bioRxiv preprint doi: https://doi.org/10.1101/786145; this version posted September 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. A phased, diploid assembly of the Cascade hop (Humulus lupulus) genome reveals patterns of selection and haplotype variation Lillian K. Padgitt-Cobb1, Sarah B. Kingan2, Jackson Wells3, Justin Elser6, Brent Kronmiller3, Daniel Moore4, Gregory Concepcion2, Paul Peluso2, David Rank2, Pankaj Jaiswal6, John Henning4*, David A. Hendrix1,5* 1 Department of Biochemistry and Biophysics, Oregon State University 2 Pacific Biosciences of California, 3 CGRB, Oregon State University 4 USDA ARS 5 School of Electrical Engineering and Computer Science, Oregon State University 6 Department of Botany and Plant Pathology, Oregon State University * to whom correspondence should be addressed:
[email protected],
[email protected] bioRxiv preprint doi: https://doi.org/10.1101/786145; this version posted September 28, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY 4.0 International license. Abstract Hop (Humulus lupulus L. var Lupulus) is a diploid, dioecious plant with a history of cultivation spanning more than one thousand years. Hop cones are valued for their use in brewing, and around the world, hop has been used in traditional medicine to treat a variety of ailments.