Lakeview, Oregon, while hunting for agate and jasper at Fitzwater Pass in south central Oregon with his high school teacher James Bleakney. Mr. Albertson took the 65 gram (2.3 ounce) teardrop-shaped piece of metal to a local rock shop, where a small amount was ground off. He was told by someone at the rock shop that it was probably a piece of nickel ore. Mr. Albertson placed the rock in a Folgers coffee can, where it remained until 2006. The meteorite made it out of the can and into the hands of Dick Pugh, a member of the Cascadia Meteorite Laboratory (CML) at Portland State University, Portland, Oregon, who recognized it as a probable meteorite.
    [Show full text]
  • On the Distribution of the Gibeon Meteorites of South-West Africa Robert Citron
    https://ntrs.nasa.gov/search.jsp?R=19670023688 2020-03-12T11:14:37+00:00Z ON THE DISTRIBUTION OF THE GIBEON METEORITES OF SOUTH-WEST AFRICA ROBERT CITRON L ZOB WYOl AJ.ll13Vd I. 'b Research in Space Science SA0 Special Report No. 238 ON THE DISTRIBUTION OF THE GIBEON METEORITES OF SOUTH-WEST AFRICA Robert C itron March 30, 1967 Smithsonian Institution Astrophysical Observatory Cambridge, Massachusetts, 02138 TABLE OF CONTENTS Sec tion Page BIOGRAPHICAL NOTE ....................... iv ABSTRACT ............................. -v 1 INTRODUCTION ........................... 1 2 GIBEONDISTRIBUTION ...................... 2 3 RECENTLY RECOVERED GIBEON METEORITES ..... 7 3. 1 The Lichtenfels Meteorite .................. 7 3.2 The Haruchas Meteorite ................... 8 3.3 The Donas Meteorite ...................... 9 3.4 The Bethanie Meteorite .................... 10 3.5 The Keetmanshoop Meteorite ................ 10 3. 6 The Kinas Putts Meteorite ................. 11 3. 7 The Kamkas Meteorite .................... 12 4 POSSIBLE IMPACT CRATERS .................. 15 5 ACKNOWLEDGMENTS ....................... 20 6 REFERENCES ............................ 21 Atmendix A WEIGHT LIST OF KNOWN GIBEON METEORITES - - - * A-1 B GIBEON METEORITES IN MUSEUMS .............. B-1 . C PHOTOGRAPHS OF RECENTLY RECOVERED GIBEON METEORITES ............................. C-1 D PHOTOGRAPHS OF METEORITES IN PUBLIC GARDENS, WINDHOEK, SOUTH-WEST AFRICA .............. D-1 ii LIST OF ILLUSTRATIONS Figure Page 1 Map of known Gibeon meteorite distribution . 5 2a Aerial view of Brukkaros crater . 16 2b Ground view of Brukkaros crater . 17 3 Aerial view of Roter Kamm crater . 19 C-1 The Lichtenfels meteorite . C-2 C-2 The Haruchas meteorite . C-2 C-3 The Donas meteorite . C-3 C-4 The Bethanie meteorite. C-3 C-5 The Kinas Putts meteorite . C-4 D-1 Twenty-seven Gibeon meteorites, whose total weight exceeds 10 metric tons, in the Public Gardens at Windhoek, South-West Africa .
    [Show full text]
  • The Thermal Conductivity of Meteorites: New Measurements and Analysis
    This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Icarus 208 (2010) 449–454 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The thermal conductivity of meteorites: New measurements and analysis C.P. Opeil a, G.J. Consolmagno b,*, D.T. Britt c a Department of Physics, Boston College, Chestnut Hill, MA 02467-3804, USA b Specola Vaticana, V-00120, Vatican City State c Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA article info abstract Article history: We have measured the thermal conductivity at low temperatures (5–300 K) of six meteorites represent- Received 6 October 2009 ing a range of compositions, including the ordinary chondrites Cronstad (H5) and Lumpkin (L6), the Revised 21 January 2010 enstatite chondrite Abee (E4), the carbonaceous chondrites NWA 5515 (CK4 find) and Cold Bokkeveld Accepted 23 January 2010 (CM2), and the iron meteorite Campo del Cielo (IAB find). All measurements were made using a Quantum Available online 1 February 2010 Design Physical Properties Measurement System, Thermal Transport Option (TTO) on samples cut into regular parallelepipeds of 2–6 mm dimension.
    [Show full text]
  • W Numerze: – Wywiad Z Kustoszem Watykańskiej Kolekcji C.D. – Cz¹stki
    KWARTALNIK MI£OŒNIKÓW METEORYTÓW METEORYTMETEORYT Nr 3 (63) Wrzesieñ 2007 ISSN 1642-588X W numerze: – wywiad z kustoszem watykañskiej kolekcji c.d. – cz¹stki ze Stardusta a meteorytry – trawienie meteorytów – utwory sp³ywania na Sikhote-Alinach – pseudometeoryty – konferencja w Tucson METEORYT Od redaktora: kwartalnik dla mi³oœników OpóŸnieniami w wydawaniu kolejnych numerów zaczynamy meteorytów dorównywaæ „Meteorite”, którego sierpniowy numer otrzyma³em Wydawca: w paŸdzierniku. Tym razem g³ówn¹ przyczyn¹ by³y k³opoty z moim Olsztyñskie Planetarium komputerem, ale w koñcowej fazie redagowania okaza³o siê tak¿e, i Obserwatorium Astronomiczne ¿e brak materia³u. Musia³em wiêc poczekaæ na mocno opóŸniony Al. Pi³sudskiego 38 „Meteorite”, z którego dorzuci³em dwa teksty. 10-450 Olsztyn tel. (0-89) 533 4951 Przeskok o jeden numer niezupe³nie siê uda³, a zapowiedzi¹ [email protected] dalszych k³opotów jest mi³y sk¹din¹d fakt, ¿e przep³yw materia³ów zacz¹³ byæ dwukierunkowy. W najnowszym numerze „Meteorite” konto: ukaza³ siê artyku³ Marcina Cima³y o Moss z „Meteorytu” 3/2006, 88 1540 1072 2001 5000 3724 0002 a w kolejnym numerze zapowiedziany jest artyku³ o Morasku BOŒ SA O/Olsztyn z „Meteorytu” 4/2006. W rezultacie jednak bêdzie mniej materia³u do Kwartalnik jest dostêpny g³ównie t³umaczenia i trzeba postaraæ siê o dalsze w³asne teksty. Czy mo¿e ktoœ w prenumeracie. Roczna prenu- merata wynosi w 2007 roku 44 z³. chcia³by coœ napisaæ? Zainteresowanych prosimy o wp³a- Z przyjemnoœci¹ odnotowujê, ¿e nabieraj¹ tempa przygotowania cenie tej kwoty na konto wydawcy do kolejnej konferencji meteorytowej, która planowana jest na 18—20 nie zapominaj¹c o podaniu czytel- nego imienia, nazwiska i adresu do kwietnia 2008 r.
    [Show full text]
  • Meteorite Collections: Sample List
    Meteorite Collections: Sample List Institute of Meteoritics Department of Earth and Planetary Sciences University of New Mexico October 01, 2021 Institute of Meteoritics Meteorite Collection The IOM meteorite collection includes samples from approximately 600 different meteorites, representative of most meteorite types. The last printed copy of the collection's Catalog was published in 1990. We will no longer publish a printed catalog, but instead have produced this web-based Online Catalog, which presents the current catalog in searchable and downloadable forms. The database will be updated periodically. The date on the front page of this version of the catalog is the date that it was downloaded from the worldwide web. The catalog website is: Although we have made every effort to avoid inaccuracies, the database may still contain errors. Please contact the collection's Curator, Dr. Rhian Jones, ([email protected]) if you have any questions or comments. Cover photos: Top left: Thin section photomicrograph of the martian shergottite, Zagami (crossed nicols). Brightly colored crystals are pyroxene; black material is maskelynite (a form of plagioclase feldspar that has been rendered amorphous by high shock pressures). Photo is 1.5 mm across. (Photo by R. Jones.) Top right: The Pasamonte, New Mexico, eucrite (basalt). This individual stone is covered with shiny black fusion crust that formed as the stone fell through the earth's atmosphere. Photo is 8 cm across. (Photo by K. Nicols.) Bottom left: The Dora, New Mexico, pallasite. Orange crystals of olivine are set in a matrix of iron, nickel metal. Photo is 10 cm across. (Photo by K.
    [Show full text]
  • Trace Element Inventory of Meteoritic Ca-Phosphates
    American Mineralogist, Volume 102, pages 1856–1880, 2017 Trace element inventory of meteoritic Ca-phosphates DUSTIN WARD1,*, ADDI BISCHOFF1, JULIA ROSZJAR2, JASPER BERNDT3, AND MARTIN J. WHITEHOUSE4 1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany 2Department of Mineralogy and Petrography, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany 4Department of Geosciences, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden ABSTRACT Most extraterrestrial samples feature the two accessory Ca-phosphates (apatite-group minerals and merrillite), which are important carrier phases of the rare earth elements (REE). The trace-element concentrations (REE, Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, and U) of se- lected grains were analyzed by LA-ICP-MS and/or SIMS (REE only). This systematic investigation includes 99 apatite and 149 merrillite analyses from meteorites deriving from various asteroidal bodies including 1 carbonaceous chondrite, 8 ordinary chondrites, 3 acapulcoites, 1 winonaite, 2 eucrites, 5 shergottites, 1 ureilitic trachyandesite, 2 mesosiderites, and 1 silicate-bearing IAB iron meteorite. Although Ca-phosphates predominantly form in metamorphic and/or metasomatic reactions, some are of igneous origin. As late-stage phases that often incorporate the vast majority of their host’s bulk REE budget, the investigated Ca-phosphates have REE enrichments of up to two orders of magnitude compared to the host rock’s bulk concentrations. Within a single sample, each phosphate species displays a uniform REE-pattern, and variations are mainly restricted to their enrichment, therefore indicating similar formation conditions.
    [Show full text]
  • Workshop on the Issue of Martian Meteorites 7027.Pdf
    Workshop on the Issue of Martian Meteorites 7027.pdf RECOVERING MORE ANTARCTIC MARTIAN METEORITES: ANSWERS TO COMMON QUESTIONS. R. P. Harvey1 and W. A. Cassidy2, 1Case Western Reserve University, Cleveland OH 44106-7216, USA ([email protected]), 2Department of Geology and Planetary Science, University of Pittsburgh, Pittsburgh PA 15260, USA ([email protected]). Introduction: Of the 13 Martian meteorites reported, they could, tell them from Earth rocks), they can help us almost half were collected in Antarctica. With the increased find exposed blue ice, and help us discern the shape and interest in Martian meteorite studies accompanying the re- topography of an icefield. These images speed up our re- port of possible biogenic activity in ALH84001, many have connaissance and greatly facilitate systematic searching wondered whether recoveries of Antarctic Martian meteor- efforts. They also serve as the only available basemap for ites could be enhanced or accelerated. Given that the recov- precisely locating our finds, given that many Antarctic ice- ery of Antarctic meteorites is a planned activity, (unlike the fields lie off existing topographical maps. recovery of non-Antarctic Martian meteorites via random finds and falls), such questions are worth considering. 3. If we sent an army of professional meteorite Listed below are several topical questions, followed by an- hunters, could we gather Martian meteorites more swers based on experience gathered during the 21 com- quickly? pleted field seasons of ANSMET (the Antarctic Search for The answer to this one is “maybe”. Success in Meteorites program). finding Antarctic meteorites depends on a lot of factors, of which manpower is only one.
    [Show full text]