A Gallery of De Rham Curves
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
INTRODUCTION to ALGEBRAIC GEOMETRY, CLASS 25 Contents 1
INTRODUCTION TO ALGEBRAIC GEOMETRY, CLASS 25 RAVI VAKIL Contents 1. The genus of a nonsingular projective curve 1 2. The Riemann-Roch Theorem with Applications but No Proof 2 2.1. A criterion for closed immersions 3 3. Recap of course 6 PS10 back today; PS11 due today. PS12 due Monday December 13. 1. The genus of a nonsingular projective curve The definition I’m going to give you isn’t the one people would typically start with. I prefer to introduce this one here, because it is more easily computable. Definition. The tentative genus of a nonsingular projective curve C is given by 1 − deg ΩC =2g 2. Fact (from Riemann-Roch, later). g is always a nonnegative integer, i.e. deg K = −2, 0, 2,.... Complex picture: Riemann-surface with g “holes”. Examples. Hence P1 has genus 0, smooth plane cubics have genus 1, etc. Exercise: Hyperelliptic curves. Suppose f(x0,x1) is a polynomial of homo- geneous degree n where n is even. Let C0 be the affine plane curve given by 2 y = f(1,x1), with the generically 2-to-1 cover C0 → U0.LetC1be the affine 2 plane curve given by z = f(x0, 1), with the generically 2-to-1 cover C1 → U1. Check that C0 and C1 are nonsingular. Show that you can glue together C0 and C1 (and the double covers) so as to give a double cover C → P1. (For computational convenience, you may assume that neither [0; 1] nor [1; 0] are zeros of f.) What goes wrong if n is odd? Show that the tentative genus of C is n/2 − 1.(Thisisa special case of the Riemann-Hurwitz formula.) This provides examples of curves of any genus. -
Algebraic Geometry Michael Stoll
Introductory Geometry Course No. 100 351 Fall 2005 Second Part: Algebraic Geometry Michael Stoll Contents 1. What Is Algebraic Geometry? 2 2. Affine Spaces and Algebraic Sets 3 3. Projective Spaces and Algebraic Sets 6 4. Projective Closure and Affine Patches 9 5. Morphisms and Rational Maps 11 6. Curves — Local Properties 14 7. B´ezout’sTheorem 18 2 1. What Is Algebraic Geometry? Linear Algebra can be seen (in parts at least) as the study of systems of linear equations. In geometric terms, this can be interpreted as the study of linear (or affine) subspaces of Cn (say). Algebraic Geometry generalizes this in a natural way be looking at systems of polynomial equations. Their geometric realizations (their solution sets in Cn, say) are called algebraic varieties. Many questions one can study in various parts of mathematics lead in a natural way to (systems of) polynomial equations, to which the methods of Algebraic Geometry can be applied. Algebraic Geometry provides a translation between algebra (solutions of equations) and geometry (points on algebraic varieties). The methods are mostly algebraic, but the geometry provides the intuition. Compared to Differential Geometry, in Algebraic Geometry we consider a rather restricted class of “manifolds” — those given by polynomial equations (we can allow “singularities”, however). For example, y = cos x defines a perfectly nice differentiable curve in the plane, but not an algebraic curve. In return, we can get stronger results, for example a criterion for the existence of solutions (in the complex numbers), or statements on the number of solutions (for example when intersecting two curves), or classification results. -
Trigonometry Cram Sheet
Trigonometry Cram Sheet August 3, 2016 Contents 6.2 Identities . 8 1 Definition 2 7 Relationships Between Sides and Angles 9 1.1 Extensions to Angles > 90◦ . 2 7.1 Law of Sines . 9 1.2 The Unit Circle . 2 7.2 Law of Cosines . 9 1.3 Degrees and Radians . 2 7.3 Law of Tangents . 9 1.4 Signs and Variations . 2 7.4 Law of Cotangents . 9 7.5 Mollweide’s Formula . 9 2 Properties and General Forms 3 7.6 Stewart’s Theorem . 9 2.1 Properties . 3 7.7 Angles in Terms of Sides . 9 2.1.1 sin x ................... 3 2.1.2 cos x ................... 3 8 Solving Triangles 10 2.1.3 tan x ................... 3 8.1 AAS/ASA Triangle . 10 2.1.4 csc x ................... 3 8.2 SAS Triangle . 10 2.1.5 sec x ................... 3 8.3 SSS Triangle . 10 2.1.6 cot x ................... 3 8.4 SSA Triangle . 11 2.2 General Forms of Trigonometric Functions . 3 8.5 Right Triangle . 11 3 Identities 4 9 Polar Coordinates 11 3.1 Basic Identities . 4 9.1 Properties . 11 3.2 Sum and Difference . 4 9.2 Coordinate Transformation . 11 3.3 Double Angle . 4 3.4 Half Angle . 4 10 Special Polar Graphs 11 3.5 Multiple Angle . 4 10.1 Limaçon of Pascal . 12 3.6 Power Reduction . 5 10.2 Rose . 13 3.7 Product to Sum . 5 10.3 Spiral of Archimedes . 13 3.8 Sum to Product . 5 10.4 Lemniscate of Bernoulli . 13 3.9 Linear Combinations . -
Study of Spiral Transition Curves As Related to the Visual Quality of Highway Alignment
A STUDY OF SPIRAL TRANSITION CURVES AS RELA'^^ED TO THE VISUAL QUALITY OF HIGHWAY ALIGNMENT JERRY SHELDON MURPHY B, S., Kansas State University, 1968 A MJvSTER'S THESIS submitted in partial fulfillment of the requirements for the degree MASTER OF SCIENCE Department of Civil Engineering KANSAS STATE UNIVERSITY Manhattan, Kansas 1969 Approved by P^ajQT Professor TV- / / ^ / TABLE OF CONTENTS <2, 2^ INTRODUCTION 1 LITERATURE SEARCH 3 PURPOSE 5 SCOPE 6 • METHOD OF SOLUTION 7 RESULTS 18 RECOMMENDATIONS FOR FURTHER RESEARCH 27 CONCLUSION 33 REFERENCES 34 APPENDIX 36 LIST OF TABLES TABLE 1, Geonetry of Locations Studied 17 TABLE 2, Rates of Change of Slope Versus Curve Ratings 31 LIST OF FIGURES FIGURE 1. Definition of Sight Distance and Display Angle 8 FIGURE 2. Perspective Coordinate Transformation 9 FIGURE 3. Spiral Curve Calculation Equations 12 FIGURE 4. Flow Chart 14 FIGURE 5, Photograph and Perspective of Selected Location 15 FIGURE 6. Effect of Spiral Curves at Small Display Angles 19 A, No Spiral (Circular Curve) B, Completely Spiralized FIGURE 7. Effects of Spiral Curves (DA = .015 Radians, SD = 1000 Feet, D = l** and A = 10*) 20 Plate 1 A. No Spiral (Circular Curve) B, Spiral Length = 250 Feet FIGURE 8. Effects of Spiral Curves (DA = ,015 Radians, SD = 1000 Feet, D = 1° and A = 10°) 21 Plate 2 A. Spiral Length = 500 Feet B. Spiral Length = 1000 Feet (Conpletely Spiralized) FIGURE 9. Effects of Display Angle (D = 2°, A = 10°, Ig = 500 feet, = SD 500 feet) 23 Plate 1 A. Display Angle = .007 Radian B. Display Angle = .027 Radiaji FIGURE 10. -
The Ordered Distribution of Natural Numbers on the Square Root Spiral
The Ordered Distribution of Natural Numbers on the Square Root Spiral - Harry K. Hahn - Ludwig-Erhard-Str. 10 D-76275 Et Germanytlingen, Germany ------------------------------ mathematical analysis by - Kay Schoenberger - Humboldt-University Berlin ----------------------------- 20. June 2007 Abstract : Natural numbers divisible by the same prime factor lie on defined spiral graphs which are running through the “Square Root Spiral“ ( also named as “Spiral of Theodorus” or “Wurzel Spirale“ or “Einstein Spiral” ). Prime Numbers also clearly accumulate on such spiral graphs. And the square numbers 4, 9, 16, 25, 36 … form a highly three-symmetrical system of three spiral graphs, which divide the square-root-spiral into three equal areas. A mathematical analysis shows that these spiral graphs are defined by quadratic polynomials. The Square Root Spiral is a geometrical structure which is based on the three basic constants: 1, sqrt2 and π (pi) , and the continuous application of the Pythagorean Theorem of the right angled triangle. Fibonacci number sequences also play a part in the structure of the Square Root Spiral. Fibonacci Numbers divide the Square Root Spiral into areas and angle sectors with constant proportions. These proportions are linked to the “golden mean” ( golden section ), which behaves as a self-avoiding-walk- constant in the lattice-like structure of the square root spiral. Contents of the general section Page 1 Introduction to the Square Root Spiral 2 2 Mathematical description of the Square Root Spiral 4 3 The distribution -
(Spiral Curves) When Transition Curves Are Not Provided, Drivers Tend To
The Transition Curves (Spiral Curves) The transition curve (spiral) is a curve that has a varying radius. It is used on railroads and most modem highways. It has the following purposes: 1- Provide a gradual transition from the tangent (r=∞ )to a simple circular curve with radius R 2- Allows for gradual application of superelevation. Advantages of the spiral curves: 1- Provide a natural easy to follow path such that the lateral force increase and decrease gradually as the vehicle enters and leaves the circular curve 2- The length of the transition curve provides a suitable location for the superelevation runoff. 3- The spiral curve facilitate the transition in width where the travelled way is widened on circular curve. 4- The appearance of the highway is enhanced by the application of spiral curves. When transition curves are not provided, drivers tend to create their own transition curves by moving laterally within their travel lane and sometimes the adjoining lane, which is risky not only for them but also for other road users. Minimum length of spiral. Minimum length of spiral is based on consideration of driver comfort and shifts in the lateral position of vehicles. It is recommended that these two criteria be used together to determine the minimum length of spiral. Thus, the minimum spiral length can be computed as: Ls, min should be the larger of: , , . Ls,min = minimum length of spiral, m; Pmin = minimum lateral offset (shift) between the tangent and circular curve (0.20 m); R = radius of circular curve, m; V = design speed, km/h; C = maximum rate of change in lateral acceleration (1.2 m/s3) Maximum length of spiral. -
Chapter 2. Parameterized Curves in R3
Chapter 2. Parameterized Curves in R3 Def. A smooth curve in R3 is a smooth map σ :(a, b) → R3. For each t ∈ (a, b), σ(t) ∈ R3. As t increases from a to b, σ(t) traces out a curve in R3. In terms of components, σ(t) = (x(t), y(t), z(t)) , (1) or x = x(t) σ : y = y(t) a < t < b , z = z(t) dσ velocity at time t: (t) = σ0(t) = (x0(t), y0(t), z0(t)) . dt dσ speed at time t: (t) = |σ0(t)| dt Ex. σ : R → R3, σ(t) = (r cos t, r sin t, 0) - the standard parameterization of the unit circle, x = r cos t σ : y = r sin t z = 0 σ0(t) = (−r sin t, r cos t, 0) |σ0(t)| = r (constant speed) 1 Ex. σ : R → R3, σ(t) = (r cos t, r sin t, ht), r, h > 0 constants (helix). σ0(t) = (−r sin t, r cos t, h) √ |σ0(t)| = r2 + h2 (constant) Def A regular curve in R3 is a smooth curve σ :(a, b) → R3 such that σ0(t) 6= 0 for all t ∈ (a, b). That is, a regular curve is a smooth curve with everywhere nonzero velocity. Ex. Examples above are regular. Ex. σ : R → R3, σ(t) = (t3, t2, 0). σ is smooth, but not regular: σ0(t) = (3t2, 2t, 0) , σ0(0) = (0, 0, 0) Graph: x = t3 y = t2 = (x1/3)2 σ : y = t2 ⇒ y = x2/3 z = 0 There is a cusp, not because the curve isn’t smooth, but because the velocity = 0 at the origin. -
Riemann-Liouville Fractional Calculus of Blancmange Curve and Cantor Functions
Journal of Applied Mathematics and Computation, 2020, 4(4), 123-129 https://www.hillpublisher.com/journals/JAMC/ ISSN Online: 2576-0653 ISSN Print: 2576-0645 Riemann-Liouville Fractional Calculus of Blancmange Curve and Cantor Functions Srijanani Anurag Prasad Department of Mathematics and Statistics, Indian Institute of Technology Tirupati, India. How to cite this paper: Srijanani Anurag Prasad. (2020) Riemann-Liouville Frac- Abstract tional Calculus of Blancmange Curve and Riemann-Liouville fractional calculus of Blancmange Curve and Cantor Func- Cantor Functions. Journal of Applied Ma- thematics and Computation, 4(4), 123-129. tions are studied in this paper. In this paper, Blancmange Curve and Cantor func- DOI: 10.26855/jamc.2020.12.003 tion defined on the interval is shown to be Fractal Interpolation Functions with appropriate interpolation points and parameters. Then, using the properties of Received: September 15, 2020 Fractal Interpolation Function, the Riemann-Liouville fractional integral of Accepted: October 10, 2020 Published: October 22, 2020 Blancmange Curve and Cantor function are described to be Fractal Interpolation Function passing through a different set of points. Finally, using the conditions for *Corresponding author: Srijanani the fractional derivative of order ν of a FIF, it is shown that the fractional deriva- Anurag Prasad, Department of Mathe- tive of Blancmange Curve and Cantor function is not a FIF for any value of ν. matics, Indian Institute of Technology Tirupati, India. Email: [email protected] Keywords Fractal, Interpolation, Iterated Function System, fractional integral, fractional de- rivative, Blancmange Curve, Cantor function 1. Introduction Fractal geometry is a subject in which irregular and complex functions and structures are researched. -
On the Beta Transformation
On the Beta Transformation Linas Vepstas December 2017 (Updated Feb 2018 and Dec 2018) [email protected] doi:10.13140/RG.2.2.17132.26248 Abstract The beta transformation is the iterated map bx mod 1. The special case of b = 2 is known as the Bernoulli map, and is exactly solvable. The Bernoulli map provides a model for pure, unrestrained chaotic (ergodic) behavior: it is the full invariant shift on the Cantor space f0;1gw . The Cantor space consists of infinite strings of binary digits; it is notable for many properties, including that it can represent the real number line. The beta transformation defines a subshift: iterated on the unit interval, it sin- gles out a subspace of the Cantor space that is invariant under the action of the left-shift operator. That is, lopping off one bit at a time gives back the same sub- space. The beta transform seems to capture something basic about the multiplication of two real numbers: b and x. It offers insight into the nature of multiplication. Iterating on multiplication, one would get b nx – that is, exponentiation; the mod 1 of the beta transform contorts this in strange ways. Analyzing the beta transform is difficult. The work presented here is more-or- less a research diary: a pastiche of observations and some shallow insights. One is that chaos seems to be rooted in how the carry bit behaves during multiplication. Another is that one can surgically insert “islands of stability” into chaotic (ergodic) systems, and have some fair amount of control over how those islands of stability behave. -
Pointwise Regularity of Parametrized Affine Zipper Fractal Curves
POINTWISE REGULARITY OF PARAMETERIZED AFFINE ZIPPER FRACTAL CURVES BALAZS´ BAR´ ANY,´ GERGELY KISS, AND ISTVAN´ KOLOSSVARY´ Abstract. We study the pointwise regularity of zipper fractal curves generated by affine mappings. Under the assumption of dominated splitting of index-1, we calculate the Hausdorff dimension of the level sets of the pointwise H¨olderexpo- nent for a subinterval of the spectrum. We give an equivalent characterization for the existence of regular pointwise H¨olderexponent for Lebesgue almost every point. In this case, we extend the multifractal analysis to the full spectrum. In particular, we apply our results for de Rham's curve. 1. Introduction and Statements Let us begin by recalling the general definition of fractal curves from Hutchin- son [22] and Barnsley [3]. d Definition 1.1. A system S = ff0; : : : ; fN−1g of contracting mappings of R to itself is called a zipper with vertices Z = fz0; : : : ; zN g and signature " = ("0;:::;"N−1), "i 2 f0; 1g, if the cross-condition fi(z0) = zi+"i and fi(zN ) = zi+1−"i holds for every i = 0;:::;N − 1. We call the system a self-affine zipper if the functions fi are affine contractive mappings of the form fi(x) = Aix + ti; for every i 2 f0; 1;:::;N − 1g; d×d d where Ai 2 R invertible and ti 2 R . The fractal curve generated from S is the unique non-empty compact set Γ, for which N−1 [ Γ = fi(Γ): i=0 If S is an affine zipper then we call Γ a self-affine curve. -
Computer Graphics
CS6504-Computer Graphics M.I.E.T. ENGINEERING COLLEGE (Approved by AICTE and Affiliated to Anna University Chennai) TRICHY – PUDUKKOTTAI ROAD, TIRUCHIRAPPALLI – 620 007 DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING COURSE MATERIAL CS6504 - COMPUTER GRAPHICS III YEAR - V SEMESTER M.I.E.T./CSE/III/Computer Graphics CS6504-Computer Graphics M.I.E.T. ENGINEERING COLLEGE DEPARTMENT OF CSE (Approved by AICTE and Affiliated to Anna University Chennai) TRICHY – PUDUKKOTTAISYLLABUS (THEORY) ROAD, TIRUCHIRAPPALLI – 620 007 Sub. Code :CS6504 Branch / Year / Sem : CSE / III / V Sub.Name : COMPUTER GRAPHICS Staff Name :B.RAMA L T P C 3 0 0 3 UNIT I INTRODUCTION 9 Survey of computer graphics, Overview of graphics systems – Video display devices, Raster scan systems, Random scan systems, Graphics monitors and Workstations, Input devices, Hard copy Devices, Graphics Software; Output primitives – points and lines, line drawing algorithms, loading the frame buffer, line function; circle and ellipse generating algorithms; Pixel addressing and object geometry, filled area primitives. UNIT II TWO DIMENSIONAL GRAPHICS 9 Two dimensional geometric transformations – Matrix representations and homogeneous coordinates, composite transformations; Two dimensional viewing – viewing pipeline, viewing coordinate reference frame; widow-to- viewport coordinate transformation, Two dimensional viewing functions; clipping operations – point, line, and polygon clipping algorithms. UNIT III THREE DIMENSIONAL GRAPHICS 10 Three dimensional concepts; Three dimensional object representations – Polygon surfaces- Polygon tables- Plane equations - Polygon meshes; Curved Lines and surfaces, Quadratic surfaces; Blobby objects; Spline representations – Bezier curves and surfaces -B-Spline curves and surfaces. TRANSFORMATION AND VIEWING: Three dimensional geometric and modeling transformations – Translation, Rotation, Scaling, composite transformations; Three dimensional viewing – viewing pipeline, viewing coordinates, Projections, Clipping; Visible surface detection methods. -
Fractals in Dimension Theory and Complex Networks
BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS DOCTORAL THESIS BOOKLET Fractals in dimension theory and complex networks Author: Supervisor: István KOLOSSVÁRY Dr. Károly SIMON Doctoral School of Mathematics and Computer Science Faculty of Natural Sciences 2019 1 Introduction The word "fractal" comes from the Latin fractus¯ meaning "broken" or "fractured". Since the 1970s, 80s, fractal geometry has become an important area of mathematics with many connections to theory and practice alike. The main aim of the Thesis is to demonstrate the diverse applicability of fractals in different areas of mathematics. Namely, 1. widen the class of planar self-affine carpets for which we can calculate the dif- ferent dimensions especially in the presence of overlapping cylinders, 2. perform multifractal analysis for the pointwise Hölder exponent of a family of continuous parameterized fractal curves in Rd including deRham’s curve, 3. show how hierarchical structure can be used to determine the asymptotic growth of the distance between two vertices and the diameter of a random graph model, which can be derived from the Apollonian circle packing problem. Chapter 1 of the thesis gives an introduction to these topics and informally ex- plains the contributions made in an accessible way to a wider mathematical audience. Chapters 2, 3 and 4 contain the precise definitions and rigorous formulations of our re- sults, together with the proofs. They are based on the papers [KS18; BKK18; KKV16], respectively. 1 Self-affine planar carpets A self-affine Iterated Function System (IFS) F consists of a finite collection of maps d d fi : R ! R of the form fi(x) = Aix + ti, d×d for i 2 [N] := f1, 2, .