2Dcurves in .Pdf Format (1882 Kb) Curve Literature Last Update: 2003−06−14 Higher Last Updated: Lennard−Jones 2002−03−25 Potential

Total Page:16

File Type:pdf, Size:1020Kb

2Dcurves in .Pdf Format (1882 Kb) Curve Literature Last Update: 2003−06−14 Higher Last Updated: Lennard−Jones 2002−03−25 Potential 2d curves A collection of 631 named two−dimensional curves algebraic curves are a polynomial in x other curves and y kid curve line (1st degree) 3d curve conic (2nd) cubic (3rd) derived curves quartic (4th) sextic (6th) barycentric octic (8th) caustic other (otherth) cissoid conchoid transcendental curves curvature discrete cyclic exponential derivative fractal envelope gamma & related hyperbolism isochronous inverse power isoptic power exponential parallel spiral pedal trigonometric pursuit reflecting wall roulette strophoid tractrix Some programs to draw your own For isoptic cubics: curves: • Isoptikon (866 kB) from the • GraphEq (2.2 MB) from University of Crete Pedagoguery Software • GraphSight (696 kB) from Cradlefields ($19 to register) 2dcurves in .pdf format (1882 kB) curve literature last update: 2003−06−14 higher last updated: Lennard−Jones 2002−03−25 potential Atoms of an inert gas are in equilibrium with each other by means of an attracting van der Waals force and a repelling forces as result of overlapping electron orbits. These two forces together give the so−called Lennard−Jones potential, which is in fact a curve of thirteenth degree. backgrounds main last updated: 2002−11−16 history I collected curves when I was a young boy. Then, the papers rested in a box for decades. But when I found them, I picked the collection up again, some years spending much work on it, some years less. questions I have been thinking a long time about two questions: 1. what is the unity of curve? Stated differently as: when is a curve different from another one? 2. which equation belongs to a curve? 1. unity of curve I decided to aim for simplicity: it does not matter when a curve has been reformatted in a linear way (by ways of translation, rotation or multiplication). This means that I omit constants in the equations of a curve, as been found by other authors. Example: for me the equation of the super ellipse is not but: Only the parameter 'a' affects the form of the curve. And all linear transformations of this curve do belong to this same curve 'family'. 2. which formula I don't want to swim in an ocean of formulae. Therefore I look for a formula that is as simple as possible, for covering a given curve. Trying to confine myself to Cartesian, polar, bipolar and parametric equations. Examples: • Cartesian equation: y = f(x) 2 ( Example y= x parabola) • polar equation: r = f(ϕ) Example r = ϕ (spiral of Archimedes) • bipolar equation: f(r1, r2) = a Example r1 r2 = a (Cassinian oval) • parametric equation: x = f(t), y = g(t) Example: x = t − a sin t and y = 1 − a cos t (cycloid) Sometimes the definition of a curve can not fit in one of these forms: • textual definition: let there be etc. Example: apply the following rule to a grid of black squares: when you get on a black square, make it white and turn to the right; when you get on a white square, make it black and turn to the left (ant of Langton) Sometimes a much shorter or much more elegant formula can be found, using another way of defining a curve: • complex equation: z = f(z1, z2) Example: z = f (C1(t), C2(t)) for a curve C2(t) that rolls over curve C1(t) (roulette) • differential equation: f(x, y, y') = 0 2 2 Example: x + y' =1 (quadratrix of Abdank−Abakanovicz) literature I made up a list of the literature I used. curve main last updated: 2003−05−05 definition 1) A curve can be defined as a (finite) number of arcs, combined together. Lawrence defines an arc as a valid one when its parametric equation (x,y) = (f(t), g(t)) − with t in an open interval I − obeys the following conditions: • f and g are twice continuously differentiable • for all t in I, at least one of df/dt and dg/dt is unequal zero • for all points s and t in I, (f(s), g(s)) = (f(t), g(t)) if and only if s = t However, not all curves I describe are differentiable: see e.g. the blancmange curve. A Jordan curve is defined as a closed, non−intersecting line, consisting of a finite number of regular segments. Such a curve with a direction is a contour. notes 1) In French: courbe. oval main last updated: 2002−12−17 An oval is a curve resembling a squashed circle, but without a clear mathematical definition. So an oval has not necessarily two axes of symmetry. We find oval−like curves on the following pages: • Cartesian oval • Cassinian oval • egg curve • ellipse • hippopede • oval of Booth • spiric section Sometimes an oval−like curve is constructed as connected arcs, of circles with different radii. round curve main last updated: 2001−11−17 Is an oval round? Or are only circles round? As for the Latin word 'circum', 'round' has two meanings: • specific denoting the circle form • more general, for a closed loopless curve The second meaning is found in expressions as: a circular road, a circular saw, a circular tour. They all don't match the precise circle form. Conclusion: there are to meanings of 'round' a strict one (circle) and a more general one. main last updated: algebraic 2003−05−03 curve A curve is algebraic when its defining Cartesian equation is algebraic, that is a polynomial in x and y. The order or degree of the curve is the maximum degree of each of its terms x y . An algebraic curve with degree greater than 2 is called a higher plane curve. An algebraic curve is called a circular algebraic curve, when the points (±1, ± i) are on the curve. In that case the highest degree of the Cartesian equation is divisible by 2 2 (x + y ). The circle is the only circular conic section. The curve got its name from the fact that it contains the two imaginary circular points: replace x by x/w and y by y/w, and let the variable w go to zero, we obtain the circular poins. A bicircular algebraic curve passes twice through the points (±1, ± i). In this case the highest degree of the 2 2 2 Cartesian equation is divisible by (x + y ) . Every algebraic polynomial is a Bézier curve. Given a set of points Pi the Bézier curve of this control polygon is the convex envelope of these points. When a curve is not algebraic, we call the curve (and its function) transcendental. In the case a function is sufficiently sophisticated it is said to be a special function. main last updated: polynomial 2002−12−29 1) A polynomial is literally an expression of some terms, distinct powers in one ore more variables. On this page we talk about a polynomial in one variable, x. When talking about two variables (x and y), we call it an algebraic curve. A curve for which f(x,y) is a constant, is called a equipotential curve. Other names for the curve are: isarithm, isopleth. As said, here the polynomial in x, each term is an entire power of x, and the function is also called an entire (rational) function. It is also called an algebraic function. The highest power in x is the degree (or: order) of the polynomial. An entire function of 2nd degree is called a quadratic function; an entire function of 4th degree is called an biquadratic function. Some specific polynomials can be found as: • line y is linear in x. • parabola y is quadratic in x. • cubic • quartic The root to the nth power is the inverse function of the (simple) polynomial with equation y = x . A broken function is a function that is the quotient of two polynomials.Together with the polynomials do they form the group of rational functions. The following polynomials have a special significance: • cubic parabola • generated polynomial • orthogonal polynomial ♦ Hermite polynomial ♦ Laguerre polynomial ♦ Legendre polynomial ♦ Tchebyscheff polynomial • Pochhammer symbol • power series • recurrent polynomial notes 1) polus (Gr.) = many, nomen (Lat.) = name. cubic polynomial last updated: 2002−03−25 parabola A polynomial of the third degree who has its own name is the cubic parabola. Its name has been derived from the parabola, the cubic part refers to the third degree. The curve has to be distinguished from the cubic parabola that is a divergent parabola. polynomial last updated: generated 2003−05−18 polynomial Some polynomials are defined inside an expression, e.g. inside an series with infinite coefficients: Bernoulli polynomial The Bernoulli polynomials (Bi) are used in some formulae that relate a series and a integral. Some slowly converging series can be written as an (easy to solve) integral. Euler polynomial The Euler polynomials (Ei) are used to clarify phenomena of 1) some alternating series . notes 1) Temme 1990 p.13. polynomial last updated: orthogonal 2002−11−10 polynomial According to algebraic theory systems of perpendicular (orthogonal) polynomials fi can be constructed, that span a so called function space. Orthogonality has the meaning of being zero of the inproducts <fi, fj> for i j. This function inproduct is defined as above mentioned integral, where w(x) is called the weight function. [−1 T ?? n Always true is that fi is a polynomial of degree i with the , 1] (x) remarkable quality that all points of intersection with the x−axis are real and different, and are in the interval [a, b]. Some orthogonal polynomials have been given special attention, and were named to their explorer: − polynomial interval w(x) fn(x) abbreviation Hermite [− , ] Hn (x) Laguerre [0, ] Ln (x) Legendre [−1 , 1] 1 Pn (x) The polynomials are also solutions of differential equations with the same name (equation of Hermite, Laguerre and so on), with whom I don't want you to torture.
Recommended publications
  • Inverse of Exponential Functions Are Logarithmic Functions
    Math Instructional Framework Full Name Math III Unit 3 Lesson 2 Time Frame Unit Name Logarithmic Functions as Inverses of Exponential Functions Learning Task/Topics/ Task 2: How long Does It Take? Themes Task 3: The Population of Exponentia Task 4: Modeling Natural Phenomena on Earth Culminating Task: Traveling to Exponentia Standards and Elements MM3A2. Students will explore logarithmic functions as inverses of exponential functions. c. Define logarithmic functions as inverses of exponential functions. Lesson Essential Questions How can you graph the inverse of an exponential function? Activator PROBLEM 2.Task 3: The Population of Exponentia (Problem 1 could be completed prior) Work Session Inverse of Exponential Functions are Logarithmic Functions A Graph the inverse of exponential functions. B Graph logarithmic functions. See Notes Below. VOCABULARY Asymptote: A line or curve that describes the end behavior of the graph. A graph never crosses a vertical asymptote but it may cross a horizontal or oblique asymptote. Common logarithm: A logarithm with a base of 10. A common logarithm is the power, a, such that 10a = b. The common logarithm of x is written log x. For example, log 100 = 2 because 102 = 100. Exponential functions: A function of the form y = a·bx where a > 0 and either 0 < b < 1 or b > 1. Logarithmic functions: A function of the form y = logbx, with b 1 and b and x both positive. A logarithmic x function is the inverse of an exponential function. The inverse of y = b is y = logbx. Logarithm: The logarithm base b of a number x, logbx, is the power to which b must be raised to equal x.
    [Show full text]
  • 1915-16.] the " Geometria Organica" of Colin Maclaurin. 87 V.—-The
    1915-16.] The " Geometria Organica" of Colin Maclaurin. 87 V.—-The " Geometria Organica " of Colin Maclaurin: A Historical and Critical Survey. By Charles Tweedie, M.A., B.Sc, Lecturer in Mathematics, Edinburgh University. (MS. received October 15, 1915. Bead December 6,1915.) INTRODUCTION. COLIN MACLATJBIN, the celebrated mathematician, was born in 1698 at Kilmodan in Argyllshire, where his father was minister of the parish. In 1709 he entered Glasgow University, where his mathematical talent rapidly developed under the fostering care of Professor Robert Simson. In 171*7 he successfully competed for the Chair of Mathematics in the Marischal College of Aberdeen University. In 1719 he came directly under the personal influence of Newton, when on a visit to London, bearing with him the manuscript of the Geometria Organica, published in quarto in 1720. The publication of this work immediately brought him into promi- nence in the scientific world. In 1725 he was, on the recommendation of Newton, elected to the Chair of Mathematics in Edinburgh University, which he occupied until his death in 1746. As a lecturer Maclaurin was a conspicuous success. He took great pains to make his subject as clear and attractive as possible, so much so that he made mathematics " a fashionable study." The labour of teaching his numerous students seriously curtailed the time he could spare for original research. In quantity his works do not bulk largely, but what he did produce was, in the main, of superlative quality, presented clearly and concisely. The Geometria Organica and the Geometrical Appendix to his Treatise on Algebra give him a place in the first rank of great geometers, forming as they do the basis of the theory of the Higher Plane Curves; while his Treatise of Fluxions (1742) furnished an unassailable bulwark and text-book for the study of the Calculus.
    [Show full text]
  • Collagen and Creatine
    COLLAGEN AND CREATINE : PROTEIN AND NONPROTEIN NITROGENOUS COMPOUNDS Color index: . Important . Extra explanation “ THERE IS NO ELEVATOR TO SUCCESS. YOU HAVE TO TAKE THE STAIRS ” 435 Biochemistry Team • Amino acid structure. • Proteins. • Level of protein structure. RECALL: 435 Biochemistry Team Amino acid structure 1- hydrogen atom *H* ( which is distictive for each amino 2- side chain *R* acid and gives the amino acid a unique set of characteristic ) - Carboxylic acid group *COOH* 3- two functional groups - Primary amino acid group *NH2* ( except for proline which has a secondary amino acid) .The amino acid with a free amino Group at the end called “N-Terminus” . Alpha carbon that is attached to: to: thatattachedAlpha carbon is .The amino acid with a free carboxylic group At the end called “ C-Terminus” Proteins Proteins structure : - Building blocks , made of small molecules unit called amino acid which attached together in long chain by a peptide bond . Level of protein structure Tertiary Quaternary Primary secondary Single amino acids Region stabilized by Three–dimensional attached by hydrogen bond between Association of covalent bonds atoms of the polypeptide (3D) shape of called peptide backbone. entire polypeptide multi polypeptides chain including forming a bonds to form a Examples : linear sequence of side chain (R functional protein. amino acids. Alpha helix group ) Beta sheet 435 Biochemistry Team Level of protein structure 435 Biochemistry Team Secondary structure Alpha helix: - It is right-handed spiral , which side chain extend outward. - it is stabilized by hydrogen bond , which is formed between the peptide bond carbonyl oxygen and amide hydrogen. - each turn contains 3.6 amino acids.
    [Show full text]
  • Unit 2. Powers, Roots and Logarithms
    English Maths 4th Year. European Section at Modesto Navarro Secondary School UNIT 2. POWERS, ROOTS AND LOGARITHMS. 1. POWERS. 1.1. DEFINITION. When you multiply two or more numbers, each number is called a factor of the product. When the same factor is repeated, you can use an exponent to simplify your writing. An exponent tells you how many times a number, called the base, is used as a factor. A power is a number that is expressed using exponents. In English: base ………………………………. Exponente ………………………… Other examples: . 52 = 5 al cuadrado = five to the second power or five squared . 53 = 5 al cubo = five to the third power or five cubed . 45 = 4 elevado a la quinta potencia = four (raised) to the fifth power . 1521 = fifteen to the twenty-first . 3322 = thirty-three to the power of twenty-two Exercise 1. Calculate: a) (–2)3 = f) 23 = b) (–3)3 = g) (–1)4 = c) (–5)4 = h) (–5)3 = d) (–10)3 = i) (–10)6 = 3 3 e) (7) = j) (–7) = Exercise: Calculate with the calculator: a) (–6)2 = b) 53 = c) (2)20 = d) (10)8 = e) (–6)12 = For more information, you can visit http://en.wikibooks.org/wiki/Basic_Algebra UNIT 2. Powers, roots and logarithms. 1 English Maths 4th Year. European Section at Modesto Navarro Secondary School 1.2. PROPERTIES OF POWERS. Here are the properties of powers. Pay attention to the last one (section vii, powers with negative exponent) because it is something new for you: i) Multiplication of powers with the same base: E.g.: ii) Division of powers with the same base : E.g.: E.g.: 35 : 34 = 31 = 3 iii) Power of a power: 2 E.g.
    [Show full text]
  • The Close-Packed Triple Helix As a Possible New Structural Motif for Collagen
    The close-packed triple helix as a possible new structural motif for collagen Jakob Bohr∗ and Kasper Olseny Department of Physics, Technical University of Denmark Building 307 Fysikvej, DK-2800 Lyngby, Denmark Abstract The one-dimensional problem of selecting the triple helix with the highest volume fraction is solved and hence the condition for a helix to be close-packed is obtained. The close-packed triple helix is ◦ shown to have a pitch angle of vCP = 43:3 . Contrary to the conventional notion, we suggest that close packing form the underlying principle behind the structure of collagen, and the implications of this suggestion are considered. Further, it is shown that the unique zero-twist structure with no strain- twist coupling is practically identical to the close-packed triple helix. Some of the difficulties for the current understanding of the structure of collagen are reviewed: The ambiguity in assigning crystal structures for collagen-like peptides, and the failure to satisfactorily calculate circular dichroism spectra. Further, the proposed new geometrical structure for collagen is better packed than both the 10=3 and the 7=2 structure. A feature of the suggested collagen structure is the existence of a central channel with negatively charged walls. We find support for this structural feature in some of the early x-ray diffraction data of collagen. The central channel of the structure suggests the possibility of a one-dimensional proton lattice. This geometry can explain the observed magic angle effect seen in NMR studies of collagen. The central channel also offers the possibility of ion transport and may cast new light on various biological and physical phenomena, including biomineralization.
    [Show full text]
  • Combination of Cubic and Quartic Plane Curve
    IOSR Journal of Mathematics (IOSR-JM) e-ISSN: 2278-5728,p-ISSN: 2319-765X, Volume 6, Issue 2 (Mar. - Apr. 2013), PP 43-53 www.iosrjournals.org Combination of Cubic and Quartic Plane Curve C.Dayanithi Research Scholar, Cmj University, Megalaya Abstract The set of complex eigenvalues of unistochastic matrices of order three forms a deltoid. A cross-section of the set of unistochastic matrices of order three forms a deltoid. The set of possible traces of unitary matrices belonging to the group SU(3) forms a deltoid. The intersection of two deltoids parametrizes a family of Complex Hadamard matrices of order six. The set of all Simson lines of given triangle, form an envelope in the shape of a deltoid. This is known as the Steiner deltoid or Steiner's hypocycloid after Jakob Steiner who described the shape and symmetry of the curve in 1856. The envelope of the area bisectors of a triangle is a deltoid (in the broader sense defined above) with vertices at the midpoints of the medians. The sides of the deltoid are arcs of hyperbolas that are asymptotic to the triangle's sides. I. Introduction Various combinations of coefficients in the above equation give rise to various important families of curves as listed below. 1. Bicorn curve 2. Klein quartic 3. Bullet-nose curve 4. Lemniscate of Bernoulli 5. Cartesian oval 6. Lemniscate of Gerono 7. Cassini oval 8. Lüroth quartic 9. Deltoid curve 10. Spiric section 11. Hippopede 12. Toric section 13. Kampyle of Eudoxus 14. Trott curve II. Bicorn curve In geometry, the bicorn, also known as a cocked hat curve due to its resemblance to a bicorne, is a rational quartic curve defined by the equation It has two cusps and is symmetric about the y-axis.
    [Show full text]
  • The Ordered Distribution of Natural Numbers on the Square Root Spiral
    The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution
    [Show full text]
  • Using Elimination to Describe Maxwell Curves Lucas P
    Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2006 Using elimination to describe Maxwell curves Lucas P. Beverlin Louisiana State University and Agricultural and Mechanical College Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Applied Mathematics Commons Recommended Citation Beverlin, Lucas P., "Using elimination to describe Maxwell curves" (2006). LSU Master's Theses. 2879. https://digitalcommons.lsu.edu/gradschool_theses/2879 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. USING ELIMINATION TO DESCRIBE MAXWELL CURVES A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial ful¯llment of the requirements for the degree of Master of Science in The Department of Mathematics by Lucas Paul Beverlin B.S., Rose-Hulman Institute of Technology, 2002 August 2006 Acknowledgments This dissertation would not be possible without several contributions. I would like to thank my thesis advisor Dr. James Madden for his many suggestions and his patience. I would also like to thank my other committee members Dr. Robert Perlis and Dr. Stephen Shipman for their help. I would like to thank my committee in the Experimental Statistics department for their understanding while I completed this project. And ¯nally I would like to thank my family for giving me the chance to achieve a higher education.
    [Show full text]
  • A Gallery of De Rham Curves
    A Gallery of de Rham Curves Linas Vepstas <[email protected]> 20 August 2006 Abstract The de Rham curves are a set of fairly generic fractal curves exhibiting dyadic symmetry. Described by Georges de Rham in 1957[3], this set includes a number of the famous classical fractals, including the Koch snowflake, the Peano space- filling curve, the Cesàro-Faber curves, the Takagi-Landsberg[4] or blancmange curve, and the Lévy C-curve. This paper gives a brief review of the construction of these curves, demonstrates that the complete collection of linear affine deRham curves is a five-dimensional space, and then presents a collection of four dozen images exploring this space. These curves are interesting because they exhibit dyadic symmetry, with the dyadic symmetry monoid being an interesting subset of the group GL(2,Z). This is a companion article to several others[5][6] exploring the nature of this monoid in greater detail. 1 Introduction In a classic 1957 paper[3], Georges de Rham constructs a class of curves, and proves that these curves are everywhere continuous but are nowhere differentiable (more pre- cisely, are not differentiable at the rationals). In addition, he shows how the curves may be parameterized by a real number in the unit interval. The construction is simple. This section illustrates some of these curves. 2 2 2 2 Consider a pair of contracting maps of the plane d0 : R → R and d1 : R → R . By the Banach fixed point theorem, such contracting maps should have fixed points p0 and p1. Assume that each fixed point lies in the basin of attraction of the other map, and furthermore, that the one map applied to the fixed point of the other yields the same point, that is, d1(p0) = d0(p1) (1) These maps can then be used to construct a certain continuous curve between p0and p1.
    [Show full text]
  • On the Topology of Hypocycloid Curves
    Física Teórica, Julio Abad, 1–16 (2008) ON THE TOPOLOGY OF HYPOCYCLOIDS Enrique Artal Bartolo∗ and José Ignacio Cogolludo Agustíny Departamento de Matemáticas, Facultad de Ciencias, IUMA Universidad de Zaragoza, 50009 Zaragoza, Spain Abstract. Algebraic geometry has many connections with physics: string theory, enu- merative geometry, and mirror symmetry, among others. In particular, within the topo- logical study of algebraic varieties physicists focus on aspects involving symmetry and non-commutativity. In this paper, we study a family of classical algebraic curves, the hypocycloids, which have links to physics via the bifurcation theory. The topology of some of these curves plays an important role in string theory [3] and also appears in Zariski’s foundational work [9]. We compute the fundamental groups of some of these curves and show that they are in fact Artin groups. Keywords: hypocycloid curve, cuspidal points, fundamental group. PACS classification: 02.40.-k; 02.40.Xx; 02.40.Re . 1. Introduction Hypocycloid curves have been studied since the Renaissance (apparently Dürer in 1525 de- scribed epitrochoids in general and then Roemer in 1674 and Bernoulli in 1691 focused on some particular hypocycloids, like the astroid, see [5]). Hypocycloids are described as the roulette traced by a point P attached to a circumference S of radius r rolling about the inside r 1 of a fixed circle C of radius R, such that 0 < ρ = R < 2 (see Figure 1). If the ratio ρ is rational, an algebraic curve is obtained. The simplest (non-trivial) hypocycloid is called the deltoid or the Steiner curve and has a history of its own both as a real and complex curve.
    [Show full text]
  • Around and Around ______
    Andrew Glassner’s Notebook http://www.glassner.com Around and around ________________________________ Andrew verybody loves making pictures with a Spirograph. The result is a pretty, swirly design, like the pictures Glassner EThis wonderful toy was introduced in 1966 by Kenner in Figure 1. Products and is now manufactured and sold by Hasbro. I got to thinking about this toy recently, and wondered The basic idea is simplicity itself. The box contains what might happen if we used other shapes for the a collection of plastic gears of different sizes. Every pieces, rather than circles. I wrote a program that pro- gear has several holes drilled into it, each big enough duces Spirograph-like patterns using shapes built out of to accommodate a pen tip. The box also contains some Bezier curves. I’ll describe that later on, but let’s start by rings that have gear teeth on both their inner and looking at traditional Spirograph patterns. outer edges. To make a picture, you select a gear and set it snugly against one of the rings (either inside or Roulettes outside) so that the teeth are engaged. Put a pen into Spirograph produces planar curves that are known as one of the holes, and start going around and around. roulettes. A roulette is defined by Lawrence this way: “If a curve C1 rolls, without slipping, along another fixed curve C2, any fixed point P attached to C1 describes a roulette” (see the “Further Reading” sidebar for this and other references). The word trochoid is a synonym for roulette. From here on, I’ll refer to C1 as the wheel and C2 as 1 Several the frame, even when the shapes Spirograph- aren’t circular.
    [Show full text]
  • Some Curves and the Lengths of Their Arcs Amelia Carolina Sparavigna
    Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna To cite this version: Amelia Carolina Sparavigna. Some Curves and the Lengths of their Arcs. 2021. hal-03236909 HAL Id: hal-03236909 https://hal.archives-ouvertes.fr/hal-03236909 Preprint submitted on 26 May 2021 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Some Curves and the Lengths of their Arcs Amelia Carolina Sparavigna Department of Applied Science and Technology Politecnico di Torino Here we consider some problems from the Finkel's solution book, concerning the length of curves. The curves are Cissoid of Diocles, Conchoid of Nicomedes, Lemniscate of Bernoulli, Versiera of Agnesi, Limaçon, Quadratrix, Spiral of Archimedes, Reciprocal or Hyperbolic spiral, the Lituus, Logarithmic spiral, Curve of Pursuit, a curve on the cone and the Loxodrome. The Versiera will be discussed in detail and the link of its name to the Versine function. Torino, 2 May 2021, DOI: 10.5281/zenodo.4732881 Here we consider some of the problems propose in the Finkel's solution book, having the full title: A mathematical solution book containing systematic solutions of many of the most difficult problems, Taken from the Leading Authors on Arithmetic and Algebra, Many Problems and Solutions from Geometry, Trigonometry and Calculus, Many Problems and Solutions from the Leading Mathematical Journals of the United States, and Many Original Problems and Solutions.
    [Show full text]