Registration Statijs of Vertebrate Pesticides with Emphasis on 1080 and Strychnine

Total Page:16

File Type:pdf, Size:1020Kb

Registration Statijs of Vertebrate Pesticides with Emphasis on 1080 and Strychnine REGISTRATION STATIJS OF VERTEBRATE PESTICIDES WITH EMPHASIS ON 1080 AND STRYCHNINE STEVE D. PALMATEER, Insecticide-Rodenticide Branch, Registration Division, Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington D.C. ABSlRACT: A review of currently registered vertebrate pesticides is reported with by far the major weight given to strychnine and 1080. The author searched the Agency's label files and has listed most of those pesticides that have claims against at least one vertebrate animal. Proc. 14th Vertebr. Pest Con(. (LR. Davis and R .E. Marsh, Eds.) Published at Univ. of Calif., Davis. 1990. INTRODUCTION (Table 1) . These are pesticides registered under Sections 3 The purpose of this paper is to report on the current and 24 of the Federal Insecticide, Fungicide, and Rodenticide status of those active ingredients that purport some pesticidal Act (FIFRA). Also included were products that were used activity against vertebrate pests. At one time the Agency had only within state boundaries prior to 1972 (i.e., Intra-State in its files 1,583 labels on at least 85 vertebrate pesticides Products used under 40 CFR 162.17). Table 1. Llst of chemicals that have been listed as an active ingredient on at least one vertebrate pesticide label. Note that some of these vertebrate pesticides are no longer in use or the Agency has determined they should not be considered active ingredients. Chemical Chemical Chemical Acetophenone DDT Phosphorus Ally! isothiocyanate Diphacinone Alpha-pinene Alpha-chlorohydrin Diphacinone sodium salt Pival Aluminum phosphide Pival, calcium salt Endrin 4-aminopyridine (Avitrol) Pival, sodium salt ~ntial oils Anticycin A PMP Antimony potassium tartrate Fenthion Polybutenes ANTU Fumarin Putrescent whole egg solids Arsenious oxide (arsenic trioxide) Fumarin, sodium salt of R-55 Barium carbonate Geranium oil Red squiU Bayluscide Gophacide Rotenone Biomet 12 Lavender oil Bitrex (Benzyl diethyl ammonium) Soap Lemongrass oil Sodium cyanide (M-44) Blood (dried) d-limonene Starlicide Bone tar oil (bone oil) lindane (bird control use only) Strychnine alkaloid Brodifacoum Strychnine sulfate Bromadiolone Magnesium phosphide Sulfaquinoxaline Bromethalin Mesurol (Methiocarb) Methyl bromide Talon (Brodifacoum) Capsaicin Methylene chloride Carbon disulfide TFM Methyl nonyl ketone Tbalium sulfate Castor oil, hydrogenated Mineral oil Tobac.co dust Chlorophacinone Mustard oil Tri-n butyltin Cholecalciferol Thiram Cinnamaldehyde Naphthalene (repellent use only) Tbymol Citral Nicotine sulfate Citronella oil Norbormide Warfarin Coconut oil Warfarin sodium salt Omitrol Compound 1080 Zlnc phosphide Compound 1081 PA-14 Ziram Copper naphthenate Pardichlorobenzene 113 Starting in 1988 the list of vertebrate pesticides started to Also, as clearly required under the FIFRA, the responsibility shrink somewhat with the call-in of the intra-state products. for establishing the safety and efficacy of both of these This meant that the owners of these products were required vertebrate pesticides rests with the registrant and not with the to submit an application for a section 3 registration and the Agency. A complete data base for both strychnine and 1080 registration had to be supported by data. FIFRA, as had not been generated, in large part because of the amended in 1988, required registrants to pay maintenance fees uncertain registration status of the pesticides. starting in 1989. In 1989 this fee was $425 per registered The Agency has issued three Data Call-In (DCI) Notices product up to 50. When the total bill reaches $20,000, the for rodenticidal uses for strychnine and two for Compound registration fee drops to $100 for each additional registered 1080. EPA required that all products be supported by data product until the total bill reaches the maximum limit of necessary for registration under section 3. These actions were $35,000. This year the maintenance fee is $1,300 per product taken under the authority of FIFRA section 3(c)(2)(B) based (except the first product is $650). Section 4 of FIFRA on the determination that the additional data were needed to authorizes the administrator of the Agency to adjust the support the continued registration of both strychnine and maintenance fee so that the Agency will realize an aggregate Compound 1080 products. amount of $14 million. If these fees are not paid, the The Agency required product chemistry, environmental administrator may cancel a registration "by order and without fate chemistry, toxicology, and wildlife and aquatic organism hearing." Therefore if there is a net loss in the number of testing. The Agency also requested the development of registrations, the co.5t of the maintenance fees may increase tolerances for these products if there is foliar contact of the the next year. Reregistration of vertebrate pesticides al.so pesticide with a food or feed crop, uptake of the pesticide in contributed to the decline in the number of products. While a food or feed crop from the soil, or direct contact of the the scope of data requirements was kept to an absolute pesticide with a livestock animal (e.g., dermal contact or minimum in order to permit Agency scientists to make ingestion of treated bait), in which case the application is a judgments relevant to the safety and efficacy of a pesticide food use, and food use requirements will apply. Under these product, some registrants did not feel that the co.5ts of data circumstances, a petition for tolerance or a petition for generation would justify continued registration. Registrants exemption from the requirement of a tolerance is required to who are slow to submit required data can have their product support registration. As a result of the requirements, all registrations suspended from further sale and distribution until registrants revised their labels to reflect nonfood uses to avoid the required data is supplied to the Agency. Suspended the tolerance requirement. products are subject to the maintenance fees! EPA reviewed the data requirements very carefully before issuing the DCI documents. EPA feels that the requirements STRYCHNINE AND 1080 were lcept to an absolute minimum to avoid unnecessary data­ The Rebuttable Presumption Against Registration gathering ~ts and yet at the same time to provide adequate (RPAR) notice (now called Special Review) for 1080 and data in order to make a scientific regulatory judgment about strychnine was published in the FEDERAL REGISTER of the risks and benefits of Compound 1080 and strychnine. December 1, 1976. The presumption was against all outdoor Several registrants requested waivers and/or postponement of above-ground uses of strychnine and all uses of Compound data requirements and presented persuasive rationales why the 1080. Three other actions by the Federal government should waivers should be granted enabling the Agency to grant these be noted. In March 1972, Executive Order 11643 was issued. requests. This order prohibited the use of all toxicants, including In October 1985 and again in October 1987, EPA sent strychnine, for control of predators on federal lands or in a group of its scientists and other staff to public meetings in federal programs. Additionally, in February 1978 the Agency Denver, Colorado, to explain why the data were needed, how restricted products of several active ingredients, including the data should be generated, and describe the standard strychnine formulations with concentrations greater than 0.50 format for data submitted under FIFRA The Agency al.so percent, for use only by certified applicators. The criteria sent its vertebrate pest biologists to a meeting of the influencing the restriction for strychnine were significant acute strychnine registrants held in conjunction with the Thirteenth oral toxicity, apparent hazards to nontarget species, and the Vertebrate Pest Conference in Monterey, California, in March results of use and accident history. 1988. The most important development at this meeting was The RPAR criteria that were determined to have been the formation of the strychnine data-gathering consortium met or exceeded for the outdoor above-ground uses of headed by the U.S. Department of Agriculture, Animal and strychnine and all uses of Compound 1080 were: 1) acute Plant Health Inspection Service, Animal Damage Control toxicity to mammals and birds, and 2) significant reduction in (USDNAPHIS/ADC). From the beginning of the strychnine populations of nontarget organisms and fatalities to members consortium, the Agency has attempted to be helpful to the of endangered species. group (e.g., supplied names and addresses of all strychnine Position Document 2(3 (PD 2(3), which detailed the registrants, clarified many of the data requirements, reviewed Agency's decision on strychnine, was published for comments hundreds of protocols, and made hundreds of determinations in November 1980, and in June 1983 for Compound 1080. of data applicability from one registrant to another). In these documents, EPA proposed cancellation of many of the uses for both of these vertebrate pesticides or at least STRYCHNINE modification in terms of use. The Agency received numerous In spite of efforts by EPA, USDNAPHIS/ADC, and comments on the PD 2(3 documents. The most common others to facilitate the strychnine data-gathering process, it criticism was that the Agency had very little definitive data to became apparent in October 1988 that the strychnine data support its conclusions. The Agency felt that its worldwide requirements were not going to be satisfied in a timely literature search had yielded enough data to provide a basis manner. Therefore, on October 6, 1988, the Agency sent for concern about potential risks to nontarget organisms. Notices of Intent to Suspend to all strychnine registrants for 114 failing to submit product chemi.\try and/or failing to show provides the exclusive means of cancelling pesticide significant progr~ towards satisfying the wildlife safety­ registrations. However, the Endangered Species Act (ESA) efficacy data requirements. Notices of Intent to Suspend were contains a citiun suit provision which allows private citizens sent to 99 companies with a total of 383 products suspended to sue EPA to seek to enjoin violations.
Recommended publications
  • Federal Law and Vertebrate Pest Control
    University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln Proceedings of the 1st Vertebrate Pest Vertebrate Pest Conference Proceedings Conference (1962) collection February 1962 FEDERAL LAW AND VERTEBRATE PEST CONTROL Justus C. Ward Director, Pesticides Regulation Division, Agricultural Research Service, U.S. Department of Agriculture Follow this and additional works at: https://digitalcommons.unl.edu/vpcone Part of the Environmental Health and Protection Commons Ward, Justus C., "FEDERAL LAW AND VERTEBRATE PEST CONTROL" (1962). Proceedings of the 1st Vertebrate Pest Conference (1962). 25. https://digitalcommons.unl.edu/vpcone/25 This Article is brought to you for free and open access by the Vertebrate Pest Conference Proceedings collection at DigitalCommons@University of Nebraska - Lincoln. It has been accepted for inclusion in Proceedings of the 1st Vertebrate Pest Conference (1962) by an authorized administrator of DigitalCommons@University of Nebraska - Lincoln. FEDERAL LAW AND VERTEBRATE PEST CONTROL By: Justus C. Ward, Director, Pesticides Regulation Division, Agricultural Research Service, U.S. Department of Agriculture Presented at the Vertebrate Pest Control Conference, Sacramento, California, February 6 and 7, 1 962 Shortly after the passage of the Federal Insecticide Act of 1910> mammal control specialists in the Bureau of Biological Survey began to consider a similar law to cover the chemicals with which they were concerned. Work on the project went slowly a nd spasmodically, but reached the point of having a Federal Rodenticide Act available for study and possible revision in 1928. At this time, the mammal control chemicals in use were limited to strychnine -- alkaloid and sulphate -arsenic, barium carbonate, th allium sulphate, phosphorus, s odium and calcium cyanide, carbon disulphide, and red squill.
    [Show full text]
  • Step-By-Step Guide to Better Laboratory Management Practices
    Step-by-Step Guide to Better Laboratory Management Practices Prepared by The Washington State Department of Ecology Hazardous Waste and Toxics Reduction Program Publication No. 97- 431 Revised January 2003 Printed on recycled paper For additional copies of this document, contact: Department of Ecology Publications Distribution Center PO Box 47600 Olympia, WA 98504-7600 (360) 407-7472 or 1 (800) 633-7585 or contact your regional office: Department of Ecology’s Regional Offices (425) 649-7000 (509) 575-2490 (509) 329-3400 (360) 407-6300 The Department of Ecology is an equal opportunity agency and does not discriminate on the basis of race, creed, color, disability, age, religion, national origin, sex, marital status, disabled veteran’s status, Vietnam Era veteran’s status or sexual orientation. If you have special accommodation needs, or require this document in an alternate format, contact the Hazardous Waste and Toxics Reduction Program at (360)407-6700 (voice) or 711 or (800) 833-6388 (TTY). Table of Contents Introduction ....................................................................................................................................iii Section 1 Laboratory Hazardous Waste Management ...........................................................1 Designating Dangerous Waste................................................................................................1 Counting Wastes .......................................................................................................................8 Treatment by Generator...........................................................................................................12
    [Show full text]
  • Toxicological Profile for Barium and Barium Compounds
    TOXICOLOGICAL PROFILE FOR BARIUM AND BARIUM COMPOUNDS U.S. DEPARTMENT OF HEALTH AND HUMAN SERVICES Public Health Service Agency for Toxic Substances and Disease Registry August 2007 BARIUM AND BARIUM COMPOUNDS ii DISCLAIMER The use of company or product name(s) is for identification only and does not imply endorsement by the Agency for Toxic Substances and Disease Registry. BARIUM AND BARIUM COMPOUNDS iii UPDATE STATEMENT A Toxicological Profile for Barium and Barium Compounds, Draft for Public Comment was released in September 2005. This edition supersedes any previously released draft or final profile. Toxicological profiles are revised and republished as necessary. For information regarding the update status of previously released profiles, contact ATSDR at: Agency for Toxic Substances and Disease Registry Division of Toxicology and Environmental Medicine/Applied Toxicology Branch 1600 Clifton Road NE Mailstop F-32 Atlanta, Georgia 30333 BARIUM AND BARIUM COMPOUNDS iv This page is intentionally blank. v FOREWORD This toxicological profile is prepared in accordance with guidelines developed by the Agency for Toxic Substances and Disease Registry (ATSDR) and the Environmental Protection Agency (EPA). The original guidelines were published in the Federal Register on April 17, 1987. Each profile will be revised and republished as necessary. The ATSDR toxicological profile succinctly characterizes the toxicologic and adverse health effects information for the hazardous substance described therein. Each peer-reviewed profile identifies and reviews the key literature that describes a hazardous substance's toxicologic properties. Other pertinent literature is also presented, but is described in less detail than the key studies. The profile is not intended to be an exhaustive document; however, more comprehensive sources of specialty information are referenced.
    [Show full text]
  • Chemistry 1000 Lecture 13: the Alkaline Earth Metals
    Chemistry 1000 Lecture 13: The alkaline earth metals Marc R. Roussel September 25, 2018 Marc R. Roussel Alkaline earth metals September 25, 2018 1 / 23 Mg{Ra Group 2: The alkaline earth metals Group 2, except maybe Be Soft metals Form M2+ cations Very negative reduction potentials: 2+ − M(aq) + 2e ! M(s) Element Be Mg Ca Sr Ba Ra E◦=V −1:847 −2:356 −2:84 −2:89 −2:92 −2:92 Relatively small 1st and 2nd ionization energies: Element Be Mg Ca Sr Ba Ra −1 I1=kJ mol 899:5 737:7 589:8 549:5 502:9 509:3 −1 I2=kJ mol 1757:1 1450:7 1145:4 1064:2 965:2 979:0 Marc R. Roussel Alkaline earth metals September 25, 2018 2 / 23 Mg{Ra Comparison to alkali metals Physical Properties: Property Na Mg Mohs hardness 0.5 2.5 Density=g cm−3 0.968 1.738 Melting point=◦C 97.72 650 Boiling point=◦C 883 1090 Chemical properties are often similar to those of the alkali metals, but less reactive: Example: Reaction with water: M(s) + 2H2O ! M(OH)2 + H2(g) =) Often has to be done in hot water or with steam Marc R. Roussel Alkaline earth metals September 25, 2018 3 / 23 Mg{Ra Why \alkaline earth" metals? The name \alkaline earth" was originally applied to the oxides of these metals. Earth is a term applied by early chemists to nonmetallic substances which are insoluble in water and remain stable when heated. The alkaline earth metal oxides have these properties.
    [Show full text]
  • Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 Theinternational Programme on Chemical Safety (IPCS) Was Established in 1980
    The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 cation Hazard of Pesticides by and Guidelines to Classi The WHO Recommended Classi The WHO Recommended Classi cation of Pesticides by Hazard and Guidelines to Classi cation 2019 The WHO Recommended Classification of Pesticides by Hazard and Guidelines to Classification 2019 TheInternational Programme on Chemical Safety (IPCS) was established in 1980. The overall objectives of the IPCS are to establish the scientific basis for assessment of the risk to human health and the environment from exposure to chemicals, through international peer review processes, as a prerequisite for the promotion of chemical safety, and to provide technical assistance in strengthening national capacities for the sound management of chemicals. This publication was developed in the IOMC context. The contents do not necessarily reflect the views or stated policies of individual IOMC Participating Organizations. The Inter-Organization Programme for the Sound Management of Chemicals (IOMC) was established in 1995 following recommendations made by the 1992 UN Conference on Environment and Development to strengthen cooperation and increase international coordination in the field of chemical safety. The Participating Organizations are: FAO, ILO, UNDP, UNEP, UNIDO, UNITAR, WHO, World Bank and OECD. The purpose of the IOMC is to promote coordination of the policies and activities pursued by the Participating Organizations, jointly or separately, to achieve the sound management of chemicals in relation to human health and the environment. WHO recommended classification of pesticides by hazard and guidelines to classification, 2019 edition ISBN 978-92-4-000566-2 (electronic version) ISBN 978-92-4-000567-9 (print version) ISSN 1684-1042 © World Health Organization 2020 Some rights reserved.
    [Show full text]
  • Barium Carbonate from China
    Barium Carbonate from China Investigation No. 731-TA-1020 (Third Review) Publication 5098 August 2020 U.S. International Trade Commission Washington, DC 20436 U.S. International Trade Commission COMMISSIONERS Jason E. Kearns, Chair Randolph J. Stayin, Vice Chair David S. Johanson Rhonda K. Schmidtlein Amy A. Karpel Catherine DeFilippo Director of Operations Staff assigned Jason Duncan, Investigator Hee Jung Kim, Industry Analyst Pamela Davis, Economist Noah Meyer, Attorney Keysha Martinez, Supervisory Investigator Address all communications to Secretary to the Commission United States International Trade Commission Washington, DC 20436 U.S. International Trade Commission Washington, DC 20436 www.usitc.gov Barium Carbonate from China Investigation No. 731-TA-1020 (Third Review) Publication 5098 August 2020 CONTENTS Page Determination.…………………………………………………………………………………….………………………………….1 Views of the Commission…………………………………………………………………………………………..…………….3 Information obtained in this review ....................................................................................................I -1 Background .................................................................................................................................................... I-1 Responses to the Commission’s notice of institution .................................................................................... I-2 Individual responses .............................................................................................................................. I-2 Party
    [Show full text]
  • The Role of Calcium and Strontium As the Most Dominant Elements During
    crystals Article The Role of Calcium and Strontium as the Most Dominant Elements during Combinations of Different Alkaline Earth Metals in the Synthesis of Crystalline Silica-Carbonate Biomorphs Mayra Cuéllar-Cruz 1,2,* and Abel Moreno 2,* 1 Departamento de Biología, División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Noria Alta S/N, Col. Noria Alta, Guanajuato C.P. 36050, Mexico 2 Instituto de Química, Universidad Nacional Autónoma de México, Av. Universidad 3000, Ciudad Universitaria, Ciudad de México 04510, Mexico * Correspondence: [email protected] (M.C.-C.); [email protected] (A.M.) Received: 22 June 2019; Accepted: 22 July 2019; Published: 24 July 2019 Abstract: The origin of life from the chemical point of view is an intriguing and fascinating topic, and is of continuous interest. Currently, the chemical elements that are part of the different cellular types from microorganisms to higher organisms have been described. However, although science has advanced in this context, it has not been elucidated yet which were the first chemical elements that gave origin to the first primitive cells, nor how evolution eliminated or incorporated other chemical elements to give origin to other types of cells through evolution. Calcium, barium, and strontium silica-carbonates have been obtained in vitro and named biomorphs, because they mimic living organism structures. Therefore, it is considered that these forms can resemble the first structures that were part of primitive organisms. Hence, the objective of this work was to synthesize biomorphs starting with different mixtures of alkaline earth metals—beryllium (Be2+), magnesium (Mg2+), calcium (Ca2+), barium (Ba2+), and strontium (Sr2+)—in the presence of nucleic acids, RNA and genomic DNA (gDNA).
    [Show full text]
  • Part II Poisons
    Poisons to Which Part II of the Poisons List Applies The following poisons are listed in Part II of the Poisons List: • aldicarb • alpha-chloralose • ammonia • the following arsenic compounds-calcium arsenites, copper acetoarsenite, copper arsenates, copper arsenites, lead arsenates • the following salts of barium-barium carbonate, barium silicofluoride • carbofuran • cycloheximide • dinitrocresols (DNOC), their compounds with a metal or a base • dinoseb, its compounds with a metal or a base • dinoterb • drazoxolon and its salts • endosulfan • endothal and its salts • endrin • compounds of fentin • formaldehyde • formic acid • hydrochloric acid • hydrofluoric acid, alkali metal bifluorides, ammonium bifluoride, alkali metal fluorides, ammonium fluoride, sodium silicofluoride • mercuric chloride, mercuric iodide, organic compounds of mercury except compounds which contain a methyl (CH3) group directly linked to the mercury atom • metallic oxalates • methomyl • nicotine and its salts and quaternary compounds • nitric acid • nitrobenzene • oxamyl • paraquat and its salts • phenols (as defined in part I of the poisons list) in substances containing less than 60% weight in weight, of phenols and compound of phenols with a metal in substances containing less than the equivalent of 60% weight in weight, of phenols • phosphoric acid • the following phosphorus compounds:- azinphos-methyl, chlorfenvinphos, demphion, demeton-S-methyl sulphone, dialifos, dichlorvos, dioxathion, disulfoton, fonofos, mecarbam, mephosfolan, methidathion, mevinphos, omethoate,
    [Show full text]
  • Pesticides-II SUBJECT FORENSIC SCIENCE
    SUBJECT FORENSIC SCIENCE Paper No. and Title PAPER No.10: Forensic Toxicology Module No. and Title MODULE No. 12: Pesticides-II Module Tag FSC_P10_M12 FORENSIC SCIENCE PAPER No.10: Forensic Toxicology MODULE No.12: Pesticides-II TABLE OF CONTENTS 1. Learning Outcomes 2. Introduction 3. Rodenticides 4. Fungicides 5. Nematicides 6. Acaricides 7. Molluscicides 8. Extraction of Pesticides 9. Summary FORENSIC SCIENCE PAPER No.10: Forensic Toxicology MODULE No.12: Pesticides-II 1. Learning Outcomes After studying this module, you shall be able to know about – Some unconventional Pesticides, which are used for specific categories of living organism. Their Mode of Actions and pharmacodynamics. The methods of extraction of Pesticides. 2. Introduction Pesticide is a substance or mixture of substances intended to prevent, destroy, repel, or mitigate a pest. In general, pesticides are classified according to their biological targets. Because of the physiological and biochemical similarities of target species and mammalian organisms, an inherent toxicity is associated with pesticides in mammalian organisms. In addition, within each classification, compounds are identified according to mechanism of action, chemical structure, or semi-synthetic source. Conventional Pesticides deals with common insects but there are other pests which are also a menace. To come across with those pests it is necessary to invent specific category pesticides. 3. Rodenticides These are the chemical compounds which exterminate rats, mice, moles, and other rodents. Thallium, Zinc and Aluminium Phosphide, vacor, phosphorus, alpha-naphthyl-thiourea, cholecalciferol, arsenic, barium carbonate, bromethalin, fluoroacetamide, sodium monofluoroacetamide, Red Squill, strychnine are some of the examples of common Rodenticides. Some of these are very commonly involved in human poisoning, e.g.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • The Compounds Used As Rodenticides Are Tremendously Varied in Their Chemical Structure and Mechanism of Action
    THE PHARMACOLOGY OF RODENTICIDES S. A. PEOPLES, School of Veterinary Medicine, University of California, Davis, Colifomio The compounds used as rodenticides are tremendously varied In their chemical structure and mechanism of action. With a few exceptions, these agents are generally poisonous to all animals, Including man, and a great deal of study has been directed to their toxicity In animals other than rodents. However, the development of new compounds as Norbormlde and certain antlfertlllty drugs which are highly selective In their action may justify the hope that the Ideal rodenticlde free of secondary toxic hazards will soon be available. Until this happy announcement Is made, a review of the pharmacology of the older com­ pounds Is In order to enable us to understand the limitations on their effectiveness and hazard. The tremendous chemical variety of the compounds precludes any obvious systematic grouping of the compounds for discussion so that I have arbitrarily divided them Into Inorganic, Organic, and Fumigants. The discussion of each one Is limited to the primary pharmacological mechanism of the toxic action and will only briefly mention Interesting but non-essential side effects. ORGANIC AGENTS The Anticoagulants The discovery that dlcoumarol was the active agent in the hemorrhagic disease caused by spoiled sweet clover has led to the synthesis of two series of compounds derived from coumarln (Olcoumarol, Coumachlor, Warfarin) and I, 3 lndandlone (Plndone or Plval). These chemical compounds differ In solubility, rate of absorption and duration of action but not In their basic mechanism of action. Their basic chemical structure is sufficiently similar to vitamin K that they competitively Interfere with Its conversion to prothrombln In the liver.
    [Show full text]
  • Rattus Rattus
    JOHN INNES1, BRUCE WARBURTON2, DALE WILLIAMS1, HAZEL SPEED3 and PHILIP BRADFIELD4 5 1 Manaaki Whenua - Landcare Research New Zealand Ltd, Rotorua, New Zealand. Current address: Manaaki Whenua - Landcare Research New Zealand Ltd, Private Bag 3127, Hamilton, New Zealand. 2 Manaaki Whenua - Landcare Research New Zealand Ltd, P.O. Box 31011, Christchurch, New Zealand. 3 Department of Conservation, P.O. Box 1146, Rotorua, New Zealand. 4 Department of Conservation, P.O. Box 38, Te Kuiti, New Zealand. LARGE-SCALE POISONING OF SHIP RATS (RATTUS RATTUS) IN INDIGENOUS FORESTS OF THE NORTH ISLAND, NEW ZEALAND __________________________________________________________________________________________________________________________________ Summary: This paper describes the impact of nine poison operations on ship rats in four areas (35 ha to 3200 ha) of North Island forest. Poisoning with 1080, brodifacoum, or pindone killed 87-100% of rats, based on trapping and tracking-tunnel indices. Rat populations took 4-5 months to recover. Operations to protect nesting birds should therefore coincide with the onset of nesting and be repeated each year, although not necessarily with the same methods. Population reduction declined each year at Mapara, King Country, during three annual 1080 operations which used the same lures and baits, but remained high at Kaharoa, Bay of Plenty, where poison toxicity was higher, non-toxic bait was pre-fed, and poisoning methods varied each year. Mouse tracking rates increased in poisoned forests 3-6 months after poisoning if the initial kill of rats exceeded 90%, peaked 7-9 months after poisoning, then declined to pre-poison levels. Future research should focus on how prey and non-prey species within a forest community respond to a temporary reduction in rat numbers, and on methods to maintain low rat densities after initial knock-down.
    [Show full text]