Variable Rolling Circles, Orthogonal Cycloidal Trajectories, Envelopes of Variable Circles
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Differential Geometry
Differential Geometry J.B. Cooper 1995 Inhaltsverzeichnis 1 CURVES AND SURFACES—INFORMAL DISCUSSION 2 1.1 Surfaces ................................ 13 2 CURVES IN THE PLANE 16 3 CURVES IN SPACE 29 4 CONSTRUCTION OF CURVES 35 5 SURFACES IN SPACE 41 6 DIFFERENTIABLEMANIFOLDS 59 6.1 Riemannmanifolds .......................... 69 1 1 CURVES AND SURFACES—INFORMAL DISCUSSION We begin with an informal discussion of curves and surfaces, concentrating on methods of describing them. We shall illustrate these with examples of classical curves and surfaces which, we hope, will give more content to the material of the following chapters. In these, we will bring a more rigorous approach. Curves in R2 are usually specified in one of two ways, the direct or parametric representation and the implicit representation. For example, straight lines have a direct representation as tx + (1 t)y : t R { − ∈ } i.e. as the range of the function φ : t tx + (1 t)y → − (here x and y are distinct points on the line) and an implicit representation: (ξ ,ξ ): aξ + bξ + c =0 { 1 2 1 2 } (where a2 + b2 = 0) as the zero set of the function f(ξ ,ξ )= aξ + bξ c. 1 2 1 2 − Similarly, the unit circle has a direct representation (cos t, sin t): t [0, 2π[ { ∈ } as the range of the function t (cos t, sin t) and an implicit representation x : 2 2 → 2 2 { ξ1 + ξ2 =1 as the set of zeros of the function f(x)= ξ1 + ξ2 1. We see from} these examples that the direct representation− displays the curve as the image of a suitable function from R (or a subset thereof, usually an in- terval) into two dimensional space, R2. -
Around and Around ______
Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular. -
NEW HORIZONS in GEOMETRY 2010 Mathematics Subject Classification
DOLCIANI MATHEMATICAL EXPOSITIONS 47 10.1090/dol/047 NEW HORIZONS IN GEOMETRY 2010 Mathematics Subject Classification. Primary 51-01. Originally published by The Mathematical Association of America, 2012. ISBN: 978-1-4704-4335-1 LCCN: 2012949754 Copyright c 2012, held by the Amercan Mathematical Society Printed in the United States of America. Reprinted by the American Mathematical Society, 2018 The American Mathematical Society retains all rights except those granted to the United States Government. ∞ The paper used in this book is acid-free and falls within the guidelines established to ensure permanence and durability. Visit the AMS home page at http://www.ams.org/ 10 9 8 7 6 5 4 3 2 23 22 21 20 19 18 The Dolciani Mathematical Expositions NUMBER FORTY-SEVEN NEW HORIZONS IN GEOMETRY Tom M. Ap ostol California Institute of Technology and Mamikon A. Mnatsakanian California Institute of Technology Providence, Rhode Island The DOLCIANI MATHEMATICAL EXPOSITIONS series of the Mathematical Association of America was established through a generous gift to the Association from Mary P. Dolciani, Professor of Mathematics at Hunter College of the City Uni- versity of New York. In making the gift, Professor Dolciani, herself an exceptionally talented and successful expositor of mathematics, had the purpose of furthering the ideal of excellence in mathematical exposition. The Association, for its part, was delighted to accept the gracious gesture initi- ating the revolving fund for this series from one who has served the Association with distinction, both as a member of the Committee on Publications and as a member of the Board of Governors. -
Collected Atos
Mathematical Documentation of the objects realized in the visualization program 3D-XplorMath Select the Table Of Contents (TOC) of the desired kind of objects: Table Of Contents of Planar Curves Table Of Contents of Space Curves Surface Organisation Go To Platonics Table of Contents of Conformal Maps Table Of Contents of Fractals ODEs Table Of Contents of Lattice Models Table Of Contents of Soliton Traveling Waves Shepard Tones Homepage of 3D-XPlorMath (3DXM): http://3d-xplormath.org/ Tutorial movies for using 3DXM: http://3d-xplormath.org/Movies/index.html Version November 29, 2020 The Surfaces Are Organized According To their Construction Surfaces may appear under several headings: The Catenoid is an explicitly parametrized, minimal sur- face of revolution. Go To Page 1 Curvature Properties of Surfaces Surfaces of Revolution The Unduloid, a Surface of Constant Mean Curvature Sphere, with Stereographic and Archimedes' Projections TOC of Explicitly Parametrized and Implicit Surfaces Menu of Nonorientable Surfaces in previous collection Menu of Implicit Surfaces in previous collection TOC of Spherical Surfaces (K = 1) TOC of Pseudospherical Surfaces (K = −1) TOC of Minimal Surfaces (H = 0) Ward Solitons Anand-Ward Solitons Voxel Clouds of Electron Densities of Hydrogen Go To Page 1 Planar Curves Go To Page 1 (Click the Names) Circle Ellipse Parabola Hyperbola Conic Sections Kepler Orbits, explaining 1=r-Potential Nephroid of Freeth Sine Curve Pendulum ODE Function Lissajous Plane Curve Catenary Convex Curves from Support Function Tractrix -
A Handbook on Curves and Their Properties
SEELEY G. 1 1UDD LIBRARY LAWRENCE UNIVERSITY Appleton, Wisconsin «__ CURVES AND THEIR PROPERTIES A HANDBOOK ON CURVES AND THEIR PROPERTIES ROBERT C. YATES United States Military Academy J. W. EDWARDS — ANN ARBOR — 1947 97226 NOTATION octangular C olar Coordin =r.t^r ini Tangent and the Rad ,- ^lem a Copyright 1947 by R m Origin to Tangent. i i = /I. f(s ) = C well Intrinsic Egua 9 ;(f «r,p) = C 1- Lithoprinted by E rlll CONTENTS PREFACE nephroid and teacher lume proposes to supply to student curves. Rather ,n properties of plane Pedal Curves e Pedal Equations U vhi C h might be found ^ Yc 31 r , 'f Lr!-ormation and in engine useful in the classroom 3 aid in the s Radial Curves alphabetical arrangement is Roulettes Semi-Cubic Parabola Sketching Evolutes, Curve Sketching, and Spirals Strophoid If 1 :s readily understandable. Trigonometric Functions .... Trochoids Witch of Agnesi bfi Stropho: i including the Astroid, HISTORY: The Cycloidal curves, discovered by Roemer (1674) In his search for the Space Is provided occasionally for the reader to ir ;,„ r e for gear teeth. Double generation was first sert notes, proofs, and references of his own and thus be st form noticed by Daniel Bernoulli in 1725- It is with pleasure that the author acknowledges a hypo loid o f f ur valuable assistance in the composition of this work. 1. DESCRIPTION: The d is y Mr. H. T. Guard criticized the manuscript and offered Le roll helpful suggestions; Mr. Charles Roth and Mr. William radius four Lmes as la ge- -oiling upon the ins fixed circle (See Epicycloids) ASTROID EQUATIONS: = cos 1 1 1 (f)(3 x + - a y sin [::::::: = (f)(3 :ion: (Fig. -
The Cissoid of Diocles
Playing With Dynamic Geometry by Donald A. Cole Copyright © 2010 by Donald A. Cole All rights reserved. Cover Design: A three-dimensional image of the curve known as the Lemniscate of Bernoulli and its graph (see Chapter 15). TABLE OF CONTENTS Preface.................................................................................................................. xix Chapter 1 – Background ............................................................ 1-1 1.1 Introduction ............................................................................................................ 1-1 1.2 Equations and Graph .............................................................................................. 1-1 1.3 Analytical and Physical Properties ........................................................................ 1-4 1.3.1 Derivatives of the Curve ................................................................................. 1-4 1.3.2 Metric Properties of the Curve ........................................................................ 1-4 1.3.3 Curvature......................................................................................................... 1-6 1.3.4 Angles ............................................................................................................. 1-6 1.4 Geometric Properties ............................................................................................. 1-7 1.5 Types of Derived Curves ....................................................................................... 1-7 1.5.1 Evolute -
MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE Geometry
DOCUMENT RESUME ED 100 648 SE 018 119 AUTHOR Yates, Robert C. TITLE Curves and Their Properties. INSTITUTION National Council of Teachers of Mathematics, Inc., Washington, D.C. PUB DATE 74 NOTE 259p.; Classics in Mathematics Education, Volume 4 AVAILABLE FROM National Council of Teachers of Mathematics, Inc., 1906 Association Drive, Reston, Virginia 22091 ($6.40) EDRS PRICE MF-$0.75 HC Not Available from EDRS. PLUS POSTAGE DESCRIPTORS Analytic Geometry; *College Mathematics; Geometric Concepts; *Geometry; *Graphs; Instruction; Mathematical Enrichment; Mathematics Education;Plane Geometry; *Secondary School Mathematics IDENTIFIERS *Curves ABSTRACT This volume, a reprinting of a classic first published in 1952, presents detailed discussions of 26 curves or families of curves, and 17 analytic systems of curves. For each curve the author provides a historical note, a sketch orsketches, a description of the curve, a a icussion of pertinent facts,and a bibliography. Depending upon the curve, the discussion may cover defining equations, relationships with other curves(identities, derivatives, integrals), series representations, metricalproperties, properties of tangents and normals, applicationsof the curve in physical or statistical sciences, and other relevantinformation. The curves described range from thefamiliar conic sections and trigonometric functions through tit's less well knownDeltoid, Kieroid and Witch of Agnesi. Curve related - systemsdescribed include envelopes, evolutes and pedal curves. A section on curvesketching in the coordinate plane is included. (SD) U S DEPARTMENT OFHEALTH. EDUCATION II WELFARE NATIONAL INSTITUTE OF EDUCATION THIS DOCuME N1 ITASOLE.* REPRO MAE° EXACTLY ASRECEIVED F ROM THE PERSON ORORGANI/AlICIN ORIGIN ATING 11 POINTS OF VIEWOH OPINIONS STATED DO NOT NECESSARILYREPRE INSTITUTE OF SENT OFFICIAL NATIONAL EDUCATION POSITION ORPOLICY $1 loor oiltyi.4410,0 kom niAttintitd.: t .111/11.061 . -
2Dcurves in .Pdf Format (1882 Kb) Curve Literature Last Update: 2003−06−14 Higher Last Updated: Lennard−Jones 2002−03−25 Potential
2d curves A collection of 631 named two−dimensional curves algebraic curves are a polynomial in x other curves and y kid curve line (1st degree) 3d curve conic (2nd) cubic (3rd) derived curves quartic (4th) sextic (6th) barycentric octic (8th) caustic other (otherth) cissoid conchoid transcendental curves curvature discrete cyclic exponential derivative fractal envelope gamma & related hyperbolism isochronous inverse power isoptic power exponential parallel spiral pedal trigonometric pursuit reflecting wall roulette strophoid tractrix Some programs to draw your own For isoptic cubics: curves: • Isoptikon (866 kB) from the • GraphEq (2.2 MB) from University of Crete Pedagoguery Software • GraphSight (696 kB) from Cradlefields ($19 to register) 2dcurves in .pdf format (1882 kB) curve literature last update: 2003−06−14 higher last updated: Lennard−Jones 2002−03−25 potential Atoms of an inert gas are in equilibrium with each other by means of an attracting van der Waals force and a repelling forces as result of overlapping electron orbits. These two forces together give the so−called Lennard−Jones potential, which is in fact a curve of thirteenth degree. backgrounds main last updated: 2002−11−16 history I collected curves when I was a young boy. Then, the papers rested in a box for decades. But when I found them, I picked the collection up again, some years spending much work on it, some years less. questions I have been thinking a long time about two questions: 1. what is the unity of curve? Stated differently as: when is a curve different from another one? 2. which equation belongs to a curve? 1.