Nuclear Fission

Total Page:16

File Type:pdf, Size:1020Kb

Nuclear Fission NUCLEAR FISSION Dr. ANANT KUMAR SINHA ASSOCIATE PROFESSOR DEPTT. OF PHYSICS A.M. COLLEGE, GAYA CONTENTS History Introduction Fission Chain Reaction Nuclear Reactor Applications HISTORY OF NUCLEAR FISSION HISTORY: After James Chadwick discovered the neutron in 1932. Enrico Fermi and his colleagues in Rome studied the results of bombarding uranium with neutrons in 1934. Fermi concluded that his experiments had created new elements with 93 and 94 protons, which the group dubbed Ausonium and Hesperium respectively. However, not all were convinced by Fermi's analysis of his results. NUCLEAR FISSION OF HEAVY ELEMENTS WAS DISCOVERED ON DECEMBER 17, 1938 BY GERMAN OTTO HAHN AND HIS ASSISTANT FRITZ STRASSMANN. Otto Hahn Fritz Strassmann CONT…… Nuclear fission explained theoretically in January 1939 by Lise Meitner and her nephew Otto Robert Frisch. Frisch named the process by analogy with biological fission of living cells. It is an exothermic reaction which can release large amounts of energy both as electromagnetic radiation and as kinetic energy of the fragments. INTRODUCTION TO FISSION REACTION INTRODUCTION: Nuclear fission is either a nuclear reaction or a radioactive decay process in which the nucleus of an atom splits into smaller parts (lighter nuclei). The fission process often produces free neutrons and gamma photons, and releases a very large amount of energy even by the energetic standards of radioactive decay. Fission is a form of nuclear transmutation because the resulting fragments are not same element as the original atom. WHEN NEUTRON STRIKES 92U235 CONVERTED TO 92U236 ; CONT…… This process may be represented by the following nuclear equation: 235 1 141 92 1 92U + O n —› 56Ba + 36Kr + 3 0 n + Q Where Q is the energy released in this reaction. When this is done, the amount of energy typically released in the case of U-235 is around 200MeV (0.00,000,000,003,204 joules). FISSION REACTION OF 92U235 ; FISSION CHAIN REACTION INTRO: "Chain reactions" at that time were a known phenomenon in chemistry, but the analogous process in nuclear physics, using neutrons, had been foreseen as early as 1933 by Szilárd, although Szilárd at that time had no idea with what materials the process might be initiated. Szilárd considered that neutrons would be ideal for such a situation, since they lacked an electrostatic charge. CHAIN REACTION: A chain reaction is a sequence of reactions where a reactive product or by-product causes additional reactions to take place. An atom of uranium-235 to undergo fission by bombarding it with neutrons. Along with barium and krypton, three neutrons are released during the fission process. These neutrons can hit further U-235 atoms and split them, releasing yet more neutrons. This is called a chain reaction. CHAIN REACTION; CONT…… Although the half-life of U-235 is a very long time, if we get enough of the atoms together in one place the chances that any one of them will undergo spontaneous fission is very, very high. Additional Neutrons create a chain reaction, which is controlled by the control rods. Newly created fission neutrons move at about 7% of the speed of light, and even moderated neutrons move at about 8 times the speed of sound. NUCLEAR REACTOR NUCLEAR REACTOR: “The assembly which is used to convert heat generated in nuclear reaction into electrical energy is called Nuclear Reactor.” In a reactor fission reaction produces heat. When fission takes place in atom of uranium or any heavy atom, then energy at the rate of 200MeV per nucleus is produced in form of Kinetic energy of fission fragments. These fast moving fragments besides colliding with one another also collide to uranium atoms. CONT…… Due to collisions kinetic energy gets transformed into heat energy. Heat produced is used to produce steam which in turn rotates the turbine. As a result, turbine rotates the generator which produces electricity. POWER GENERATION THROUGH NUCLEAR REACTOR; WORKING OF REACTOR; Reactor Core; cylindrical tubes in which fuel is kept. Uranium- 92U235 is used asfuel. The quantity of 92U235 in the naturally occurring Uranium is 0.7%. Fuel rods are placed in substances of small atomic weight, such as water, heavy water, carbon etc called moderators. Moderator; is used to slow down the speed of neutrons produced during the fission process to direct them towards the fuel. CONT…… Control rods; number of neutrons produced are controlled because only one neutron has to produce further fission reaction. Control rods are made of cadmium or boron. Chain reaction takes place in the core and produces heat. Temperature rise about 500°C. Steam is produced from this heat and is transported with the help of water or heavy water. Temperature of steam coming out from turbine is about 300°C which is further cooled to produce water again. APPLICATIONS APPLICATIONS: December 20, 1951- Electricity was generated for the first time by a nuclear reactor – A the EBR-I experimental station near Arco, Idaho – initially produced about 100 kW 1956 - world's first commercial nuclear power station in Sellafield, England – initial capacity of 50 MW (later 200 MW) In July 1945, the first atomic explosive device, dubbed "Trinity", was detonated in the New Mexico desert. It was fueled by plutonium created at Hanford. IN AUGUST 1945, TWO MORE ATOMIC DEVICES – "LITTLE BOY", A URANIUM-235 BOMB, AND "FAT MAN", A PLUTONIUM BOMB – WERE USED AGAINST THE JAPANESE CITIES OF HIROSHIMA AND NAGASAKI. CONT…… In August 1945, two more atomic devices – "Little Boy", a uranium-235 bomb, and "Fat Man", a plutonium bomb – were used against the Japanese cities of Hiroshima and Nagasaki. These fission reactions produce new nuclides or elements which are used in medical diagnose and treatments and biological experimentations. Nuclear fission reaction is used to produce energy for nuclear power. It causes nuclear bomb to explode. ADVANTAGES & DISADVANTAGES Advantages Disadvantages It produces Difficult to dispose the tremendous energy radioactive waste from from small amount of nuclear fission nuclear fuel. reaction. Once a fuel added a plant can work for Risks of accidents in years. nuclear reactors. Does not produce High cost of installation greenhouse gases like of nuclear plants. CO2. .
Recommended publications
  • Chemists and Physicists Behaving Badly: the Shadow Side of Two Elemental Discoveries Volume 23, Issue 3 (2020), P
    Comptes Rendus Chimie Marco Fontani, Mary Virginia Orna and Mariagrazia Costa Chemists and physicists behaving badly: The shadow side of two elemental discoveries Volume 23, issue 3 (2020), p. 231-241. <https://doi.org/10.5802/crchim.1> Part of the Thematic Issue: Variations around the Periodic Table Guest editors: Pierre Braunstein (Université de Strasbourg, Académie des sciences) and Robert Guillaumont (Académie des sciences) © Académie des sciences, Paris and the authors, 2020. Some rights reserved. This article is licensed under the Creative Commons Attribution 4.0 International License. http://creativecommons.org/licenses/by/4.0/ Les Comptes Rendus. Chimie sont membres du Centre Mersenne pour l’édition scientifique ouverte www.centre-mersenne.org Comptes Rendus Chimie 2020, 23, nO 3, p. 231-241 https://doi.org/10.5802/crchim.1 Variations around the Periodic Table/ Variations autour du tableau périodique Chemists and physicists behaving badly: The shadow side of two elemental discoveries Des chimistes, et leurs mauvaises habitudes , a b a Marco Fontani¤ , Mary Virginia Orna and Mariagrazia Costa a Dipartimento di Chimica “Ugo SchiV”, Università degli Studi di Firenze, Italy b College of New Rochelle, New Rochelle, NY, USA E-mails: marco.fontani@unifi.it (M. Fontani), [email protected] (M. V. Orna) Abstract. It is appropriate to recall that 2019 was the year dedicated to the Periodic Table. But when we speak about false elements – in the aftermath of the celebrations marking this year, – we are greeted most warmly, but with some puzzlement, as to how it came to mind to celebrate “Mendeleev’s creature” in such a peculiar way, that is, by commemorating elements that never existed.
    [Show full text]
  • How Basic Science Drives Technological Progress — and Vice Versa —
    How Basic Science Drives Technological Progress | And Vice Versa | Sheldon Lee Glashow Metcalf Professor of Science & Mathematics Boston University Higgins Professor of Physics, Emeritus Harvard University February, 2017 BRIDGES Dialogues Toward a Culture of Peace Discoveries Can Be Intentional or Accidental Some technological advances, such as X-Rays and Penicillin, arose from research that was unplanned and not directed toward any specific goal. These discoveries were unexpected and stumbled upon by accident. Others, like Streptomycin and Nuclear Weapons, resulted from carefully planned and specifically targeted research. The History of Science proves both methods to be essential... ... a fact that must be borne in mind by aspiring scientists and by governmental, academic and industrial agencies seeking to foster scientific and technological progress. Immanuel Kant Versus The Princes of Serendip Some scientists focus on well-defined goals: first they lay careful plans, then they look. They follow the so-called scientific method. I call this the Kantian approach to discovery. Others have more fun: They look & listen to Nature with open minds, and sometimes discover amazing things. I call this the Serendipitous approach, like Columbus's `discovery' of America but unlike Magellan's successful plan to circumnavigate the globe. The two approaches often mix. Many Kantial efforts yield surprisimg discoveries. TNT was synthesized in 1863 and used as a yellow dye for 28 years until its value as an explosive was recognized. THALIDOMIDE, originally a sedative in the 1950s, led to a medical disaster. Much later it was found effective for treating cancer and leprosy! Pure Science Versus Applied Science Basic Research can proceed either by Kantian (intentional) or Serendipitous (accidental) means, but there is a second dichotomy.
    [Show full text]
  • Lise Meitner 1878 – 1968
    Discoveries that changed the world: 1932 – 1942 James Chadwick 1891 – 1974 Lise Meitner 1878 – 1968 I „The road to the neutron“ Staff and research students at the Cavendish Laboratory, Cambridge, 1923. (Names from left to right. Front row: J. Chadwick, G. Stead, F.W. Aston, Prof. Sir J. J. Thomson, Prof. Sir E. Rutherford, J.A. Crowther, Miss B. Trevelyan, G.I. Taylor, Second row: P. Kapitza, H. de W. Smyth, T. Alty, J.E. Crackston, H. Robinson, L.F. Curtiss, E.S. Bieler, A.G.D. West, P. Mercier. Back row: P.M.S. Blackett, R.E. Clay, H.W.B. Skinner, H.D. Griffith, A.W. Barton, L.F. Bates, J.S. Rogers, K.G. Emeleus.) The room which Rutherford and Chadwick used for their scattering experiments in the 1920s. The work was carried out in the dark, often to the accompaniment of Rutherford singing „Onward Christian Soldiers“. Rutherford had already proposed the neutron in 1920 in his Bakerian Lecture at the Royal Society. He talked about a “neutral doublet” (at that time considered a proton and electron) that could be difficult to detect and move easily through matter. Curie & Joliot published (incorrectly) in Jan. 1932 the observation: 9Be + 4He → 12C + 1n I. Curie and F. Joliot, C. R. Acad. Sci. Paris 194, 273 (1932) When the radiation was passed through wax the ionisation increased! This increase was due to knock-on protons. To explain this the Curie’s suggested that the emission was of a 55 MeV γ ray, an energy much greater than anything yet seen! Moreover, the radiation also passed through lead This experiment was first performed in 1930 by Walter Bothe and Herbet Becker at U.
    [Show full text]
  • Chemical Elements
    D.N. Trifonov and V D. Trifonov CHEMICAL ELEMENTS HOW THEY WERE DISCOVERED Moscow Period* A I B MENDELEEV'S PERIODIC OF TH E ELE MEN 1 H A II B A III B A IV B A Vl 3 Li 4 Be sB eC 7 N " 6.94 9.01218 10.81 12.011 2s2 2pJ 14.0067 2 2l' 2p' ta Lithium Beryllium Boron Carbon Nitrogen 11 Na 12 Mg 13 Al 14 Si 15 P 1 22.98977 24.305 26 98,54 30.9737 » 3 3s1 3i* 3.'V Sodium Magnesium Aluminium Silicon Phoaphorui 19 K 20 Ca 21 Sc 22 Ti 4790 3 j 39.09, 4i, 40.08 , , 44.9559 Jd, W * 30 4S Potassium Calcium Scandium Titanium Van! 4 29 CU 30 Zn 31 Ga 32 Ge 33 AS J 63 54 65.38 69.72 , , 725» *.24p' 74.9216 | «. , • 3d*°4»2 Copper Zinc Gallium Germanium Arsenic ,] 37 Rb 38 Sr 39 Y 40 Zr 4| 85.467s 87.62 < 2 88.9059 9,22 5s1 j(> w Ss 4dw Rubidium Strontium Yttrium Zirconium 5 4 47 Ag 48 Cd 49 In so Sn 51 Sb i H2.40 mM H8.69 121.7 |j 5..5P- 5.' 5p2 S Silver Cadmium Indium Tin Antimony 55 CS 56 Ba 57 La* 72 Hf 132.9054 137.34 6V _ . 138.905s 5di«.» Hatnium Cesium Barium Lanthanum 6 79 AU so Hg 81 Tl 82 Pb 83 Bi I 20059 207.2 196.9665 «28p2 208.9804 J M'06*' Gold Mercury Thallium Lead Bismuth | 87 Fr 88 Ra 89 AC** 104 Ku 105 ff 7 (223J 226.0254 6dW 122') sa.7,2 [2611 Francium Radium Actinium Kurchatovium (NilStKH * LANTHANIDES 58Ce6>! 59 Pr 60 Nd 61 Pm 62 Sm 63 Eu 64& 140.12 so' 140.907 144.24 , , (145) 1504 .
    [Show full text]
  • Florida State University Libraries
    Florida State University Libraries Electronic Theses, Treatises and Dissertations The Graduate School Coordination Complexes and Coordination Polymers of the Lanthanides aJosnepdh M A. Spcetrliinng ides Follow this and additional works at the DigiNole: FSU's Digital Repository. For more information, please contact [email protected] FLORIDA STATE UNIVERSITY COLLEGE OF ARTS AND SCIENCES COORDINATION COMPLEXES AND COORDINATION POLYMERS OF THE LANTHANIDES AND ACTINIDES By JOSEPH M. SPERLING A Dissertation submitted to the Department of Chemistry and Biochemistry in partial fulfillment of the requirements for the degree of Doctor of Philosophy 2020 Joseph M. Sperling defended this dissertation on March 9, 2020 The members of the supervisory committee were: Thomas E. Albrecht-Schmitt Professor Directing Dissertation Peter G. Fajer University Representative Kenneth Hanson Committee Member Albert E. Stiegman Committee Member The Graduate School has verified and approved the above-named committee members, and certifies that the dissertation has been approved in accordance with university requirements. ii This is dedicated to my family, Megan, the trill gang, and everyone that has helped me iii ACKNOWLEDGMENTS I could potentially write another full dissertation in this section here. There are so many people who I think deserve acknowledgements in this dissertation. It seems most natural to do this chronologically. First off, I would like to thank my mother Kathy Lien for all of the love and support. Thank you for the countless hours of sanity walk phone calls throughout my whole collegiate career. Thank you for listening to all of my rambling about science and so forth. Thank you for spoiling the hell out of me and giving me so much advice.
    [Show full text]
  • Iwsa Newsletter Iwsa Newsletter the Official Publication of the Indian Women Scientists’ Association
    IWSA NEWSLETTER IWSA NEWSLETTER THE OFFICIAL PUBLICATION OF THE INDIAN WOMEN SCIENTISTS’ ASSOCIATION Volume 43 Issue No. 1 ISSN 0972-6195 Jan-April. 2016 Rainbow- 2016 BRANCHES ROORKIE 1979 § HYDERABAD 1979 § PUNE 1980 § NAGPUR 1982 § KOLHAPUR 1982 DELHI 1987 § KALPAKKAM 1987 § BARODA 1988 § LUCKNOW 1997 § AMRAVATI 2010 Activities involving adults, senior school children and Teacher trainees at Rainbow-2016 Sports day activities for children from Nursery and Day Care Pyjama party in Day Care Hostel Day - 2016 From the Editor’s Desk Dear IWSA Members, I hope you enjoyed reading the December 2015 issue with articles on International Year of Light, the Nobel Prizes for the year 2015, about the successful IWSA fund raising drive and many other interesting information about the IWSA activities. We are here again with the first issue of 2016. This year marks the 75th anniversary of discovery of the important element plutonium, which has made a great impact on mankind, in more ways than one. Dr.Vasudeva Rao, former Director of Indira Gandhi Centre for Atomic Research and currently Raja Ramanna Fellow with DAE has written an article on Plutonium – a unique element. Dr. Rao is a specialist in the chemistry of nuclear fuel cycle and actinide elements and thus the most appropriate scientist to share his knowledge on this subject. We are also presenting you another article on plutonium by two young women scientists from BARC. Thus you can enjoy reading about plutonium from the perspective of a very experienced scientist of DAE and also about the dreams regarding the future role of plutonium in our country’s energy scenario from the young researchers.
    [Show full text]
  • Plutonium an Overview
    Plutonium An overview PDF generated using the open source mwlib toolkit. See http://code.pediapress.com/ for more information. PDF generated at: Thu, 09 Jun 2011 13:52:20 UTC Contents Articles Overview 1 Plutonium 1 Allotropes 23 Allotropes of plutonium 23 Isotopes 25 Isotopes of plutonium 25 Compounds and mixtures 34 Plutonium borides 34 Plutonium carbide 35 Plutonium hexafluoride 36 Plutonium hydride 38 Plutonium(III) chloride 39 Plutonium(III) fluoride 40 Plutonium(IV) fluoride 42 Plutonium(IV) oxide 43 Plutonium-gallium alloy 45 MOX fuel 48 Environment 52 Plutonium in the environment 52 References Article Sources and Contributors 61 Image Sources, Licenses and Contributors 62 Article Licenses License 63 1 Overview Plutonium Plutonium Appearance silvery white General properties Name, symbol, number plutonium, Pu, 94 Pronunciation /pluːˈtoʊniəm/ ploo-toe-nee-əm Element category actinide Group, period, block n/a, 7, f −1 Standard atomic weight (244) g·mol Electron configuration [Rn] 5f6 7s2 Electrons per shell 2, 8, 18, 32, 24, 8, 2 (Image) Physical properties Phase solid Density (near r.t.) 19.816 g·cm−3 Liquid density at m.p. 16.63 g·cm−3 Melting point 912.5 K,639.4 °C,1182.9 °F Boiling point 3505 K,3228 °C,5842 °F Heat of fusion 2.82 kJ·mol−1 Heat of vaporization 333.5 kJ·mol−1 Specific heat capacity (25 °C) 35.5 J·mol−1·K−1 Vapor pressure Plutonium 2 P/Pa 1 10 100 1 k 10 k 100 k at T/K 1756 1953 2198 2511 2926 3499 Atomic properties Oxidation states 7, 6, 5, 4, 3 (amphoteric oxide) Electronegativity 1.28 (Pauling scale) Ionization
    [Show full text]
  • 05 N R Das.Pmd
    ARTICLE A GLIMPSE OF TRANSURANIC RADIOACTIVE ELEMENTS N. R. DAS* The discovery of the phenomenon of radioactivity provided an important means in detecting the existence of a specific kind of materials, namely, the radioactive elements, some of which sometimes can occur naturally or can be artificially synthesized. Originally, the total number of naturally occurring elements in Mendeleev’s periodic table was 92 ending with uranium, but by 2016, with the syntheses of the new transuranic radioactive elements, the total number of elements has been increased to 118. All these 118 elements, thirty-seven of which are radioactive, have been appropriately accommodated in the modern periodic table, as extended by Glean Seaborg. Occurrences and syntheses of all the natural and artificial radioactive elements in the periodic table, have been briefly discussed. Introduction Around 300 B. C., it was proposed that all materials were made up of four essential elements, namely, earth, n nuclear science, search for new chemical elements air, fire and water. The Greek philosopher, Aristotle (383 is an area of active research to-day. At the beginning – 322 B.C.) considered these elements as being of the creation of the Universe billions of years ago, I combinations of four properties, hot, cold, dry and moist. the formation of the chemical elements started shortly after During the passage of scientific history, the very idea of the big bang through nucleosynthesis of the primordial the four ‘elements’ has undergone extensive changes and nucleons such as neutrons and protons, formed from quark- Robert Boyle in his “Sceptical Chymist” in 1661 was the gluon plasma.
    [Show full text]
  • A Brief History of The''delayed''discovery of Nuclear
    --3 BNL-NCS—43163 Prepared for Chemistry International DE89 017835 August 1989 \ '\ 1583 A Brief History of the ~- Delayed Discovery of Nuclear Fission Norman E. Holden National Nuclear Data Center Brookhaven National Laboratory Upton, New York 11973, USA Abstract This year marks the Fiftieth Anniversary of the discovery of Nuclear Fission. In the early 1930's, the neutron was discovered, followed by the discovery of artificial radioactivity and then the use of the neutron to produce artificial radioactivity. The first experiments resulting in the fission of uranium took place in 1934. A paper which speculated on fission as an explanation was almost immediately published, yet no one took it seriously not even the author herself. Why did it take an additional five years before anyone realized what had occurred? This is an abnormally long time in a period when discoveries, particularly in nuclear physics, seemed to be almost a daily occurrence. The events which led up to the discovery are recounted, with an attempt made to put them into their historical perspective. The role played by Mendeleev's Periodic Table, the role of the natural radioactive decay chain of uranium, the discovery of protactinium, the apparent discovery of masurium (technetium) and a speculation on the reason why Irene Curie may have missed the discovery of nuclear fission will all be discussed. MASTER tMSTRiBUTfON OF THIS DOCUMENT I UNLIMITED Proloque In reviewing historical developments, it is difficult to ignore one's own knowledge of events subsequent to the historical period being studied. In this case - the discovery of nuclear fission - one is aware of the present form of the latest version of the Periodic Table and the Chart of the Nuclides.
    [Show full text]
  • The Periodic Table's Shadow Side
    The Lost Elements The Periodic Table's Shadow Side Marco Fontani, Mariagrazia Costa, and Mary Virginia Orna OXFORD UNIVERSITY PRESS CONTENTS Preface xv Acknowledgments xvn Note to the Reader xxi Introduction xxm Why Collect into One Volume the Discoveries of Elements that Have Been Shown to be Erroneous or Have Been Forgotten? xxm How "an Element" Became a "Chemical Element" xxiv Is There Any Order to the Discoveries of the Elements? xxvm The Development of the Periodic Table xxx Part I: Before 1789: Early Errors and Early Elements Prologue to Part I 1 I.i. The Beginning of a Long Series of Scientific Blunders 3 I.1.1. Terra Nobilis 3 1.1.2. Siderum and Hydrosiderum 3 1.1.3. Sydneium or Australium 4 1.1.4. The Element That Breathes 6 1.1.5. The Birth of Homeopathy 7 1.2. The Elements Hidden by Alternative Names 12 I. 2.1. Metallum Problematicum or Tellurium 12 I.2.2. Ochroite or Cerium 13 I. 2.3. Ceresium or Palladium 13 I. 2.4. Erythronium, Panchromium or Vanadium 14 Part II: 1789-1869: From Lavoisier to Mendeleev: The First Errors at the Dawn of the Concept of the Chemical Element Prologue to Part II 19 II.1. Analytical Methodology from Lavoisier to Mendeleev 21 II. l.l. Blowpipe Analysis 22 II. 1.2. Qualitative and Quantitative Analysis 23 II. 1.3. Electrolysis 23 II.1.4. Emission Spectroscopy 24 II.2. The Elements of the Kingdom of Naples 27 II.2.1. Ruprecht and Tondi: Two Metallurgists Without Metals 27 II.2.2.
    [Show full text]
  • Episode 3 (Of 3): Into the Atom Broadcast Nationally on Pbs Aug
    THE MYSTERY OF MATTER: SEARCH FOR THE ELEMENTS EPISODE 3 (OF 3): INTO THE ATOM BROADCAST NATIONALLY ON PBS AUG. 19, 2015 Dmitri Mendeleev (identified on screen) works on the Periodic Table, writes down the atomic weights of the elements. NARR: Previously on The Mystery of Matter… HISTORIAN MICHAEL GORDIN VO He figures out something rather extraordinary about the elements. DMITRI MENDELEEV, partly in VO The eye is immediately struck by a pattern within the horizontal rows and the vertical columns. Mendeleev’s first table morphs into the familiar modern Periodic Table. AUTHOR ERIC SCERRI VO He found an absolutely fundamental principle of nature. Humphry Davy (identified on screen) performs an experiment with his voltaic pile. HISTORIAN DAVID KNIGHT VO Somehow the particles of matter have to be glued together to form molecules. What Davy has had is a big idea. Perhaps electricity could be this kind of glue. Marie Curie (identified on screen) sits down at the spectroscope and peers into the eyepiece. NARR: The spectroscope kicked off a whole new round in the discovery of elements. The spectra of four elements appear on screen, along with their names. PHYSICIST DAVID KAISER VO It’s almost like each element has its own bar code. Marie and Pierre enter their lab at night and see vials of radium glowing on the shelves. MARIE TO PIERRE Don’t light the lamps! Look! PHYSICIST DAVID KAISER VO Radioactivity was a sign that the atom itself was unstable. It could break apart. The Mystery of Matter Episode 3: Into the Atom Page 1 © Mystery of Matter Inc.
    [Show full text]
  • Enrico Fermi and the Beginning of Nuclear Physics
    ENRICO FERMI AND THE BEGINNING OF NUCLEAR PHYSICS Joint EPS-SIF International School on Energy – Varenna – 26 July 2017 LUISA CIFARELLI — Centro Fermi, Rome (IT) Società Italiana di Fisica Università & INFN, Bologna (IT) GALILEI NEWTON MAXWELL FERMI 2 How and where it all began … at the Physics Institute of Via Panisperna in Rome W 3 The Physics Institute of Via Panisperna in Rome was built in 1877-1880 by Pietro Blaserna inspired by foreign scientific institutes such as the Cavendish Laboratory in Cambridge 4 · Enrico Fermi was born in Rome in 1901 · He obtained in 1922 his diploma from the Scuola Normale Superiore of Pisa ––––––––––––––––––––––––––– · He was immediately attracted to quantum physics which at the time was not well known in Italy: he spent periods abroad in Göttingen (Max Born) and Leiden (Paul Ehrenfest) in 1923-1924 · In 1924-1926 Fermi was visiting professor of Mathematical Physics at the University of Florence · In 1926 he obtained the first chair of Theoretical Physics in Italy, specially created for him at the University of Rome by Orso Mario Corbino 5 All scores are 30 e lode except Chimica Organica: 30 Preparazioni Chimiche: 30 Disegno a mano libera: 24 · Enrico Fermi was born in Rome in 1901 · He obtained in 1922 his diploma from the Scuola Normale Superiore of Pisa ––––––––––––––––––––––––––– · He was immediately attracted to quantum physics which at the time was not well known in Italy: he spent periods abroad in Göttingen (Max Born) and Leiden (Paul Ehrenfest) in 1923-1924 · In 1924-1926 Fermi was visiting
    [Show full text]