Introduction to Meteorites Developed and Compiled by Larry Lebofsky, PSI
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Handbook of Iron Meteorites, Volume 3
Sierra Blanca - Sierra Gorda 1119 ing that created an incipient recrystallization and a few COLLECTIONS other anomalous features in Sierra Blanca. Washington (17 .3 kg), Ferry Building, San Francisco (about 7 kg), Chicago (550 g), New York (315 g), Ann Arbor (165 g). The original mass evidently weighed at least Sierra Gorda, Antofagasta, Chile 26 kg. 22°54's, 69°21 'w Hexahedrite, H. Single crystal larger than 14 em. Decorated Neu DESCRIPTION mann bands. HV 205± 15. According to Roy S. Clarke (personal communication) Group IIA . 5.48% Ni, 0.5 3% Co, 0.23% P, 61 ppm Ga, 170 ppm Ge, the main mass now weighs 16.3 kg and measures 22 x 15 x 43 ppm Ir. 13 em. A large end piece of 7 kg and several slices have been removed, leaving a cut surface of 17 x 10 em. The mass has HISTORY a relatively smooth domed surface (22 x 15 em) overlying a A mass was found at the coordinates given above, on concave surface with irregular depressions, from a few em the railway between Calama and Antofagasta, close to to 8 em in length. There is a series of what appears to be Sierra Gorda, the location of a silver mine (E.P. Henderson chisel marks around the center of the domed surface over 1939; as quoted by Hey 1966: 448). Henderson (1941a) an area of 6 x 7 em. Other small areas on the edges of the gave slightly different coordinates and an analysis; but since specimen could also be the result of hammering; but the he assumed Sierra Gorda to be just another of the North damage is only superficial, and artificial reheating has not Chilean hexahedrites, no further description was given. -
Zinc and Copper Isotopic Fractionation During Planetary Differentiation Heng Chen Washington University in St
Washington University in St. Louis Washington University Open Scholarship Arts & Sciences Electronic Theses and Dissertations Arts & Sciences Winter 12-15-2014 Zinc and Copper Isotopic Fractionation during Planetary Differentiation Heng Chen Washington University in St. Louis Follow this and additional works at: https://openscholarship.wustl.edu/art_sci_etds Part of the Earth Sciences Commons Recommended Citation Chen, Heng, "Zinc and Copper Isotopic Fractionation during Planetary Differentiation" (2014). Arts & Sciences Electronic Theses and Dissertations. 360. https://openscholarship.wustl.edu/art_sci_etds/360 This Dissertation is brought to you for free and open access by the Arts & Sciences at Washington University Open Scholarship. It has been accepted for inclusion in Arts & Sciences Electronic Theses and Dissertations by an authorized administrator of Washington University Open Scholarship. For more information, please contact [email protected]. WASHINGTON UNIVERSITY IN ST. LOUIS Department of Earth and Planetary Sciences Dissertation Examination Committee: Bradley L. Jolliff, Chair Jeffrey G. Catalano Bruce Fegley, Jr. Michael J. Krawczynski Frédéric Moynier Zinc and Copper Isotopic Fractionation during Planetary Differentiation by Heng Chen A dissertation presented to the Graduate School of Arts & Sciences of Washington University in partial fulfillment of the requirements for the degree of Doctor of Philosophy December 2014 St. Louis, Missouri Copyright © 2014, Heng Chen All rights reserved. Table of Contents LIST OF FIGURES -
Handbook of Iron Meteorites, Volume 2 (Canyon Diablo, Part 2)
Canyon Diablo 395 The primary structure is as before. However, the kamacite has been briefly reheated above 600° C and has recrystallized throughout the sample. The new grains are unequilibrated, serrated and have hardnesses of 145-210. The previous Neumann bands are still plainly visible , and so are the old subboundaries because the original precipitates delineate their locations. The schreibersite and cohenite crystals are still monocrystalline, and there are no reaction rims around them. The troilite is micromelted , usually to a somewhat larger extent than is present in I-III. Severe shear zones, 100-200 J1 wide , cross the entire specimens. They are wavy, fan out, coalesce again , and may displace taenite, plessite and minerals several millimeters. The present exterior surfaces of the slugs and wedge-shaped masses have no doubt been produced in a similar fashion by shear-rupture and have later become corroded. Figure 469. Canyon Diablo (Copenhagen no. 18463). Shock The taenite rims and lamellae are dirty-brownish, with annealed stage VI . Typical matte structure, with some co henite crystals to the right. Etched. Scale bar 2 mm. low hardnesses, 160-200, due to annealing. In crossed Nicols the taenite displays an unusual sheen from many small crystals, each 5-10 J1 across. This kind of material is believed to represent shock annealed fragments of the impacting main body. Since the fragments have not had a very long flight through the atmosphere, well developed fusion crusts and heat-affected rim zones are not expected to be present. The energy responsible for bulk reheating of the small masses to about 600° C is believed to have come from the conversion of kinetic to heat energy during the impact and fragmentation. -
Physical and Dynamical Properties of the Unusual V-Type Asteroid (2579) Spartacus Dagmara Oszkiewicz1, Agnieszka Kryszczynska´ 1, Paweł Kankiewicz2, Nicholas A
A&A 623, A170 (2019) Astronomy https://doi.org/10.1051/0004-6361/201833641 & © ESO 2019 Astrophysics Physical and dynamical properties of the unusual V-type asteroid (2579) Spartacus Dagmara Oszkiewicz1, Agnieszka Kryszczynska´ 1, Paweł Kankiewicz2, Nicholas A. Moskovitz3, Brian A. Skiff3, Thomas B. Leith3, Josef Durechˇ 4, Ireneusz Włodarczyk5, Anna Marciniak1, Stefan Geier6,7, Grigori Fedorets8, Volodymyr Troianskyi1,9, and Dóra Föhring10 1 Astronomical Observatory Institute, Faculty of Physics, A. Mickiewicz University, Słoneczna 36, 60-286 Poznan,´ Poland e-mail: [email protected] 2 Institute of Physics, Astrophysics Division, Jan Kochanowski University, Swietokrzyska 15, 25-406 Kielce, Poland 3 Lowell Observatory, 14000 W Mars Hill Road, 86001 Flagstaff, AZ, USA 4 Astronomical Institute, Faculty of Mathematics and Physics, Charles University, V Holešovickáchˇ 2, 18000 Prague 8, Czech Republic 5 Chorzów Astronomical Observatory MPC553, Chorzów, Polish Amateur Astronomical Society, Powstancow Wlkp. 34, 63-708 Rozdrazew, Poland 6 Gran Telescopio Canarias (GRANTECAN), Cuesta de San José s/n, 38712 Breña Baja, La Palma, Spain 7 Instituto de Astrofísica de Canarias, Vía Láctea s/n, 38200 La Laguna, Tenerife, Spain 8 Department of Physics, Gustaf Hällströmin katu 2a, PO Box 64, 00014 University of Helsinki, Finland 9 Astronomical Observatory of Odessa I.I. Mechnikov National University, Marazlievskaya 1v, 65014 Odessa, Ukraine 10 Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822, USA Received 14 June 2018 / Accepted 6 February 2019 ABSTRACT Context. Asteroid (2579) Spartacus is a small V-type object located in the inner main belt. This object shows spectral characteristics unusual for typical Vestoids, which may indicate an origin deeper than average within Vesta or an origin from an altogether different parent body. -
September 17, 2010 -- Oregon's Sixth Meteorite, Named Fitzwater Pass
NEWS RELEASE EMBARGOED UNTIL 1 PM P.S.T., SEPTEMBER 27, 2010 By: Alex Ruzicka, Melinda Hutson, Dick Pugh Source: Cascadia Meteorite Laboratory, Department of Geology, Portland State University, 503- 725-3372, email [email protected] Oregon’s sixth meteorite, named Fitzwater Pass, is discovered to be a rare type of iron. (Portland, Ore.) – September 27, 2010 After spending over 30 years in a Folgers coffee can, a thumb-sized chunk of metal has been identified by researchers as a rare type of iron meteorite. Named Fitzwater Pass, this meteorite adds to five other known meteorites from Oregon. Previous meteorites include Sam’s Valley (found 1894), Willamette (found 1902), Klamath Falls (found 1952), Salem (fell 1981), and Morrow County (recognized 2010). Meteorites are named for the nearest geographical feature. The meteorite was found in the early summer of 1976 by Mr. Paul Albertson of Lakeview, Oregon, while hunting for agate and jasper at Fitzwater Pass in south central Oregon with his high school teacher James Bleakney. Mr. Albertson took the 65 gram (2.3 ounce) teardrop-shaped piece of metal to a local rock shop, where a small amount was ground off. He was told by someone at the rock shop that it was probably a piece of nickel ore. Mr. Albertson placed the rock in a Folgers coffee can, where it remained until 2006. The meteorite made it out of the can and into the hands of Dick Pugh, a member of the Cascadia Meteorite Laboratory (CML) at Portland State University, Portland, Oregon, who recognized it as a probable meteorite. -
Exploring the Geology of a New Differentiated Basaltic Asteroid
BUNBURRA ROCKHOLE: EXPLORING THE GEOLOGY OF A NEW DIFFERENTIATED BASALTIC ASTEROID. G.K. Benedix1,7, P.A. Bland1,7, J. M. Friedrich2,3, D.W. Mittlefehldt4, M.E. Sanborn5, Q.-Z. Yin5, R.C. Greenwood6, I.A. Franchi6, A.W.R. Bevan7, M.C. Towner1 and Grace C. Perotta2. 1Dept. Applied Geology, Curtin University, GPO Box U1987, Perth, WA, 6845 Australia ([email protected]), 2Dept. Chem., Fordham University, 441 East Fordham Road, Bronx, NY 10458 USA, 3Dept. Earth & Planetary Sciences, American Museum of Natural History, New York, NY 10024, USA, 4NASA/Johnson Space Center, Houston, TX, USA, 5Dept. of Earth and Planetary Sciences, University of California at Davis, Davis, CA 95616, USA, 6Planetary & Space Sci., The Open University, Milton Keynes, MK7 6AA, UK, 7Western Australia Museum, Locked Bag 49, Welshpool, WA, 6986, Australia. Introduction: Bunburra Rockhole (BR) is the first versity for chemical analysis. Four of these were ana- recovered meteorite of the Desert Fireball Network [1]. lysed for major and trace elements and two for trace It was initially classified as a basaltic eucrite, based on elements only. Two of these subsamples (A/1 and texture, mineralogy, and mineral chemistry [2] but C/A/2) were analysed at UC Davis to investigate the Cr subsequent O isotopic analyses showed that BR’s isotopic systematics. Homogenized powders from the composition lies significantly far away from the HED two chips were dissolved in Parr bombs for a 96 hour group of meteorites (fig. 1) [1]. This suggested that period at 200°C to insure complete dissolution of re- BR was not a piece of the HED parent body (4 Vesta), fractory minerals such as spinel. -
The Thermal Conductivity of Meteorites: New Measurements and Analysis
This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution and sharing with colleagues. Other uses, including reproduction and distribution, or selling or licensing copies, or posting to personal, institutional or third party websites are prohibited. In most cases authors are permitted to post their version of the article (e.g. in Word or Tex form) to their personal website or institutional repository. Authors requiring further information regarding Elsevier’s archiving and manuscript policies are encouraged to visit: http://www.elsevier.com/copyright Author's personal copy Icarus 208 (2010) 449–454 Contents lists available at ScienceDirect Icarus journal homepage: www.elsevier.com/locate/icarus The thermal conductivity of meteorites: New measurements and analysis C.P. Opeil a, G.J. Consolmagno b,*, D.T. Britt c a Department of Physics, Boston College, Chestnut Hill, MA 02467-3804, USA b Specola Vaticana, V-00120, Vatican City State c Department of Physics, University of Central Florida, Orlando, FL 32816-2385, USA article info abstract Article history: We have measured the thermal conductivity at low temperatures (5–300 K) of six meteorites represent- Received 6 October 2009 ing a range of compositions, including the ordinary chondrites Cronstad (H5) and Lumpkin (L6), the Revised 21 January 2010 enstatite chondrite Abee (E4), the carbonaceous chondrites NWA 5515 (CK4 find) and Cold Bokkeveld Accepted 23 January 2010 (CM2), and the iron meteorite Campo del Cielo (IAB find). All measurements were made using a Quantum Available online 1 February 2010 Design Physical Properties Measurement System, Thermal Transport Option (TTO) on samples cut into regular parallelepipeds of 2–6 mm dimension. -
The Origin and History of Ordinary Chondrites: a Study by Iron Isotope Measurements of Metal Grains from Ordinary Chondrites
Available online at www.sciencedirect.com Geochimica et Cosmochimica Acta 72 (2008) 4440–4456 www.elsevier.com/locate/gca The origin and history of ordinary chondrites: A study by iron isotope measurements of metal grains from ordinary chondrites K.J. Theis a,*, R. Burgess a, I.C. Lyon a, D.W. Sears b a School of Earth, Atmospheric and Environmental Sciences, The University of Manchester, Manchester M13 9PL, UK b Arkansas Center for Space and Planetary Science and Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA Received 15 August 2007; accepted in revised form 30 May 2008; available online 14 June 2008 Abstract Chondrules and chondrites provide unique insights into early solar system origin and history, and iron plays a critical role in defining the properties of these objects. In order to understand the processes that formed chondrules and chondrites, and introduced isotopic fractionation of iron isotopes, we measured stable iron isotope ratios 56Fe/54Fe and 57Fe/54Fe in metal grains separated from 18 ordinary chondrites, of classes H, L and LL, ranging from petrographic types 3–6 using multi-col- lector inductively coupled plasma mass spectrometry. The d56Fe values range from À0.06 ± 0.01 to +0.30 ± 0.04& and d57Fe values are À0.09 ± 0.02 to +0.55 ± 0.05& (relative to IRMM-014 iron isotope standard). Where comparisons are possible, these data are in good agreement with published data. We found no systematic difference between falls and finds, suggesting that terrestrial weathering effects are not important in controlling the isotopic fractionations in our samples. -
Sulfides in Enstate Chondrites
Sulfides in Enstatite Chondrites: Indicators of Impact History Kristyn Hill1,2, Emma Bullock2, Cari Corrigan2, and Timothy McCoy2 1Lock Haven University of Pennsylvania, Lock Haven, PA 17745, USA 2National Museum of Natural History, Department of Mineral Sciences, Washington D.C. 20013, USA Introductton Results Discussion Enstatite chondrites are a class of meteorites. They are Determining the history of the parent body of a referred to as chondrites because of the spherical Impact Melt, Slowly Cooled chondritic meteorite often includes distinguishing whether chondrules found in the matrix of the meteorites. Enstatite aa bb cc d d or not the meteorite was impact melted, and the cooling chondrites are the most highly reduced meteorites and rate. contain iron-nickel metal and sulfide bearing minerals. The Impact melts are distinguishable by the texture of the matrix is made up of silicates, enstatite in particular. There metal and sulfide assemblages. A meteorite that was are usually no oxides found, which supports the idea that impact melted will contain a texture of euhedral to these formed in very oxygen poor environments. The subhedral silicates, like enstatite, protruding into the metal enstatite chondrites in this study are type 3, meaning they or sulfides (figure 2). Some textures will look shattered are unmetamorphosed and not affected by fluids. (figure 2b). Meteorites that contain the mineral keilite are Studying enstatite chondrites will help us determine the PCA 91125 ALHA 77156 PCA 91444 PCA 91085 also an indicator of impact melts (figure 3). Keilite only evolution of their parent bodies which formed at the occurs in enstatite chondrite impact-melt rocks that cooled beginning of our solar system. -
Finegrained Precursors Dominate the Micrometeorite Flux
Meteoritics & Planetary Science 47, Nr 4, 550–564 (2012) doi: 10.1111/j.1945-5100.2011.01292.x Fine-grained precursors dominate the micrometeorite flux Susan TAYLOR1*, Graciela MATRAJT2, and Yunbin GUAN3 1Cold Regions Research and Engineering Laboratory, 72 Lyme Road, Hanover, New Hampshire 03755–1290, USA 2University of Washington, Seattle, Washington 98105, USA 3Geological & Planetary Sciences MC 170-25, Caltech, Pasadena, California 91125, USA *Corresponding author. E-mail: [email protected] (Received 15 May 2011; revision accepted 22 September 2011) Abstract–We optically classified 5682 micrometeorites (MMs) from the 2000 South Pole collection into textural classes, imaged 2458 of these MMs with a scanning electron microscope, and made 200 elemental and eight isotopic measurements on those with unusual textures or relict phases. As textures provide information on both degree of heating and composition of MMs, we developed textural sequences that illustrate how fine-grained, coarse-grained, and single mineral MMs change with increased heating. We used this information to determine the percentage of matrix dominated to mineral dominated precursor materials (precursors) that produced the MMs. We find that at least 75% of the MMs in the collection derived from fine-grained precursors with compositions similar to CI and CM meteorites and consistent with dynamical models that indicate 85% of the mass influx of small particles to Earth comes from Jupiter family comets. A lower limit for ordinary chondrites is estimated at 2–8% based on MMs that contain Na-bearing plagioclase relicts. Less than 1% of the MMs have achondritic compositions, CAI components, or recognizable chondrules. Single mineral MMs often have magnetite zones around their peripheries. -
Early Fracturing and Impact Residue Emplacement: Can Modelling Help to Predict Their Location in Major Craters?
Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? Item Type Proceedings; text Authors Kearsley, A.; Graham, G.; McDonnell, T.; Bland, P.; Hough, R.; Helps, P. Citation Kearsley, A., Graham, G., McDonnell, T., Bland, P., Hough, R., & Helps, P. (2004). Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters?. Meteoritics & Planetary Science, 39(2), 247-265. DOI 10.1111/j.1945-5100.2004.tb00339.x Publisher The Meteoritical Society Journal Meteoritics & Planetary Science Rights Copyright © The Meteoritical Society Download date 23/09/2021 21:19:20 Item License http://rightsstatements.org/vocab/InC/1.0/ Version Final published version Link to Item http://hdl.handle.net/10150/655802 Meteoritics & Planetary Science 39, Nr 2, 247–265 (2004) Abstract available online at http://meteoritics.org Early fracturing and impact residue emplacement: Can modelling help to predict their location in major craters? Anton KEARSLEY,1* Giles GRAHAM,2 Tony McDONNELL,3 Phil BLAND,4 Rob HOUGH,5 and Paul HELPS6 1Department of Mineralogy, The Natural History Museum, Cromwell Road, London SW7 5BD, UK 2Institute of Geophysics and Planetary Physics, Lawrence Livermore National Laboratory, California, USA 3Planetary and Space Sciences Research Institute, The Open University, Milton Keynes, MK7 6AA, UK 4Department of Earth Science and Engineering, Imperial College London, London SW7 2AZ, UK 5Museum of Western Australia, Francis Street, Perth, Western Australia 6000, Australia 6School of Earth Sciences and Geography, Kingston University, Kingston-upon-Thames, Surrey, KT1 2EE, UK *Corresponding author. E-mail: [email protected] (Received 30 June 2003; revision accepted 15 December 2003) Abstract–Understanding the nature and composition of larger extraterrestrial bodies that may collide with the Earth is important. -
Trace Element Inventory of Meteoritic Ca-Phosphates
American Mineralogist, Volume 102, pages 1856–1880, 2017 Trace element inventory of meteoritic Ca-phosphates DUSTIN WARD1,*, ADDI BISCHOFF1, JULIA ROSZJAR2, JASPER BERNDT3, AND MARTIN J. WHITEHOUSE4 1Institut für Planetologie, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Str. 10, 48149 Münster, Germany 2Department of Mineralogy and Petrography, Natural History Museum Vienna, Burgring 7, 1010 Vienna, Austria 3Institut für Mineralogie, Westfälische Wilhelms-Universität Münster, Corrensstrasse 24, 48149 Münster, Germany 4Department of Geosciences, Swedish Museum of Natural History, Box 50007, 10405 Stockholm, Sweden ABSTRACT Most extraterrestrial samples feature the two accessory Ca-phosphates (apatite-group minerals and merrillite), which are important carrier phases of the rare earth elements (REE). The trace-element concentrations (REE, Sc, Ti, V, Cr, Mn, Co, As, Rb, Sr, Y, Zr, Nb, Ba, Hf, Ta, Pb, Th, and U) of se- lected grains were analyzed by LA-ICP-MS and/or SIMS (REE only). This systematic investigation includes 99 apatite and 149 merrillite analyses from meteorites deriving from various asteroidal bodies including 1 carbonaceous chondrite, 8 ordinary chondrites, 3 acapulcoites, 1 winonaite, 2 eucrites, 5 shergottites, 1 ureilitic trachyandesite, 2 mesosiderites, and 1 silicate-bearing IAB iron meteorite. Although Ca-phosphates predominantly form in metamorphic and/or metasomatic reactions, some are of igneous origin. As late-stage phases that often incorporate the vast majority of their host’s bulk REE budget, the investigated Ca-phosphates have REE enrichments of up to two orders of magnitude compared to the host rock’s bulk concentrations. Within a single sample, each phosphate species displays a uniform REE-pattern, and variations are mainly restricted to their enrichment, therefore indicating similar formation conditions.