Testing and Maintenance of Graphical User Interfaces Valeria Lelli Leitao

Total Page:16

File Type:pdf, Size:1020Kb

Testing and Maintenance of Graphical User Interfaces Valeria Lelli Leitao Testing and maintenance of graphical user interfaces Valeria Lelli Leitao To cite this version: Valeria Lelli Leitao. Testing and maintenance of graphical user interfaces. Human-Computer Inter- action [cs.HC]. INSA de Rennes, 2015. English. NNT : 2015ISAR0022. tel-01232388v2 HAL Id: tel-01232388 https://tel.archives-ouvertes.fr/tel-01232388v2 Submitted on 11 Apr 2016 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. THÈSE INSA Rennes présentée par sous le sceau de l’Université Européenne de Bretagne Valéria Lelli Leitão Dan- pour obtenir le grade de tas DOCTEUR DE L’INSA DE RENNES ÉCOLE DOCTORALE : MATISSE Spécialité : Informatique LABORATOIRE : IRISA/INRIA Thèse soutenue le 19 Novembre 2015 devant le jury composé de : Testing and Pascale Sébillot Professeur, Universités IRISA/INSA de Rennes / Présidente maintenance of Lydie du Bousquet Professeur d’informatique, Université Joseph Fourier / Rapporteuse Philippe Palanque graphical user Professeur d’informatique, Université Toulouse III / Rapporteur Francois-Xavier Dormoy interfaces Chef de produit senior, Esterel Technologies / Examinateur Benoit Baudry HDR, Chargé de recherche, INRIA Rennes - Bretagne Atlantique / Directeur de thèse Arnaud Blouin Maître de Conférences, INSA Rennes / Co-encadrant de thèse Testing and Maintenance of Graphical User Interfaces Valéria Lelli Leitão Dantas Document protégé par les droits d’auteur Contents Acknowledgements 5 Abstract 7 Résumé en Français 9 1Introduction 19 1.1 Context .................................... 19 1.2 Challenges and Objectives for Testing GUIs . 19 1.3 Contributions ................................. 22 1.4 Overviewofthisthesis ............................ 24 IStateoftheArtandRelatedWork 27 2StateoftheArtandRelatedWork 29 2.1 GUIDesign .................................. 29 2.1.1 TypesofGUIs ............................ 30 2.1.2 Seminal HCI Concepts . 31 2.2 GUIarchitecturaldesignpatterns. 33 2.3 GUIV&Vtechniques............................. 36 2.3.1 Defect classification schemes . 37 2.3.2 Model-basedGUItesting . 47 2.3.3 Dynamic Analysis . 49 2.3.4 StaticAnalysis ............................ 52 2.4 Conclusions .................................. 59 II Contributions 61 3GUIfaultmodel 63 3.1 FaultModel.................................. 63 3.1.1 UserInterfaceFaults . 64 3.1.2 UserInteractionFaults. 66 1 2 CONTENTS 3.1.3 Discussion............................... 69 3.2 Relevance of the Fault Model: an empirical analysis . 70 3.2.1 Introduction.............................. 70 3.2.2 ExperimentalProtocol . 70 3.2.3 ClassificationandAnalysis . 71 3.2.4 Discussion............................... 72 3.3 Are GUI Testing Tools Able to Detect Classified Failures? An Empirical Study ..................................... 73 3.3.1 GUITARandJubula. 73 3.3.2 Experiment .............................. 74 3.3.3 ResultsandDiscussion. 74 3.4 ForgingfaultyGUIsforbenchmarking . 76 3.4.1 PresentationofLaTeXDraw . 76 3.4.2 MutantsGeneration ......................... 77 3.4.3 How GUI testing tools kill our GUI mutants: a first experiment . 79 3.5 ThreatstoValidity .............................. 80 3.6 Current limitations in testing advanced GUIs . 81 3.6.1 Studying failures found by current GUI testing frameworks . 81 3.6.2 LimitsofthecurrentGUItestingframeworks . 81 3.7 GUItestingwithricherUIDLs . 84 3.7.1 ModelingGUIswithMalaiUIDL . 84 3.7.2 Interaction-action-flowgraph . 86 3.7.3 Casestudies.............................. 88 3.8 Conclusion................................... 91 4 GUI Design Smells: The Case of Blob listener 93 4.1 Introduction.................................. 94 4.2 WhatComposeGUIlisteners? AnEmpiricalStudy . 97 4.3 Blob listener: Definition&Illustration . 98 4.3.1 Blob listener ............................. 99 4.3.2 Variants of Blob listener ....................... 99 4.4 Detecting Blob listeners ........................... 102 4.4.1 ApproachOverview . 102 4.4.2 Detecting Conditional GUI Listeners . 103 4.4.3 Detecting Commands in Conditional GUI Listeners . 103 4.4.4 Blob listener Detection........................ 106 4.5 Evaluation................................... 106 4.5.1 Objects ................................ 106 4.5.2 Methodology ............................. 107 4.5.3 Results and Analysis . 108 4.6 Threatstovalidity .............................. 113 4.7 Discussion................................... 114 4.7.1 ScopeoftheApproach. 114 4.7.2 GoodPractice ............................ 115 CONTENTS 3 4.8 Towardsarefactoring ............................ 116 4.9 Conclusion................................... 118 III Conclusion and Perspectives 121 5 Conclusion and Perspectives 123 5.1 Summaryofcontributions . 123 5.2 Perspectives.................................. 125 Appendix 131 Bibliographie 135 List of Figures 147 List of Tables 149 List of algorithms 151 Acknowledgements I would like to thank my supervisors, Benoit Baudry and Arnaud Blouin, for their guidance and mentoring that made this work possible. I would like to say that working in the Diverse team was an pleasure. I owe special thanks to my Master’s supervisor, Rossana Andrade, for introducing me in the research world and encouraging me to do a PhD abroad. I would like to thank my family. Even so far away from home, they are always present in my life during these three years. I first wish to express my gratitude to my parents, Ademir and Maria Aparecida, for all their support, comprehension, and love. I would like to thank my brother Marcelo for helping me with his designer skills. Thanks to my sister Claudia for all love and for giving us three awesome nephews: João Henrique, Arthur and my goddaughter Júlia. A special thank to my youngest sister Priscila for being a godmother and taking care of my precious Assolinha until the last moment of his life. I would like to thank my loved Assolinha, my eternal little gray, for doing me a better person. You will be always in my heart and forever on my mind. Finally, I thank my husband Manoel for encouraging me to accept this challenge. Thanks so much for your sacrifice, patience, support, and love. Your presence was vital. Thank you my life. I love you. 5 Abstract Graphical user interfaces (GUIs) are integral parts of interactive systems that require interactions from their users to produce actions that modify the state of the system. While GUI design and qualitative assessment is handled by GUI designers, integrating GUIs into software systems remains a software engineering task. The software engi- neering community takes special attention to the quality and the reliability of software systems. Software testing techniques have been developed to find errors in code. Soft- ware quality criteria and measurement techniques have also been assessed to detect error-prone code. In this thesis, we argue that the same attention has to be investigated on the quality and reliability of GUIs, from a software engineering point of view. We specifically make two contributions on this topic. First, GUIs can be affected by errors stemming from development mistakes. While the current GUI testing tools have demonstrated their ability in finding several kinds of failures (e.g., crashes, regressions) on simple GUIs, various kinds of faults specific to GUIs have to be identified and studied. The first contribution of this thesis is a fault model that identifies and classifies GUI faults. This fault model has been designed empirically by performing a round trip process between the analysis of the state-of-the-art of GUI design and bug reports. For each fault we illustrate which part of a GUI is affected and how that fault occurs as GUI failure. We show that GUI faults are diverse and imply different testing techniques to be detected. We then develop GUI mutants derived from our fault model. These mutants are freely available for developers of GUI testing tools to evaluate the ability of their tool in finding GUI failures. Second, like any code artifact, GUI code must be maintained and is prone to evolu- tion. Design smells are bad designs in the code that may affect its quality. Maintenance operations can be performed to correct design smells. As for the first contribution, we focus on design smells that can affect GUIs specifically. We identify and characterize a new type of design smell, called Blob listener, which is a GUI specific instance of a more general design smell: God method, that characterizes methods that "know too much or do too much". It occurs when a GUI listener, that gathers events to treat and transform as commands, can produce more than one command. We propose a system- atic static code analysis procedure that searches for Blob listener that we implement in a tool called InspectorGuidget. Experiments we conducted exhibits positive results regarding the ability of InspectorGuidget in detecting Blob listeners. To counteract the 7 8 Abstract use of Blob listeners, we propose good coding practices regarding the development of GUI listeners. Résumé en Français Contexte Les logiciels reposent généralement sur des interfaces utilisateur pour être contrôlés par les utilisateurs.
Recommended publications
  • Test Code Quality and Its Relation to Issue Handling Performance
    IEEE TRANSACTIONS ON SOFTWARE ENGINEERING, VOL. 0, NO. 0, JANUARY 2000 1 Test Code Quality and Its Relation to Issue Handling Performance Dimitrios Athanasiou, Ariadi Nugroho Member, IEEE, Joost Visser Member, IEEE Computer Society and Andy Zaidman Member, IEEE Computer Society Abstract—Automated testing is a basic principle of agile development. Its benefits include early defect detection, defect cause localization and removal of fear to apply changes to the code. Therefore, maintaining high quality test code is essential. This study introduces a model that assesses test code quality by combining source code metrics that reflect three main aspects of test code quality: completeness, effectiveness and maintainability. The model is inspired by the Software Quality Model of the Software Improvement Group which aggregates source code metrics into quality ratings based on benchmarking. To validate the model we assess the relation between test code quality, as measured by the model, and issue handling performance. An experiment is conducted in which the test code quality model is applied to 18 open source systems. The test quality ratings are tested for correlation with issue handling indicators, which are obtained by mining issue repositories. In particular, we study the (1) defect resolution speed, (2) throughput and (3) productivity issue handling metrics. The results reveal a significant positive correlation between test code quality and two out of the three issue handling metrics (throughput and productivity), indicating that good test code quality positively influences issue handling performance. Index Terms—Testing, Defects, Bugs, Metrics, Measurement. F 1 INTRODUCTION between the quality of the test code of a software system and the development team’s performance in fixing defects Software testing is well established as an essential part of and implementing new features.
    [Show full text]
  • Chapter 2 3D User Interfaces: History and Roadmap
    30706 02 pp011-026 r1jm.ps 5/6/04 3:49 PM Page 11 CHAPTER 2 3D3D UserUser Interfaces:Interfaces: HistoryHistory andand RoadmapRoadmap Three-dimensional UI design is not a traditional field of research with well-defined boundaries. Like human–computer interaction (HCI), it draws from many disciplines and has links to a wide variety of topics. In this chapter, we briefly describe the history of 3D UIs to set the stage for the rest of the book. We also present a 3D UI “roadmap” that posi- tions the topics covered in this book relative to associated areas. After reading this chapter, you should have an understanding of the origins of 3D UIs and its relation to other fields, and you should know what types of information to expect from the remainder of this book. 2.1. History of 3D UIs The graphical user interfaces (GUIs) used in today’s personal computers have an interesting history. Prior to 1980, almost all interaction with com- puters was based on typing complicated commands using a keyboard. The display was used almost exclusively for text, and when graphics were used, they were typically noninteractive. But around 1980, several technologies, such as the mouse, inexpensive raster graphics displays, and reasonably priced personal computer parts, were all mature enough to enable the first GUIs (such as the Xerox Star). With the advent of GUIs, UI design and HCI in general became a much more important research area, since the research affected everyone using computers. HCI is an 11 30706 02 pp011-026 r1jm.ps 5/6/04 3:49 PM Page 12 12 Chapter 2 3D User Interfaces: History and Roadmap 1 interdisciplinary field that draws from existing knowledge in perception, 2 cognition, linguistics, human factors, ethnography, graphic design, and 3 other areas.
    [Show full text]
  • WEKA Manual for Version 3-7-8
    WEKA Manual for Version 3-7-8 Remco R. Bouckaert Eibe Frank Mark Hall Richard Kirkby Peter Reutemann Alex Seewald David Scuse January 21, 2013 ⃝c 2002-2013 University of Waikato, Hamilton, New Zealand Alex Seewald (original Commnd-line primer) David Scuse (original Experimenter tutorial) This manual is licensed under the GNU General Public License version 3. More information about this license can be found at http://www.gnu.org/licenses/gpl-3.0-standalone.html Contents ITheCommand-line 11 1Acommand-lineprimer 13 1.1 Introduction . 13 1.2 Basic concepts . 14 1.2.1 Dataset . 14 1.2.2 Classifier . 16 1.2.3 weka.filters . 17 1.2.4 weka.classifiers . 19 1.3 Examples . 23 1.4 Additional packages and the package manager . .24 1.4.1 Package management . 25 1.4.2 Running installed learning algorithms . 26 II The Graphical User Interface 29 2LaunchingWEKA 31 3PackageManager 35 3.1 Mainwindow ............................. 35 3.2 Installing and removing packages . 36 3.2.1 Unofficalpackages ...................... 37 3.3 Usingahttpproxy.......................... 37 3.4 Using an alternative central package meta data repository . 37 3.5 Package manager property file . 38 4SimpleCLI 39 4.1 Commands . 39 4.2 Invocation . 40 4.3 Command redirection . 40 4.4 Command completion . 41 5Explorer 43 5.1 The user interface . 43 5.1.1 Section Tabs . 43 5.1.2 Status Box . 43 5.1.3 Log Button . 44 5.1.4 WEKA Status Icon . 44 3 4 CONTENTS 5.1.5 Graphical output . 44 5.2 Preprocessing . 45 5.2.1 Loading Data .
    [Show full text]
  • Tinkertool System 7 Reference Manual Ii
    Documentation 0642-1075/2 TinkerTool System 7 Reference Manual ii Version 7.5, August 24, 2021. US-English edition. MBS Documentation 0642-1075/2 © Copyright 2003 – 2021 by Marcel Bresink Software-Systeme Marcel Bresink Software-Systeme Ringstr. 21 56630 Kretz Germany All rights reserved. No part of this publication may be redistributed, translated in other languages, or transmitted, in any form or by any means, electronic, mechanical, recording, or otherwise, without the prior written permission of the publisher. This publication may contain examples of data used in daily business operations. To illustrate them as completely as possible, the examples include the names of individuals, companies, brands, and products. All of these names are fictitious and any similarity to the names and addresses used by an actual business enterprise is entirely coincidental. This publication could include technical inaccuracies or typographical errors. Changes are periodically made to the information herein; these changes will be incorporated in new editions of the publication. The publisher may make improvements and/or changes in the product(s) and/or the program(s) described in this publication at any time without notice. Make sure that you are using the correct edition of the publication for the level of the product. The version number can be found at the top of this page. Apple, macOS, iCloud, and FireWire are registered trademarks of Apple Inc. Intel is a registered trademark of Intel Corporation. UNIX is a registered trademark of The Open Group. Broadcom is a registered trademark of Broadcom, Inc. Amazon Web Services is a registered trademark of Amazon.com, Inc.
    [Show full text]
  • WIMP Interfaces for Emerging Display Environments
    Graz University of Technology Institute for Computer Graphics and Vision Dissertation WIMP Interfaces for Emerging Display Environments Manuela Waldner Graz, Austria, June 2011 Thesis supervisor Prof. Dr. Dieter Schmalstieg Referee Prof. Dr. Andreas Butz To Martin Abstract With the availability of affordable large-scale monitors and powerful projector hardware, an increasing variety of display configurations can be found in our everyday environments, such as office spaces and meeting rooms. These emerging display environments combine conventional monitors and projected displays of different size, resolution, and orientation into a common interaction space. However, the commonly used WIMP (windows, icons, menus, and pointers) user interface metaphor is still based on a single pointer operating multiple overlapping windows on a single, rectangular screen. This simple concept cannot easily capture the complexity of heterogeneous display settings. As a result, the user cannot facilitate the full potential of emerging display environments using these interfaces. The focus of this thesis is to push the boundaries of conventional WIMP interfaces to enhance information management in emerging display environments. Existing and functional interfaces are extended to incorporate knowledge from two layers: the physical environment and the content of the individual windows. The thesis first addresses the tech- nical infrastructure to construct spatially aware multi-display environments and irregular displays. Based on this infrastructure, novel WIMP interaction and information presenta- tion techniques are demonstrated, exploiting the system's knowledge of the environment and the window content. These techniques cover two areas: spatially-aware cross-display navigation techniques for efficient information access on remote displays and window man- agement techniques incorporating knowledge of display form factors and window content to support information discovery, manipulation, and sharing.
    [Show full text]
  • Abaqus GUI Toolkit User's Guide
    Abaqus GUI Toolkit User’s Guide ABAQUS 6.14 GUI TOOLKIT USER’S GUIDE Abaqus ID: Printed on: Abaqus GUI Toolkit User’s Guide Abaqus ID: Printed on: Legal Notices CAUTION: This documentation is intended for qualified users who will exercise sound engineering judgment and expertise in the use of the Abaqus Software. The Abaqus Software is inherently complex, and the examples and procedures in this documentation are not intended to be exhaustive or to apply to any particular situation. Users are cautioned to satisfy themselves as to the accuracy and results of their analyses. Dassault Systèmes and its subsidiaries, including Dassault Systèmes Simulia Corp., shall not be responsible for the accuracy or usefulness of any analysis performed using the Abaqus Software or the procedures, examples, or explanations in this documentation. Dassault Systèmes and its subsidiaries shall not be responsible for the consequences of any errors or omissions that may appear in this documentation. The Abaqus Software is available only under license from Dassault Systèmes or its subsidiary and may be used or reproduced only in accordance with the terms of such license. This documentation is subject to the terms and conditions of either the software license agreement signed by the parties, or, absent such an agreement, the then current software license agreement to which the documentation relates. This documentation and the software described in this documentation are subject to change without prior notice. No part of this documentation may be reproduced or distributed in any form without prior written permission of Dassault Systèmes or its subsidiary. The Abaqus Software is a product of Dassault Systèmes Simulia Corp., Providence, RI, USA.
    [Show full text]
  • Design Patterns and Frameworks for Developing WIMP User Interfaces
    Design Patterns and Frameworks for Developing WIMP+ User Interfaces Vom Fachbereich Informatik der Technischen Universität Darmstadt genehmigte Dissertation zur Erlangung des akademischen Grades der Doktor-Ingenieurin (Dr.-Ing.) vorgelegt von Yongmei Wu, M.Sc. geboren in Guizhou, China Referenten der Arbeit: Prof. Dr.-Ing. Hans-Jürgen Hoffmann Prof. Robert J.K. Jacob, Ph.D. Tag des Einreichens: 09.10.2001 Tag der mündlichen Prüfung: 11.12.2001 D17 Darmstädter Dissertation 2001 Abstract Abstract This work investigates the models and tools for support of developing a kind of future user interfaces, which are partially built upon the WIMP (Windows, Icons, Menus, and Pointing device: the mouse) interaction techniques and devices; and able to observe and leverage at least one controlled process under the supervision of their user(s). In this thesis, they are called WIMP+ user interfaces. There are a large variety of applications dealt with WIMP+ user interfaces, e.g., robot control, telecommunication, car driver assistant systems, distributed multi-user database systems, automation rail systems, etc. At first, it studies the evolution of user interfaces, deduces the innovative functions of future user interfaces, and defines WIMP+ user interfaces. Then, it investigates high level models for user interface realization. Since the most promising user-centered design methodology is a new emerging model, it is still short of modeling methodology and rules to support the concrete development process. Therefore, in this work, a universal modeling methodology, which picks up the design pattern application, is researched and used to structure different low level user interface models. And a framework, named Hot-UCDP, for aiding the development process, is proposed.
    [Show full text]
  • The Three-Dimensional User Interface
    32 The Three-Dimensional User Interface Hou Wenjun Beijing University of Posts and Telecommunications China 1. Introduction This chapter introduced the three-dimensional user interface (3D UI). With the emergence of Virtual Environment (VE), augmented reality, pervasive computing, and other "desktop disengage" technology, 3D UI is constantly exploiting an important area. However, for most users, the 3D UI based on desktop is still a part that can not be ignored. This chapter interprets what is 3D UI, the importance of 3D UI and analyses some 3D UI application. At the same time, according to human-computer interaction strategy and research methods and conclusions of WIMP, it focus on desktop 3D UI, sums up some design principles of 3D UI. From the principle of spatial perception of people, spatial cognition, this chapter explained the depth clues and other theoretical knowledge, and introduced Hierarchical Semantic model of “UE”, Scenario-based User Behavior Model and Screen Layout for Information Minimization which can instruct the design and development of 3D UI. This chapter focuses on basic elements of 3D Interaction Behavior: Manipulation, Navigation, and System Control. It described in 3D UI, how to use manipulate the virtual objects effectively by using Manipulation which is the most fundamental task, how to reduce the user's cognitive load and enhance the user's space knowledge in use of exploration technology by using navigation, and how to issue an order and how to request the system for the implementation of a specific function and how to change the system status or change the interactive pattern by using System Control.
    [Show full text]
  • Flexible Interfaces: Future Developments for Post-WIMP Interfaces Benjamin Bressolette, Michel Beaudouin-Lafon
    Flexible interfaces: future developments for post-WIMP interfaces Benjamin Bressolette, Michel Beaudouin-Lafon To cite this version: Benjamin Bressolette, Michel Beaudouin-Lafon. Flexible interfaces: future developments for post- WIMP interfaces. CMMR 2019 - 14th International Symposium on Computer Music Multidisciplinary Research, Oct 2019, Marseille, France. hal-02435177 HAL Id: hal-02435177 https://hal.archives-ouvertes.fr/hal-02435177 Submitted on 15 Jan 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Flexible interfaces : future developments for post-WIMP interfaces Benjamin Bressolette and Michel Beaudouin-Lafon LRI, Universit´eParis-Sud, CNRS, Inria, Universit´eParis-Saclay Orsay, France [email protected] R´esum´e Most current interfaces on desktop computers, tablets or smart- phones are based on visual information. In particular, graphical user in- terfaces on computers are based on files, folders, windows, and icons, ma- nipulated on a virtual desktop. This article presents an ongoing project on multimodal interfaces, which may lead to promising improvements for computers' interfaces. These interfaces intend to ease the interaction with computers for blind or visually impaired people. We plan to inter- view blind or visually impaired users, to understand how they currently use computers, and how a new kind of flexible interface can be designed to meet their needs.
    [Show full text]
  • Copyrighted Material
    Index Numerics Address Resolution Protocol (ARP), 1052–1053 admin password, SOHO network, 16-bit Windows applications, 771–776, 985, 1011–1012 900, 902 Administrative Tools window, 1081–1083, 32-bit (x86) architecture, 124, 562, 769 1175–1176 64-bit (x64) architecture, 124, 562, 770–771 administrative tools, Windows, 610 administrator account, 1169–1170 A Administrators group, 1171 ADSL (Asynchronous Digital Subscriber Absolute Software LoJack feature, 206 Line), 1120 AC (alternating current), 40 Advanced Attributes window, NTFS AC adapters, 311–312, 461, 468–469 partitions, 692 Accelerated Graphics Port (AGP), 58 Advanced Computing Environment (ACE) accelerated video cards (graphics initiative, 724 accelerator cards), 388 Advanced Confi guration and Power access points, wireless, 996, 1121 Interface (ACPI) standard, 465 access time, hard drive, 226 Advanced Graphics Port (AGP) card, access tokens, 1146–1147 391–392 Account Operators group, 1172 Advanced Graphics Port (AGP) port, 105 ACE (Advanced Computing Environment) Advanced Host Controller Interface (AHCI), initiative, 724 212–213 ACPI (Advanced Confi guration and Power Advanced Micro Devices (AMD), 141–144 Interface) standard, 465 Advanced Packaging Tool (APT), 572 Action Center, 1191–1192 Advanced Power Management (APM) Active Directory Database, 1145–1146, 1183 standard, 465 active heat sink, 150 Advanced Programmable Interrupt active matrix display, LCD (thin-fi lm Controller (APIC), 374 transistor (TFT) display), 470 Advanced RISC Computing Specifi cation active partition, 267,
    [Show full text]
  • What Is Interaction for Data Visualization? Evanthia Dimara, Charles Perin
    What is Interaction for Data Visualization? Evanthia Dimara, Charles Perin To cite this version: Evanthia Dimara, Charles Perin. What is Interaction for Data Visualization?. IEEE Transactions on Visualization and Computer Graphics, Institute of Electrical and Electronics Engineers, 2020, 26 (1), pp.119 - 129. 10.1109/TVCG.2019.2934283. hal-02197062 HAL Id: hal-02197062 https://hal.archives-ouvertes.fr/hal-02197062 Submitted on 30 Jul 2019 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. What is Interaction for Data Visualization? Evanthia Dimara and Charles Perin∗ Abstract—Interaction is fundamental to data visualization, but what “interaction” means in the context of visualization is ambiguous and confusing. We argue that this confusion is due to a lack of consensual definition. To tackle this problem, we start by synthesizing an inclusive view of interaction in the visualization community – including insights from information visualization, visual analytics and scientific visualization, as well as the input of both senior and junior visualization researchers. Once this view takes shape, we look at how interaction is defined in the field of human-computer interaction (HCI). By extracting commonalities and differences between the views of interaction in visualization and in HCI, we synthesize a definition of interaction for visualization.
    [Show full text]
  • Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm
    Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation zur Erlangung des akademischen Grades eines Doktors der Naturwissenschaften (Dr. rer. nat.) vorgelegt von Hans-Christian Jetter an der Universität Konstanz Mathematisch-Naturwissenschaftliche Sektion Fachbereich Informatik und Informationswissenschaft Tag der mündlichen Prüfung: 22. März 2013 1. Referent: Prof. Dr. Harald Reiterer (Universität Konstanz) 2. Referent: Prof. Dr. Andreas Butz (LMU München) Prüfungsvorsitzender: Prof. Dr. Daniel Keim (Universität Konstanz) Konstanz, Dezember 2013 Design and Implementation of Post-WIMP Interactive Spaces with the ZOIL Paradigm Dissertation submitted for the degree of Doctor of Natural Sciences (Dr. rer. nat.) Presented by Hans-Christian Jetter at the University of Konstanz Faculty of Sciences Department of Computer and Information Science Date of the oral examination: March 22nd, 2013 1st Supervisor: Prof. Dr. Harald Reiterer (University of Konstanz) 2nd Supervisor: Prof. Dr. Andreas Butz (University of Munich, LMU) Chief Examiner: Prof. Dr. Daniel Keim (University of Konstanz) Konstanz, December 2013 i Zusammenfassung Post-WIMP (post-“Windows, Icons, Menu, Pointer”) interaktive Räume sind physische Umgebungen oder Räume für die kollaborative Arbeit, die mit Technologien des Ubiquitous Computing angereichert sind. Ihr Zweck ist es, eine computer-unterstützte Kollaboration mehrerer Benutzer zu ermöglichen, die auf einer nahtlosen Benutzung mehrerer Geräte und Bildschirme mittels „natürlicher“ post-WIMP Interaktion basiert. Diese Dissertation beantwortet die Forschungsfrage, wie Gestalter und Entwickler solcher Umgebungen dabei unterstützt werden können, gebrauchstaugliche interaktive Räume für mehrere Benutzer mit mehreren Geräten zu erschaffen, die eine kollaborative Wissensarbeit ermöglichen. Zu diesem Zweck werden zunächst Konzepte wie post-WIMP Interaktion, interaktive Räume und Wissensarbeit definiert. Die Arbeit formuliert dann das neue technologische Paradigma ZOIL (Zoomable Object-Oriented Information Landscape).
    [Show full text]