Targeted Disruption of the SUCNR1 Metabolic Receptor Leads to Dichotomous Effects on Obesity

Total Page:16

File Type:pdf, Size:1020Kb

Targeted Disruption of the SUCNR1 Metabolic Receptor Leads to Dichotomous Effects on Obesity 1154 Diabetes Volume 64, April 2015 Kenneth J. McCreath,1 Sandra Espada,1 Beatriz G. Gálvez,1 Marina Benito,2,3 Antonio de Molina,4 Pilar Sepúlveda,5 and Ana M. Cervera1,5 Targeted Disruption of the SUCNR1 Metabolic Receptor Leads to Dichotomous Effects on Obesity Diabetes 2015;64:1154–1167 | DOI: 10.2337/db14-0346 A number of metabolites have signaling properties by G-protein–coupled receptors (GPCRs) constitute the major acting through G-protein–coupled receptors. Succinate, and most diverse group of membrane receptors in a Krebs cycle intermediate, increases after dysregu- eukaryotes (1). Found in the plasma membrane, these lated energy metabolism and can bind to its cognate receptors are tasked with the recognition and transmis- receptor succinate receptor 1 (Sucnr1, or GPR91) to ac- sion of messages from the external environment. An ever- tivate downstream signaling pathways. We show that increasing number of GPCRs are now being identified as Sucnr1 is highly expressed in the white adipose tissue receptors for metabolites or energy substrates (2), (WAT) compartment of mice and regulates adipose expanding the repertoire of biological targets to diseases 2/2 mass and glucose homeostasis. Sucnr1 mice were associated with the metabolic syndrome, including hyper- generated, and weight gain was monitored under basal tension and type 2 diabetes (3). Metabolites such as lac- and nutritional stress (high-fat diet [HFD]) conditions. tate (4), ketone bodies (5), and a-ketoglutarate (6), 2/2 METABOLISM On chow diet, Sucnr1 mice had increased energy known primarily to serve functions distinct to signaling, expenditure, were lean with a smaller WAT compart- have been shown to act as ligands for GPCRs. Represen- ment, and had improved glucose buffering. Lipolysis tative of this new class of receptor is Gpr91, a receptor for measurements revealed that Sucnr12/2 mice were re- the Krebs cycle intermediate succinate, now termed leased from succinate-induced inhibition of lipolysis, Sucnr1 for succinate receptor (7). The Krebs, or citric demonstrating a function of Sucnr1 in adipose tissue. acid, cycle occurs at the junction between glycolysis and Sucnr1 deletion also protected mice from obesity on oxidative phosphorylation (8) and is a key component of HFD, but only during the initial period; at later stages, aerobic metabolism by providing reducing equivalents for body weight of HFD-fed Sucnr12/2 mice was almost the electron transport chain. Interestingly, succinate has comparable with wild-type (WT) mice, but WAT content been known for many years to increase in tissues during was greater. Also, these mice became progressively hypoxia (9–11) and may act as a surrogate marker for hyperglycemic and failed to secrete insulin, although reduced oxygenation. Accordingly, Sucnr1 may be acti- pancreas architecture was similar to WT mice. These vated in times of hypoxic stress such as ischemic injury findings suggest that Sucnr1 is a sensor for dietary in liver (12) or retina (13) or during cardiomyocyte crisis energy and raise the interesting possibility that proto- (14). Moreover, dysregulated metabolism, akin to diabetes cols to modulate Sucnr1 might have therapeutic utility or the metabolic syndrome, also has the potential to in- in the setting of obesity. crease peripheral blood concentrations of succinate to 1Department of Cardiovascular Development and Repair, Fundación Centro Corresponding author: Ana M. Cervera, [email protected] or amcerveraz@ Nacional de Investigaciones Cardiovasculares Carlos III, Madrid, Spain gmail.com. 2 Advanced Imaging Unit, Department of Atherothrombosis, Imaging, and Epidemi- Received 28 February 2014 and accepted 14 October 2014. ology, Fundación Centro Nacional de Investigaciones Cardiovasculares Carlos III, This article contains Supplementary Data online at http://diabetes Madrid, Spain .diabetesjournals.org/lookup/suppl/doi:10.2337/db14-0346/-/DC1. 3CIBER de Enfermedades Respiratorias, Madrid, Spain 4Comparative Medicine Unit, Fundación Centro Nacional de Investigaciones Cardio- © 2015 by the American Diabetes Association. Readers may use this article as vasculares Carlos III, Madrid, Spain long as the work is properly cited, the use is educational and not for profit, and 5Regenerative Medicine and Heart Transplantation Unit, Instituto de Investigación the work is not altered. Sanitaria La Fe, Valencia, Spain diabetes.diabetesjournals.org McCreath and Associates 1155 levels where activation of the Sucnr1 receptor will occur with genomic DNA extracted from tail biopsies using the (15,16). Indeed, the low levels (;2–80 mmol/L) of succi- REDExtract-N-Amp Tissue PCR kit (Sigma-Aldrich, Saint nate found in blood plasma (15–18), in comparison with Louis, MO). Genotyping primers were primer 1, 59-ACTA that required for activation (in the region of 180 mmol/L TAAGCATCACTTCACCACTTCC-39; primer 2, 59-CAACGG [2]), would suggest that Sucnr1 functions more as a sensor GTTCTTCTGTTAGTCC-39; and primer 3, 59-AAGAACAA of metabolic (or oxidative) damage (19) rather than ATGGTAGAACAGTCACGG-39. A PCR product of ;500 a physiological mediator of signaling. nucleotides (nt) was obtained from WT DNA, whereas Mounting evidence points to an important role for mutant DNA produced an amplification product of Sucnr1 during periods of metabolic dysfunction, such as ;320 nt in size. These KO-first mice were designated GT diabetes-related hypertension, oxygen-induced retinopa- mice. In order to remove the critical exon of the Sucnr1 gene, thy, and the metabolic syndrome (19). Interestingly, together with the neomycin cassette, GT mice were crossed obesity is a key component of many metabolic-related with Sox2-Cre mice (supplied by Dr. Miguel Torres, Centro diseases (20) and can lead to diabetes, hyperlipidemia, Nacional de Investigaciones Cardiovasculares [CNIC]) to pro- and cardiovascular disease (20,21). The effect of Sucnr1 duce whole-body KO mice. Genotyping was performed deficiency on body composition and metabolism has not as before using the primer 4, 59-ACTTCCAGTTCAACAT previously been studied. We reasoned that Sucnr1 could CAGCCGCTACA-39;primer5,59-GTGATTCATCTGTATTAT be a potential modulator of metabolism since a recent TAGATGAGC-39; and primer 6, 59-CAGCACAACCATCAGA study indicated that this receptor participates in the GAAACAATGGACTC-39. A PCR product of ;650 nt indi- breakdown (lipolysis) of stored triglycerol (TG) in fat cated that recombination had occurred to produce a KO (22). To test this hypothesis, we analyzed the expression locus, and a product of ;300 nt identified a WT locus. All of Sucnr1 in mouse adipose tissue and observed high experiments were carried out using these KO mice. expression in the white adipocyte compartment. To gain Mice were housed at the CNIC animal facility under insight into the (patho)physiological role of Sucnr1, we pathogen-free conditions. Male mice were used for all created mice deficient for this gene using a knockout studies. Mice were given ad libitum access to food and (KO)-first approach. We show that deficiency of the water unless otherwise noted in experimental methods. Sucnr1 gene has metabolic consequences for weight gain Environmental conditions were controlled to 12/12-h and glucose homeostasis. Sucnr1 KO mice have a modest light/dark cycles. Animal studies were approved by the lean phenotype under standard diet (SD) conditions, cor- local ethics committee. All animal procedures conformed relating with a reduction in the size of white adipose to European Union Directive 86/609/EEC and recommen- tissue (WAT) depots, increased energy expenditure, and dation 2007/526/EC regarding the protection of animals an improved glucose clearance rate. Challenge with high- used for experimental and other scientific purposes, fat diet (HFD) also resulted in a significant decrease in enacted under Spanish law 1201/2005. Male Sucnr1 KO body weight in Sucnr1 KO mice, but only during initial mice and WT mice (5–6 weeks old) obtained from hetero- periods. At later periods, body weight of Sucnr1 KO mice zygous mating were fed an SD of rodent chow, containing was indistinguishable from wild-type (WT) littermates, 13.4% fat (16% energy; Diet 5K67, LabDiet, Saint Louis, but WAT content was increased. This appeared to coincide MO) or an HFD containing 34.9% fat (60.9% energy; with a hyperglycemic profile and a reduction in insulin Diet58Y1,TestDiet,SaintLouis,MO).Bodyweight secretion from the pancreas. Collectively, our results was recorded weekly. Separate cohorts of animals on point to a potentially important role for Sucnr1 in meta- SD and HFD were used for metabolic cage analysis using bolic disease related with obesity. a 16-chamber indirect calorimetry system (PhenoMaster; TSE Systems, Bad Homburg, Germany). Mice were indi- RESEARCH DESIGN AND METHODS vidually housed in the chambers for 5 days; the first Generation of Sucnr1-Mutant Mice, Feeding Regimes, 2 days were used for acclimatization, and data were ana- and Indirect Calorimetry lyzed from the last 3 days. Oxygen consumption rate, To create Sucnr1-mutant mice, we obtained two Sucnr1- carbon dioxide production rate, feeding, and total loco- targeted embryonic stem (ES) cell clones from the European motive activity were measured concurrently for each Mouse Mutagenesis Consortium (EUCOMM), designated as mouse. KO-first, conditional-readyEScells(23).Thisflexible system allows both for gene-trap (GT) reporter constructs and also MRI and Spectroscopy Analysis for conditional and null alleles to be generated by exposure Imaging was performed in the Advanced
Recommended publications
  • Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-Helminth Immunity in the Small Intestine but Are Dispensable for Anti-Protist Immunity
    Article Tuft-Cell-Derived Leukotrienes Drive Rapid Anti- helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity Graphical Abstract Authors John W. McGinty, Hung-An Ting, Tyler E. Billipp, ..., Hong-Erh Liang, Ichiro Matsumoto, Jakob von Moltke Correspondence [email protected] In Brief Tuft cells regulate type 2 immunity in the small intestine by secreting the cytokine IL-25. McGinty et al. identify cysteinyl leukotriene production as an additional tuft cell effector function. Tuft-cell- derived leukotrienes drive anti-helminth immunity in the intestine but are dispensable for the response induced by tritrichomonad protists. Highlights d Cysteinyl leukotrienes activate intestinal ILC2s d Cysteinyl leukotrienes drive rapid anti-helminth type 2 immune responses d Tuft cells are the source of cysteinyl leukotrienes during helminth infection d Tuft-cell-derived leukotrienes are not required for the anti- protist response McGinty et al., 2020, Immunity 52, 528–541 March 17, 2020 ª 2020 Elsevier Inc. https://doi.org/10.1016/j.immuni.2020.02.005 Immunity Article Tuft-Cell-Derived Leukotrienes Drive Rapid Anti-helminth Immunity in the Small Intestine but Are Dispensable for Anti-protist Immunity John W. McGinty,1 Hung-An Ting,1 Tyler E. Billipp,1 Marija S. Nadjsombati,1 Danish M. Khan,1 Nora A. Barrett,2 Hong-Erh Liang,3,4 Ichiro Matsumoto,5 and Jakob von Moltke1,6,* 1Department of Immunology, University of Washington School of Medicine, Seattle, WA 98109, USA 2Division of Rheumatology, Immunology and Allergy, Jeff
    [Show full text]
  • Viewed Under 23 (B) Or 203 (C) fi M M Male Cko Mice, and Largely Unaffected Magni Cation; Scale Bars, 500 M (B) and 50 M (C)
    BRIEF COMMUNICATION www.jasn.org Renal Fanconi Syndrome and Hypophosphatemic Rickets in the Absence of Xenotropic and Polytropic Retroviral Receptor in the Nephron Camille Ansermet,* Matthias B. Moor,* Gabriel Centeno,* Muriel Auberson,* † † ‡ Dorothy Zhang Hu, Roland Baron, Svetlana Nikolaeva,* Barbara Haenzi,* | Natalya Katanaeva,* Ivan Gautschi,* Vladimir Katanaev,*§ Samuel Rotman, Robert Koesters,¶ †† Laurent Schild,* Sylvain Pradervand,** Olivier Bonny,* and Dmitri Firsov* BRIEF COMMUNICATION *Department of Pharmacology and Toxicology and **Genomic Technologies Facility, University of Lausanne, Lausanne, Switzerland; †Department of Oral Medicine, Infection, and Immunity, Harvard School of Dental Medicine, Boston, Massachusetts; ‡Institute of Evolutionary Physiology and Biochemistry, St. Petersburg, Russia; §School of Biomedicine, Far Eastern Federal University, Vladivostok, Russia; |Services of Pathology and ††Nephrology, Department of Medicine, University Hospital of Lausanne, Lausanne, Switzerland; and ¶Université Pierre et Marie Curie, Paris, France ABSTRACT Tight control of extracellular and intracellular inorganic phosphate (Pi) levels is crit- leaves.4 Most recently, Legati et al. have ical to most biochemical and physiologic processes. Urinary Pi is freely filtered at the shown an association between genetic kidney glomerulus and is reabsorbed in the renal tubule by the action of the apical polymorphisms in Xpr1 and primary fa- sodium-dependent phosphate transporters, NaPi-IIa/NaPi-IIc/Pit2. However, the milial brain calcification disorder.5 How- molecular identity of the protein(s) participating in the basolateral Pi efflux remains ever, the role of XPR1 in the maintenance unknown. Evidence has suggested that xenotropic and polytropic retroviral recep- of Pi homeostasis remains unknown. Here, tor 1 (XPR1) might be involved in this process. Here, we show that conditional in- we addressed this issue in mice deficient for activation of Xpr1 in the renal tubule in mice resulted in impaired renal Pi Xpr1 in the nephron.
    [Show full text]
  • Edinburgh Research Explorer
    Edinburgh Research Explorer International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list Citation for published version: Davenport, AP, Alexander, SPH, Sharman, JL, Pawson, AJ, Benson, HE, Monaghan, AE, Liew, WC, Mpamhanga, CP, Bonner, TI, Neubig, RR, Pin, JP, Spedding, M & Harmar, AJ 2013, 'International Union of Basic and Clinical Pharmacology. LXXXVIII. G protein-coupled receptor list: recommendations for new pairings with cognate ligands', Pharmacological reviews, vol. 65, no. 3, pp. 967-86. https://doi.org/10.1124/pr.112.007179 Digital Object Identifier (DOI): 10.1124/pr.112.007179 Link: Link to publication record in Edinburgh Research Explorer Document Version: Publisher's PDF, also known as Version of record Published In: Pharmacological reviews Publisher Rights Statement: U.S. Government work not protected by U.S. copyright General rights Copyright for the publications made accessible via the Edinburgh Research Explorer is retained by the author(s) and / or other copyright owners and it is a condition of accessing these publications that users recognise and abide by the legal requirements associated with these rights. Take down policy The University of Edinburgh has made every reasonable effort to ensure that Edinburgh Research Explorer content complies with UK legislation. If you believe that the public display of this file breaches copyright please contact [email protected] providing details, and we will remove access to the work immediately and investigate your claim. Download date: 02. Oct. 2021 1521-0081/65/3/967–986$25.00 http://dx.doi.org/10.1124/pr.112.007179 PHARMACOLOGICAL REVIEWS Pharmacol Rev 65:967–986, July 2013 U.S.
    [Show full text]
  • G Protein-Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2015/16: G protein-coupled receptors. British Journal of Pharmacology (2015) 172, 5744–5869 THE CONCISE GUIDE TO PHARMACOLOGY 2015/16: G protein-coupled receptors Stephen PH Alexander1, Anthony P Davenport2, Eamonn Kelly3, Neil Marrion3, John A Peters4, Helen E Benson5, Elena Faccenda5, Adam J Pawson5, Joanna L Sharman5, Christopher Southan5, Jamie A Davies5 and CGTP Collaborators 1School of Biomedical Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK, 2Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK, 3School of Physiology and Pharmacology, University of Bristol, Bristol, BS8 1TD, UK, 4Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK, 5Centre for Integrative Physiology, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2015/16 provides concise overviews of the key properties of over 1750 human drug targets with their pharmacology, plus links to an open access knowledgebase of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. The full contents can be found at http://onlinelibrary.wiley.com/doi/ 10.1111/bph.13348/full. G protein-coupled receptors are one of the eight major pharmacological targets into which the Guide is divided, with the others being: ligand-gated ion channels, voltage-gated ion channels, other ion channels, nuclear hormone receptors, catalytic receptors, enzymes and transporters. These are presented with nomenclature guidance and summary information on the best available pharmacological tools, alongside key references and suggestions for further reading.
    [Show full text]
  • G Protein‐Coupled Receptors
    S.P.H. Alexander et al. The Concise Guide to PHARMACOLOGY 2019/20: G protein-coupled receptors. British Journal of Pharmacology (2019) 176, S21–S141 THE CONCISE GUIDE TO PHARMACOLOGY 2019/20: G protein-coupled receptors Stephen PH Alexander1 , Arthur Christopoulos2 , Anthony P Davenport3 , Eamonn Kelly4, Alistair Mathie5 , John A Peters6 , Emma L Veale5 ,JaneFArmstrong7 , Elena Faccenda7 ,SimonDHarding7 ,AdamJPawson7 , Joanna L Sharman7 , Christopher Southan7 , Jamie A Davies7 and CGTP Collaborators 1School of Life Sciences, University of Nottingham Medical School, Nottingham, NG7 2UH, UK 2Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, Parkville, Victoria 3052, Australia 3Clinical Pharmacology Unit, University of Cambridge, Cambridge, CB2 0QQ, UK 4School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, BS8 1TD, UK 5Medway School of Pharmacy, The Universities of Greenwich and Kent at Medway, Anson Building, Central Avenue, Chatham Maritime, Chatham, Kent, ME4 4TB, UK 6Neuroscience Division, Medical Education Institute, Ninewells Hospital and Medical School, University of Dundee, Dundee, DD1 9SY, UK 7Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, EH8 9XD, UK Abstract The Concise Guide to PHARMACOLOGY 2019/20 is the fourth in this series of biennial publications. The Concise Guide provides concise overviews of the key properties of nearly 1800 human drug targets with an emphasis on selective pharmacology (where available), plus links to the open access knowledgebase source of drug targets and their ligands (www.guidetopharmacology.org), which provides more detailed views of target and ligand properties. Although the Concise Guide represents approximately 400 pages, the material presented is substantially reduced compared to information and links presented on the website.
    [Show full text]
  • Cell Differentiation Is Disrupted by MYO5B Loss Through Wnt/Notch Imbalance
    Cell differentiation is disrupted by MYO5B loss through Wnt/Notch imbalance Izumi Kaji, … , Masahiko Watanabe, James R. Goldenring JCI Insight. 2021;6(16):e150416. https://doi.org/10.1172/jci.insight.150416. Research Article Gastroenterology Functional loss of myosin Vb (MYO5B) induces a variety of deficits in intestinal epithelial cell function and causes a congenital diarrheal disorder, microvillus inclusion disease (MVID). The impact of MYO5B loss on differentiated cell lineage choice has not been investigated. We quantified the populations of differentiated epithelial cells in tamoxifen- induced, epithelial cell–specific MYO5B-knockout (VilCreERT2 Myo5bfl/fl) mice utilizing digital image analysis. Consistent with our RNA-sequencing data, MYO5B loss induced a reduction in tuft cells in vivo and in organoid cultures. Paneth cells were significantly increased by MYO5B deficiency along with expansion of the progenitor cell zone. We further investigated the effect of lysophosphatidic acid (LPA) signaling on epithelial cell differentiation. Intraperitoneal LPA significantly increased tuft cell populations in both control and MYO5B-knockout mice. Transcripts for Wnt ligands were significantly downregulated by MYO5B loss in intestinal epithelial cells, whereas Notch signaling molecules were unchanged. Additionally, treatment with the Notch inhibitor dibenzazepine (DBZ) restored the populations of secretory cells, suggesting that the Notch pathway is maintained in MYO5B-deficient intestine. MYO5B loss likely impairs progenitor cell differentiation in the small intestine in vivo and in vitro, partially mediated by Wnt/Notch imbalance. Notch inhibition and/or LPA treatment may represent an effective therapeutic approach for treatment of MVID. Find the latest version: https://jci.me/150416/pdf RESEARCH ARTICLE Cell differentiation is disrupted by MYO5B loss through Wnt/Notch imbalance Izumi Kaji,1,2 Joseph T.
    [Show full text]
  • Receptor Structure-Based Discovery of Non-Metabolite Agonists for the Succinate Receptor GPR91
    Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91 Trauelsen, Mette; Rexen Ulven, Elisabeth; Hjorth, Siv A; Brvar, Matjaz; Monaco, Claudia; Frimurer, Thomas M; Schwartz, Thue W Published in: Molecular Metabolism DOI: 10.1016/j.molmet.2017.09.005 Publication date: 2017 Document version Publisher's PDF, also known as Version of record Document license: CC BY-NC-ND Citation for published version (APA): Trauelsen, M., Rexen Ulven, E., Hjorth, S. A., Brvar, M., Monaco, C., Frimurer, T. M., & Schwartz, T. W. (2017). Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91. Molecular Metabolism, 6(12), 1585-1596. https://doi.org/10.1016/j.molmet.2017.09.005 Download date: 08. apr.. 2020 Original Article Receptor structure-based discovery of non-metabolite agonists for the succinate receptor GPR91 Mette Trauelsen 1, Elisabeth Rexen Ulven 3, Siv A. Hjorth 2, Matjaz Brvar 3, Claudia Monaco 4, Thomas M. Frimurer 1,*, Thue W. Schwartz 1,2,* ABSTRACT Objective: Besides functioning as an intracellular metabolite, succinate acts as a stress-induced extracellular signal through activation of GPR91 (SUCNR1) for which we lack suitable pharmacological tools. Methods and results: Here we first determined that the cis conformation of the succinate backbone is preferred and that certain backbone modifications are allowed for GPR91 activation. Through receptor modeling over the X-ray structure of the closely related P2Y1 receptor, we discovered that the binding pocket is partly occupied by a segment of an extracellular loop and that succinate therefore binds in a very different mode than generally believed.
    [Show full text]
  • Succinate Receptors in the Kidney
    BRIEF REVIEW www.jasn.org Succinate Receptors in the Kidney Peter M.T. Deen and Joris H. Robben Department of Physiology, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands ABSTRACT The G protein–coupled succinate and ␣-ketoglutarate receptors are closely related to nyl-CoA synthetase and subsequently the family of P2Y purinoreceptors. Although the ␣-ketoglutarate receptor is almost converted by succinate dehydrogenase exclusively expressed in the kidney, its function is unknown. In contrast, the succinate to generate fumarate. Because the suc- receptor, SUCRN1, is expressed in a variety of tissues, including blood cells, adipose cinate dehydrogenase complex is part of the tissue, liver, retina, and the kidney. Recent evidence suggests SUCRN1 and its succi- electron transport chain in the mitochon- nate ligand are novel detectors of local stress, including ischemia, hypoxia, toxicity, drial membrane (complex II; Figure 2), its and hyperglycemia. Local levels of succinate in the kidney also activate the renin- activity indirectly depends on the avail- angiotensin system and together with SUCRN1 may play a key role in the develop- ability of oxygen. As such, in situations ment of hypertension and the complications of diabetes mellitus, metabolic disease, when oxygen tension is low, succinate and liver damage. This makes the succinate receptor a promising drug target to accumulates because of low activity of counteract an expanding number of interrelated disorders. succinate dehydrogenase or other en- zymes in the electron transport chain J Am Soc Nephrol 22: 1416–1422, 2011. doi: 10.1681/ASN.2010050481 that affect its activity.5–7 Low oxygen states, such as ischemia8 or exercise9 also increase circulating levels of succinate.
    [Show full text]
  • Downloaded on 27 May 2020
    bioRxiv preprint doi: https://doi.org/10.1101/2021.04.07.438755; this version posted April 7, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Title: Cells of the human intestinal tract mapped across space and time Elmentaite R1, Kumasaka N1, King HW2, Roberts K1, Dabrowska M1, Pritchard S1, Bolt L1, Vieira SF1, Mamanova L1, Huang N1, Goh Kai’En I3, Stephenson E3, Engelbert J3, Botting RA3, Fleming A1,4, Dann E1, Lisgo SN3, Katan M7, Leonard S1, Oliver TRW1,8, Hook CE8, Nayak K10, Perrone F10, Campos LS1, Dominguez-Conde C1, Polanski K1, Van Dongen S1, Patel M1, Morgan MD5,6, Marioni JC1,5,6, Bayraktar OA1, Meyer KB1, Zilbauer M9,10,11, Uhlig H12,13,14, Clatworthy MR1,4, Mahbubani KT15, Saeb Parsy K15, Haniffa M1,3, James KR1* & Teichmann SA1,16* Affiliations: 1. Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SA, UK. 2. Centre for Immunobiology, Blizard Institute, Queen Mary University of London, London E1 2AT, UK 3. Biosciences Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK. 4. Molecular Immunity Unit, Department of Medicine, University of Cambridge, MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK 5. European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Cambridge, CB10 1SD, UK. 6. Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK 7. Structural and Molecular Biology, Division of Biosciences, University College London WC1E 6BT, UK 8.
    [Show full text]
  • Activation of Intestinal Tuft Cell-Expressed Sucnr1 Triggers Type 2 Immunity in the Mouse Small Intestine
    Activation of intestinal tuft cell-expressed Sucnr1 triggers type 2 immunity in the mouse small intestine Weiwei Leia,1, Wenwen Rena,1, Makoto Ohmotoa, Joseph F. Urban Jr.b, Ichiro Matsumotoa, Robert F. Margolskeea, and Peihua Jianga,2 aMonell Chemical Senses Center, Philadelphia, PA 19104; and bDiet, Genomics and Immunology Laboratory, Beltsville Human Nutrition Research Center, Agricultural Research Service, US Department of Agriculture, Beltsville, MD 20705 Edited by Robert J. Lefkowitz, Howard Hughes Medical Institute and Duke University Medical Center, Durham, NC, and approved April 19, 2018 (received for review November 28, 2017) The hallmark features of type 2 mucosal immunity include in- Expulsion of the intestinal worm parasite Nippostrongylus brasi- − − testinal tuft and goblet cell expansion initiated by tuft cell liensis from the gut is significantly delayed in Pou2f3 / mice activation. How infectious agents that induce type 2 mucosal compared with wild-type mice (8). The current model suggests tuft immunity are detected by tuft cells is unknown. Published micro- cells detect parasitic infection via taste-signaling elements and se- array analysis suggested that succinate receptor 1 (Sucnr1) is spe- crete the proinflammatory cytokine IL-25, which subsequently cifically expressed in tuft cells. Thus, we hypothesized that the triggers mucosal type 2 responses via IL-13–producing ILC2s and succinate–Sucnr1 axis may be utilized by tuft cells to detect certain IL-13 receptor alpha-expressing intestinal epithelial progenitor cells
    [Show full text]
  • Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center
    University of Tennessee Health Science Center UTHSC Digital Commons Theses and Dissertations (ETD) College of Graduate Health Sciences 12-2013 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Amy Sue Bogard University of Tennessee Health Science Center Follow this and additional works at: https://dc.uthsc.edu/dissertations Part of the Medical Cell Biology Commons, and the Medical Molecular Biology Commons Recommended Citation Bogard, Amy Sue , "Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells" (2013). Theses and Dissertations (ETD). Paper 330. http://dx.doi.org/10.21007/etd.cghs.2013.0029. This Dissertation is brought to you for free and open access by the College of Graduate Health Sciences at UTHSC Digital Commons. It has been accepted for inclusion in Theses and Dissertations (ETD) by an authorized administrator of UTHSC Digital Commons. For more information, please contact [email protected]. Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells Document Type Dissertation Degree Name Doctor of Philosophy (PhD) Program Biomedical Sciences Track Molecular Therapeutics and Cell Signaling Research Advisor Rennolds Ostrom, Ph.D. Committee Elizabeth Fitzpatrick, Ph.D. Edwards Park, Ph.D. Steven Tavalin, Ph.D. Christopher Waters, Ph.D. DOI 10.21007/etd.cghs.2013.0029 Comments Six month embargo expired June 2014 This dissertation is available at UTHSC Digital Commons: https://dc.uthsc.edu/dissertations/330 Adenylyl Cyclase 2 Selectively Regulates IL-6 Expression in Human Bronchial Smooth Muscle Cells A Dissertation Presented for The Graduate Studies Council The University of Tennessee Health Science Center In Partial Fulfillment Of the Requirements for the Degree Doctor of Philosophy From The University of Tennessee By Amy Sue Bogard December 2013 Copyright © 2013 by Amy Sue Bogard.
    [Show full text]
  • Granzyme a in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging
    Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging This information is current as Robert A. Campbell, Zechariah Franks, Anish Bhatnagar, of September 25, 2021. Jesse W. Rowley, Bhanu K. Manne, Mark A. Supiano, Hansjorg Schwertz, Andrew S. Weyrich and Matthew T. Rondina J Immunol 2018; 200:295-304; Prepublished online 22 November 2017; Downloaded from doi: 10.4049/jimmunol.1700885 http://www.jimmunol.org/content/200/1/295 Supplementary http://www.jimmunol.org/content/suppl/2017/11/22/jimmunol.170088 http://www.jimmunol.org/ Material 5.DCSupplemental References This article cites 47 articles, 12 of which you can access for free at: http://www.jimmunol.org/content/200/1/295.full#ref-list-1 Why The JI? Submit online. by guest on September 25, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Granzyme A in Human Platelets Regulates the Synthesis of Proinflammatory Cytokines by Monocytes in Aging Robert A.
    [Show full text]