Florida State University Libraries

Total Page:16

File Type:pdf, Size:1020Kb

Florida State University Libraries Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School Coordination Complexes and Coordination Polymers of the Lanthanides aJosnepdh M A. Spcetrliinng ides Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES COORDINATION COMPLEXES AND COORDINATION POLYMERS OF THE LANTHANIDES AND ACTINIDES By JOSEPH M. SPERLING A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2020 Joseph M. Sperling defended this dissertation on March 9, 2020 The members of the supervisory committee were: Thomas E. Albrecht-Schmitt Professor Directing Dissertation Peter G. Fajer University Representative Kenneth Hanson Committee Member Albert E. Stiegman Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii This is dedicated to my family, Megan, the trill gang, and everyone that has helped me iii ACKNOWLEDGMENTS I could potentially write another full dissertation in this section here. There are so many people who I think deserve acknowledgements in this dissertation. It seems most natural to do this chronologically. First off, I would like to thank my mother Kathy Lien for all of the love and support. Thank you for the countless hours of sanity walk phone calls throughout my whole collegiate career. Thank you for listening to all of my rambling about science and so forth. Thank you for spoiling the hell out of me and giving me so much advice. Thank you for encouraging me to try a second time to get into a college with a 92% acceptance rate. Thank you for being my outlet for getting news to and from the rest of the family during my time here and Florida. You’ve always been my number 1 fan. Love my mom. I would like to thank my father Chaun Sperling for the amazing amount of help during my graduate school career. It means so much to me and I couldn’t have gotten through graduate school without you. I love you. I would like to thank my father Steve Gerring. You have done so much for me and are so caring. You challenge me with all sorts of questions about my work and I appreciate it a lot. Thank you so much for putting me to work at the car wash, that is where I started to truly build my work ethic which is a large role on how I have gotten me this far. I love you thank you for everything. Thank you to my older sister Crystal Hauge, her husband Luke Hauge, and their son, my nephew, Nazareth Joseph Hauge. Crissy you have taught me so much over the years and are such a wonderful sister. You have been such a wonderful role model to me. Thank you for the years of laughs, great memories, tremendous amount of support, and finding a hilarious and kind husband. I love you both. Nazareth, I am so proud of you, you are stronger than I could ever be and you have taught the family so much. It was such an honor to meet you and your uncle Joe loves you very much. I must thank my older brothers iv Matt and Stevie Gerring and their families Tamara, Ashlyn, Avery, Stacy, Skylar, Rylee, and Gracelyn for the love and support. Thank you to my younger siblings Sunny and Jake Gerring. You two rock socks. Sunny thank you for being such a good helper. You stayed up with me until three in the morning putting together furniture when I moved here in Florida and it was so nice of you. Jake, you are a memester. You are hilarious and brilliant. It has been so awesome seeing you enjoy the same things I enjoy. I love you both very much and I wish I could be there more often to watch you two grow up. Thank you for comic relief and for testing my patience when you two disrespect mom and dad. I would like to thank my paternal grandparents Bob and Jen Sperling. I would have had to drop out of undergrad if it weren’t for you two. Words can’t express how thankful I am for you both. I’ll never forget our phone calls and am honored of how proud you two were of me. I wish you both could be there to see how far I have come. I love you both. I want to thank my maternal grandparents Vern and Lindy Lien. Thank you so much for the love and support and I am honored to be your grandson. I want to thank my maternal great-grandmothers Lorraine and Nanna I love you both and wish you both could see me now. Nanna you always said that I would be in the books when I was a very young toddler when I was reciting dinosaurs and football players for the family I guess if journal articles or dissertations count you were totally right. I want to thank my grandma Gerring you are such a sweet person and I love you very much. I want to thank my uncle and aunt Ken and Jill Lien and the G’s (Gabby, Gavin, Gwyneth, Greta, Gareth, and Gabe) you all have given me so much when the kids all gave me money as a congratulations gift on my way to move here to Florida, it was one of the sweetest things I have ever seen children do. Thank you to my other uncle Kevin and his kids Elliott and Emily. It is always nice talking to you and joking around. Thank you for all of the support. v Secondly, I would like to thank the Trill Gang. Cody Triplett, Alexis Will, Nicky Lawler, Dylan Schaufler, Josh Smith, Nick and Nate Ziegelmann, Chris and Daryn Salveson, Adam and Tara Dahlstrom, Clay and Jessa Rosine, Jake Stejskal, Dylan and Ashley Lengyel, and Tyler Dahl. Thank you so much for the wonderful memories throughout high school and undergrad. So many dank memes have been made. Laughing is a good thing to do I guess. Thank you for all the support throughout the years. Thank you for those of you that have visited me here in Florida. Stage 3. I would also like to thank some of the educators throughout high school and undergrad. Thank you to the Principle Mary James for not kicking me out of high school and for letting me hang out in your office senior year. You saw my potential and pushed me, Go Irish. I would like to thank professors Sarah Petitto, Latha Ramakrishnan, and Tamara Leenay for the support and all of the hard work for writing letters of recommendation I could not be here without you. I also owe a very great thanks to Dr. Don Neu. If it weren’t for you, I would not be in graduate school. I feel like I was kind of an underdog and you immediately saw my potential and brought me under your wing. Thank you for letting me sit in on your inorganic class because that is where I fell in love with the subject. You got me interested in the field I am working in today with the combination of f-element knowledge and nuclear chemistry knowledge you have. I can’t thank you enough for all of the help you have given me. You are a great mentor and friend. I would like to thank the Schminions past and present that I have been in the lab with. Thank you, Dr. Dave Hobart, Dr. Vanessa Proust, Renaud Jeannin, Dr. Cory Windorff, Dr. Cristian Celis-Barros, Dr. Mark Silver, Ali Arico, Dr. Shane Galley, Kevin Seidler, Dr. Matt Marsh, Dr. Frankie White, Dr. David Dan, Dr. Sasha Chemey, Alyssa Gaiser, Evan Warzecha, Ryan Greer, Bonnie Klamm, Brian Long, David Meeker, Joanna Campbell, Todd Poe, Zach Huffman, Zhuanling Bai, James Larson, and Nick Williams for keeping work fun, safe, and intellectually vi stimulating. A special thanks to Shane for training me on how to do hotwork, you are a great friend. Thank you to my past and present undergraduate students Megan Whitefoot, Jacob Branson, and Mason Swindel for asking wonderful questions and helping me with various projects. I would also like to thank my committee, Dr. Ken Hanson, Dr. Albert Stiegman, and Dr. Piotr Fajer. Without a committee, there is no Ph.D. Thank you to The United States Department of Energy (DOE) for making the Energy Frontier Research Center, Center for Actinide Science and Technology (CAST) possible under the Award Number DE-SC0016568. It has been a wonderful honor to be affiliated with CAST during the majority of my graduate career and getting the opportunity to participate in a number of EFRC related meetings. Of course, I would like to thee Da Bo$$ Prof. Dr. Glenn T. Seaborg Award Winner Thomas E. Albrecht-Schmitt. Thank you for all of the support and advice. You are a very understanding and I am honored to be part of your lab for these last few years. Sometimes it is overwhelming how much I have learned and done because of you. Because of you, this small-town boy was able to do so many things from seeing a massive amount of berkelium be separated from californium at Oak Ridge to meeting Yuri Oganessian at a conference in Northern Germany. I am forever greatful, you have made the actual graduate school the most rewarding and most enjoyable part of graduate school.
Recommended publications
  • Chemists and Physicists Behaving Badly: the Shadow Side of Two Elemental Discoveries Volume 23, Issue 3 (2020), P
    Comptes Rendus Chimie Marco Fontani, Mary Virginia Orna and Mariagrazia Costa Chemists and physicists behaving badly: The shadow side of two elemental discoveries Volume 23, issue 3 (2020), p. 231-241. <https://doi.org/10.5802/crchim.1> Part of the Thematic Issue: Variations around the Periodic Table Guest editors: Pierre Braunstein (Université de Strasbourg, Académie des sciences) and Robert Guillaumont (Académie des sciences) © Académie des sciences, Paris and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Les Comptes Rendus. Chimie sont membres du Centre Mersenne pour l’édition scientifique ouverte www.centre-mersenne.org Comptes Rendus Chimie 2020, 23, nO 3, p. 231-241 https://doi.org/10.5802/crchim.1 Variations around the Periodic Table/ Variations autour du tableau périodique Chemists and physicists behaving badly: The shadow side of two elemental discoveries Des chimistes, et leurs mauvaises habitudes , a b a Marco Fontani¤ , Mary Virginia Orna and Mariagrazia Costa a Dipartimento di Chimica “Ugo SchiV”, Università degli Studi di Firenze, Italy b College of New Rochelle, New Rochelle, NY, USA E-mails: marco.fontani@unifi.it (M. Fontani), [email protected] (M. V. Orna) Abstract. It is appropriate to recall that 2019 was the year dedicated to the Periodic Table. But when we speak about false elements – in the aftermath of the celebrations marking this year, – we are greeted most warmly, but with some puzzlement, as to how it came to mind to celebrate “Mendeleev’s creature” in such a peculiar way, that is, by commemorating elements that never existed.
    [Show full text]
  • How Basic Science Drives Technological Progress — and Vice Versa —
    How Basic Science Drives Technological Progress | And Vice Versa | Sheldon Lee Glashow Metcalf Professor of Science & Mathematics Boston University Higgins Professor of Physics, Emeritus Harvard University February, 2017 BRIDGES Dialogues Toward a Culture of Peace Discoveries Can Be Intentional or Accidental Some technological advances, such as X-Rays and Penicillin, arose from research that was unplanned and not directed toward any specific goal. These discoveries were unexpected and stumbled upon by accident. Others, like Streptomycin and Nuclear Weapons, resulted from carefully planned and specifically targeted research. The History of Science proves both methods to be essential... ... a fact that must be borne in mind by aspiring scientists and by governmental, academic and industrial agencies seeking to foster scientific and technological progress. Immanuel Kant Versus The Princes of Serendip Some scientists focus on well-defined goals: first they lay careful plans, then they look. They follow the so-called scientific method. I call this the Kantian approach to discovery. Others have more fun: They look & listen to Nature with open minds, and sometimes discover amazing things. I call this the Serendipitous approach, like Columbus's `discovery' of America but unlike Magellan's successful plan to circumnavigate the globe. The two approaches often mix. Many Kantial efforts yield surprisimg discoveries. TNT was synthesized in 1863 and used as a yellow dye for 28 years until its value as an explosive was recognized. THALIDOMIDE, originally a sedative in the 1950s, led to a medical disaster. Much later it was found effective for treating cancer and leprosy! Pure Science Versus Applied Science Basic Research can proceed either by Kantian (intentional) or Serendipitous (accidental) means, but there is a second dichotomy.
    [Show full text]
  • Lise Meitner 1878 – 1968
    Discoveries that changed the world: 1932 – 1942 James Chadwick 1891 – 1974 Lise Meitner 1878 – 1968 I „The road to the neutron“ Staff and research students at the Cavendish Laboratory, Cambridge, 1923. (Names from left to right. Front row: J. Chadwick, G. Stead, F.W. Aston, Prof. Sir J. J. Thomson, Prof. Sir E. Rutherford, J.A. Crowther, Miss B. Trevelyan, G.I. Taylor, Second row: P. Kapitza, H. de W. Smyth, T. Alty, J.E. Crackston, H. Robinson, L.F. Curtiss, E.S. Bieler, A.G.D. West, P. Mercier. Back row: P.M.S. Blackett, R.E. Clay, H.W.B. Skinner, H.D. Griffith, A.W. Barton, L.F. Bates, J.S. Rogers, K.G. Emeleus.) The room which Rutherford and Chadwick used for their scattering experiments in the 1920s. The work was carried out in the dark, often to the accompaniment of Rutherford singing „Onward Christian Soldiers“. Rutherford had already proposed the neutron in 1920 in his Bakerian Lecture at the Royal Society. He talked about a “neutral doublet” (at that time considered a proton and electron) that could be difficult to detect and move easily through matter. Curie & Joliot published (incorrectly) in Jan. 1932 the observation: 9Be + 4He → 12C + 1n I. Curie and F. Joliot, C. R. Acad. Sci. Paris 194, 273 (1932) When the radiation was passed through wax the ionisation increased! This increase was due to knock-on protons. To explain this the Curie’s suggested that the emission was of a 55 MeV γ ray, an energy much greater than anything yet seen! Moreover, the radiation also passed through lead This experiment was first performed in 1930 by Walter Bothe and Herbet Becker at U.
    [Show full text]
  • Chemical Elements
    D.N. Trifonov and V D. Trifonov CHEMICAL ELEMENTS HOW THEY WERE DISCOVERED Moscow Period* A I B MENDELEEV'S PERIODIC OF TH E ELE MEN 1 H A II B A III B A IV B A Vl 3 Li 4 Be sB eC 7 N " 6.94 9.01218 10.81 12.011 2s2 2pJ 14.0067 2 2l' 2p' ta Lithium Beryllium Boron Carbon Nitrogen 11 Na 12 Mg 13 Al 14 Si 15 P 1 22.98977 24.305 26 98,54 30.9737 » 3 3s1 3i* 3.'V Sodium Magnesium Aluminium Silicon Phoaphorui 19 K 20 Ca 21 Sc 22 Ti 4790 3 j 39.09, 4i, 40.08 , , 44.9559 Jd, W * 30 4S Potassium Calcium Scandium Titanium Van! 4 29 CU 30 Zn 31 Ga 32 Ge 33 AS J 63 54 65.38 69.72 , , 725» *.24p' 74.9216 | «. , • 3d*°4»2 Copper Zinc Gallium Germanium Arsenic ,] 37 Rb 38 Sr 39 Y 40 Zr 4| 85.467s 87.62 < 2 88.9059 9,22 5s1 j(> w Ss 4dw Rubidium Strontium Yttrium Zirconium 5 4 47 Ag 48 Cd 49 In so Sn 51 Sb i H2.40 mM H8.69 121.7 |j 5..5P- 5.' 5p2 S Silver Cadmium Indium Tin Antimony 55 CS 56 Ba 57 La* 72 Hf 132.9054 137.34 6V _ . 138.905s 5di«.» Hatnium Cesium Barium Lanthanum 6 79 AU so Hg 81 Tl 82 Pb 83 Bi I 20059 207.2 196.9665 «28p2 208.9804 J M'06*' Gold Mercury Thallium Lead Bismuth | 87 Fr 88 Ra 89 AC** 104 Ku 105 ff 7 (223J 226.0254 6dW 122') sa.7,2 [2611 Francium Radium Actinium Kurchatovium (NilStKH * LANTHANIDES 58Ce6>! 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64& 140.12 so' 140.907 144.24 , , (145) 1504 .
    [Show full text]
  • Nuclear Fission
    NUCLEAR FISSION Dr. ANANT KUMAR SINHA ASSOCIATE PROFESSOR DEPTT. OF PHYSICS A.M. COLLEGE, GAYA CONTENTS History Introduction Fission Chain Reaction Nuclear Reactor Applications HISTORY OF NUCLEAR FISSION HISTORY: After James Chadwick discovered the neutron in 1932. Enrico Fermi and his colleagues in Rome studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which the group dubbed Ausonium and Hesperium respectively. However, not all were convinced by Fermi's analysis of his results. NUCLEAR FISSION OF HEAVY ELEMENTS WAS DISCOVERED ON DECEMBER 17, 1938 BY GERMAN OTTO HAHN AND HIS ASSISTANT FRITZ STRASSMANN. Otto Hahn Fritz Strassmann CONT…… Nuclear fission explained theoretically in January 1939 by Lise Meitner and her nephew Otto Robert Frisch. Frisch named the process by analogy with biological fission of living cells. It is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of the fragments. INTRODUCTION TO FISSION REACTION INTRODUCTION: Nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts (lighter nuclei). The fission process often produces free neutrons and gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay. Fission is a form of nuclear transmutation because the resulting fragments are not same element as the original atom. WHEN NEUTRON STRIKES 92U235 CONVERTED TO 92U236 ; CONT…… This process may be represented by the following nuclear equation: 235 1 141 92 1 92U + O n —› 56Ba + 36Kr + 3 0 n + Q Where Q is the energy released in this reaction.
    [Show full text]
  • The Periodic Table's Shadow Side
    The Lost Elements The Periodic Table's Shadow Side Marco Fontani, Mariagrazia Costa, and Mary Virginia Orna OXFORD UNIVERSITY PRESS CONTENTS Preface xv Acknowledgments xvn Note to the Reader xxi Introduction xxm Why Collect into One Volume the Discoveries of Elements that Have Been Shown to be Erroneous or Have Been Forgotten? xxm How "an Element" Became a "Chemical Element" xxiv Is There Any Order to the Discoveries of the Elements? xxvm The Development of the Periodic Table xxx Part I: Before 1789: Early Errors and Early Elements Prologue to Part I 1 I.i. The Beginning of a Long Series of Scientific Blunders 3 I.1.1. Terra Nobilis 3 1.1.2. Siderum and Hydrosiderum 3 1.1.3. Sydneium or Australium 4 1.1.4. The Element That Breathes 6 1.1.5. The Birth of Homeopathy 7 1.2. The Elements Hidden by Alternative Names 12 I. 2.1. Metallum Problematicum or Tellurium 12 I.2.2. Ochroite or Cerium 13 I. 2.3. Ceresium or Palladium 13 I. 2.4. Erythronium, Panchromium or Vanadium 14 Part II: 1789-1869: From Lavoisier to Mendeleev: The First Errors at the Dawn of the Concept of the Chemical Element Prologue to Part II 19 II.1. Analytical Methodology from Lavoisier to Mendeleev 21 II. l.l. Blowpipe Analysis 22 II. 1.2. Qualitative and Quantitative Analysis 23 II. 1.3. Electrolysis 23 II.1.4. Emission Spectroscopy 24 II.2. The Elements of the Kingdom of Naples 27 II.2.1. Ruprecht and Tondi: Two Metallurgists Without Metals 27 II.2.2.
    [Show full text]
  • Episode 3 (Of 3): Into the Atom Broadcast Nationally on Pbs Aug
    THE MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS EPISODE 3 (OF 3): INTO THE ATOM BROADCAST NATIONALLY ON PBS AUG. 19, 2015 Dmitri Mendeleev (identified on screen) works on the Periodic Table, writes down the atomic weights of the elements. NARR: Previously on The Mystery of Matter… HISTORIAN MICHAEL GORDIN VO He figures out something rather extraordinary about the elements. DMITRI MENDELEEV, partly in VO The eye is immediately struck by a pattern within the horizontal rows and the vertical columns. Mendeleev’s first table morphs into the familiar modern Periodic Table. AUTHOR ERIC SCERRI VO He found an absolutely fundamental principle of nature. Humphry Davy (identified on screen) performs an experiment with his voltaic pile. HISTORIAN DAVID KNIGHT VO Somehow the particles of matter have to be glued together to form molecules. What Davy has had is a big idea. Perhaps electricity could be this kind of glue. Marie Curie (identified on screen) sits down at the spectroscope and peers into the eyepiece. NARR: The spectroscope kicked off a whole new round in the discovery of elements. The spectra of four elements appear on screen, along with their names. PHYSICIST DAVID KAISER VO It’s almost like each element has its own bar code. Marie and Pierre enter their lab at night and see vials of radium glowing on the shelves. MARIE TO PIERRE Don’t light the lamps! Look! PHYSICIST DAVID KAISER VO Radioactivity was a sign that the atom itself was unstable. It could break apart. The Mystery of Matter Episode 3: Into the Atom Page 1 © Mystery of Matter Inc.
    [Show full text]
  • Enrico Fermi and the Beginning of Nuclear Physics
    ENRICO FERMI AND THE BEGINNING OF NUCLEAR PHYSICS Joint EPS-SIF International School on Energy – Varenna – 26 July 2017 LUISA CIFARELLI — Centro Fermi, Rome (IT) Società Italiana di Fisica Università & INFN, Bologna (IT) GALILEI NEWTON MAXWELL FERMI 2 How and where it all began … at the Physics Institute of Via Panisperna in Rome W 3 The Physics Institute of Via Panisperna in Rome was built in 1877-1880 by Pietro Blaserna inspired by foreign scientific institutes such as the Cavendish Laboratory in Cambridge 4 · Enrico Fermi was born in Rome in 1901 · He obtained in 1922 his diploma from the Scuola Normale Superiore of Pisa ––––––––––––––––––––––––––– · He was immediately attracted to quantum physics which at the time was not well known in Italy: he spent periods abroad in Göttingen (Max Born) and Leiden (Paul Ehrenfest) in 1923-1924 · In 1924-1926 Fermi was visiting professor of Mathematical Physics at the University of Florence · In 1926 he obtained the first chair of Theoretical Physics in Italy, specially created for him at the University of Rome by Orso Mario Corbino 5 All scores are 30 e lode except Chimica Organica: 30 Preparazioni Chimiche: 30 Disegno a mano libera: 24 · Enrico Fermi was born in Rome in 1901 · He obtained in 1922 his diploma from the Scuola Normale Superiore of Pisa ––––––––––––––––––––––––––– · He was immediately attracted to quantum physics which at the time was not well known in Italy: he spent periods abroad in Göttingen (Max Born) and Leiden (Paul Ehrenfest) in 1923-1924 · In 1924-1926 Fermi was visiting
    [Show full text]
  • Lise Meitner Page 1 of 443
    Lise Meitner Page 1 of 443 Preferred Citation: Sime, Ruth Lewin. Lise Meitner: A Life in Physics. Berkeley: University of California Press, c1996 1996. http://ark.cdlib.org/ark:/13030/ft6x0nb4fk/ Lise Meitner A Life in Physics Ruth Lewin Sime UNIVERSITY OF CALIFORNIA PRESS Berkeley · Los Angeles · Oxford © 1997 The Regents of the University of California Preferred Citation: Sime, Ruth Lewin. Lise Meitner: A Life in Physics. Berkeley: University of California Press, c1996 1996. http://ark.cdlib.org/ark:/13030/ft6x0nb4fk/ vii Preface and Acknowledgments It seems to me that I have always known of Lise Meitner. As a child I must have seen her picture in Life , or in The New York Times , or perhaps in the Aufbau , the German refugees' newspaper that my parents and grandmother often read. In America just after World War II, Lise Meitner was a celebrity: the tiny woman who barely escaped the Nazis, the physicist responsible for nuclear fission, "the Jewish mother of the atomic bomb" although she was a Jew by birth, not affiliation, and she had refused to work on the bomb. When I was six, the details didn't matter. To me, she was a hero, like Eleanor Roosevelt. I came back to Meitner thirty years later, in the 1970s, by way of a class I taught at California State University, Sacramento. Then, as now, I was on the chemistry faculty at Sacramento City College, a community college. At the university, I was known as the woman the all-male chemistry department did not want to hire; under such circumstances one becomes, and remains, a file://F:\download\hyotyohjelmat\meitner\Lise Meitner.htm 20.7.2006 Lise Meitner Page 2 of 443 feminist.
    [Show full text]
  • 6. Glenn Seaborg: Venturing Beyond Uranium
    MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS 6. Glenn Seaborg: Venturing Beyond Uranium CHAPTER 1: The Germans Split the Uranium Atom Alignment with the NRC’s National Science Education Standards B: Physical Science Structure of Atoms The nuclear forces that hold the nucleus of an atom together, at nuclear distances, are usually stronger than the electric forces that would make it fly apart. Nuclear reactions convert a fraction of the mass of interacting particles into energy, and they can release much greater amounts of energy than atomic interactions. Fission is the splitting of a large nucleus into smaller pieces. F: Science and Technology in Local, National, and Global Challenges Understanding basic concepts and principles of science and technology should precede active debate about the economics, policies, politics, and ethics of various science- and technology-related challenges. However, understanding science alone will not resolve local, national, or global challenges. Alignment with the Next Generation Science Standards Science and Engineering Practices 8. Obtaining, Evaluating, and Communicating Information Gather, read, and evaluate scientific and/or technical information from multiple authoritative sources, assessing the evidence and usefulness of each source. Disciplinary Core Ideas Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The total number of neutrons plus protons does not change in any nuclear process. On a panel in the host scene, the Periodic Table fills in with all the elements Moseley predicted. CONCEPT IN BRIEF: element HOST In the decades after Harry Moseley’s death, chemists found all the missing elements he had left room for.
    [Show full text]
  • Book of Abstracts Ii Contents
    3rd-INCC Sunday, 18 September 2011 - Friday, 23 September 2011 Città del Mare, Terrasini - Palermo - Sicily -Italy Book of Abstracts ii Contents Fukushima nuclear catastrophe in Japan: its probable influences on the nuclear educational programs and global learnings about this catastrophe .................. 1 Conversion of I2 in ionic forms on the composite materials ”Fizkhimin”TM in water coolant at nuclear power plants ................................... 1 The granular sorbents for passive environment protection system during severe accidents with total loss of power supply at NPPs .......................... 2 The thermal decomposition of CH3131I in a gas flow .................... 3 Assessment of dose to the Irish population arising from anthropogenic radioactivity in the Irish marine environment ................................. 4 Radioanalytical methods: tools in studies of thyrotoxic effects of excessive bromide and perchlorate ions ....................................... 5 Radiopharmacological studies: interaction of antidepressant fluoxetine with thyroid hor- mones metabolism ..................................... 6 Radiometric enzyme assays for iodothyronine deiodinases ................. 6 Ascertainment of changes in thyroid hormones metabolism in white adipose tissue by ra- diometric enzyme assays .................................. 7 Radioecology around a closed uranium mine ......................... 8 Lead radioisotopes in the lower atmosphere associated with natural aerosols . 8 Helium release from aged palladium tritide .........................
    [Show full text]
  • Part 4 Tickling the Tail of the Elephant: the World After Fission
    Part 4 Tickling the Tail of the Elephant: The World After Fission The Word Gets Out (January, 1939) After Christmas, Otto Frisch returned to Copenhagen and told Neils Bohr that Hahn and Strassman had split an atom of uranium with a neutron. Shortly thereafter, Bohr boarded an ocean liner for America; he requested a chalk board be set up in his cabin. At the Fifth Washington Conference on Theoretical Physics in January, 1939, he publicly announced the splitting of the atom, but many of the physicists attending the conference were skeptical. A reporter heard the news, wrote the story and it appeared in newspapers across the country the next day. The Monday morning after the Washington conference, physicist Louis Alvarez was reading the San Francisco Chronicle while having his hair cut when he came across an article buried in the second section saying that two German scientists had split the atom. He bolted from the chair mid-snip and sprinted to the physics building on the U. C. Berkeley campus, spreading the word from lab to lab. Professor Robert Oppenheimer soon grasped the meaning of Hahn and Strassman’s experiment and Meitner and Frisch’s calculations. Within a week there appeared on his blackboard, a crude, but workable drawing for an atomic bomb. In March, Germany occupied the Czech uranium mines and halted exports. Albert Einstein, Rudolph Peierls (pronounced piles), Otto Frisch, Emilio Segré, Franz Simon, Enrico Fermi, Lise Meitner, Leo Szilard, Ernest Wigner, Neils Bohr, and Klaus Fuchs were all refugee scientists fleeing totalitarian rule. Some were Jewish or married to Jews; some had relatives in occupied countries or in concentration camps.
    [Show full text]