Biologically Active Compounds in Stizolophus Balsamita Inflorescences
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Boards' Fodder
boards’ fodder Cosmeceuticals Contributed by Elisabeth Hurliman, MD, PhD; Jennifer Hayes, MD; Hilary Reich MD; and Sarah Schram, MD. INGREDIENT FUNCTION MECHANISM ASSOCIATIONS/SIDE EFFECTS Vitamin A/ Antioxidant (reduces free Affects gene transcription Comedolysis epidermal thickening, dermal Derivatives (retinal, radicals, lowers concentration differentiation and growth of regeneration, pigment lightening retinol, retinoic of matrix metalloproteinases cells in the skin acid, provitamin reduces collagen degradation) Side effects: Irritation, erythema, desquamation A, asthaxanthin, Normalizes follicular Elisabeth Hurliman, lutein) epithelial differentiation and keratinization MD, PhD, is a PGY-4 dermatology resident Vitamin C (L Secondary endogenous Ascorbic acid: necessary L-ascorbic acid + alpha-tocopherol (vitamin E)= ascorbic acid, antioxidant in skin cofactor for prolylhydroxylase UVA and UVB protection at University of tetrahexyldecyl and lysyl hydroxylase Minnesota department ascorbate) Lightens pigment Zinc, resveratrol, L-ergothioneine and tyrosine add of dermatology. (affects melanogenesis) L-ascorbic acid: scavenges to vitamin C bioavailability free oxygen radicals, Protects Vitamin E from oxidation stimulates collagen synthesis Improves skin texture and hydration May interrupt melanogenesis by interacting with copper ions Vitamin E/ Primary endogenous antioxidant Prevents lipid peroxidation; Alpha tocopherol is the most physiologically Tocopherols, in skin scavenges free oxygen active isomer Jennifer Hayes, MD, Tocotrienols -
PRODUCT INFORMATION Arbutin Item No
PRODUCT INFORMATION Arbutin Item No. 26407 CAS Registry No.: 497-76-7 Formal Name: 4-hydroxyphenyl β-D-glucopyranoside OH Synonyms: β-Arbutin, NSC 4036 MF: C H O OH 12 16 7 HO FW: 272.3 O Purity: ≥98% UV/Vis.: λmax: 221, 283 nm OH O Supplied as: A crystalline solid Storage: -20°C OH Stability: ≥2 years Information represents the product specifications. Batch specific analytical results are provided on each certificate of analysis. Laboratory Procedures Arbutin is supplied as a crystalline solid. A stock solution may be made by dissolving the arbutin in the solvent of choice. Arbutin is soluble in organic solvents such as ethanol, DMSO, and dimethyl formamide, which should be purged with an inert gas. The solubility of arbutin in these solvents is approximately 1, 10, and 20 mg/ml, respectively. Further dilutions of the stock solution into aqueous buffers or isotonic saline should be made prior to performing biological experiments. Ensure that the residual amount of organic solvent is insignificant, since organic solvents may have physiological effects at low concentrations. Organic solvent-free aqueous solutions of arbutin can be prepared by directly dissolving the crystalline solid in aqueous buffers. The solubility of arbutin in PBS, pH 7.2, is approximately 3 mg/ml. We do not recommend storing the aqueous solution for more than one day. Description Arbutin is a glycosylated hydroquinone that has been found in Arctostaphylos plants and has diverse biological activities, including tyrosinase inhibitory, antioxidant, and anti-inflammatory properties.1,2 It inhibits human tyrosinase activity in crude tyrosinase solution isolated from human melanocytes (IC50s = 5.7 and 18.9 mM using L-tyrosine and L-DOPA as substrates, respectively) as well as in intact 3 melanocytes (IC50 = 0.5 mM). -
4Nbutylresorcinol, a Highly Effective Tyrosinase Inhibitor for the Topical
DOI: 10.1111/jdv.12051 JEADV ORIGINAL ARTICLE 4-n-butylresorcinol, a highly effective tyrosinase inhibitor for the topical treatment of hyperpigmentation L. Kolbe,* T. Mann, W. Gerwat, J. Batzer, S. Ahlheit, C. Scherner, H. Wenck, F. Sta¨ b Research and Development, Beiersdorf AG, Hamburg, Germany *Correspondence: L. Kolbe, E-mail: [email protected] Abstract Background Hyperpigmentary disorders like melasma, actinic and senile lentigines are a major cosmetic concern. Therefore, many topical products are available, containing various active ingredients aiming to reduce melanin production and distribution. The most prominent target for inhibitors of hyperpigmentation is tyrosinase, the key regulator of melanin production. Many inhibitors of tyrosinase are described in the literature; however, most of them lack clinical efficacy. Methods We were interested in evaluating the inhibition of skin pigmentation by well-known compounds with skin- whitening activity like hydroquinone, arbutin, kojic acid and 4-n-butylresorcinol. We compared the inhibition of human tyrosinase activity in a biochemical assay as well as inhibition of melanin production in MelanoDermÔ skin model culture. For some compounds, the in vivo efficacy was tested in clinical studies. Results Arbutin and hydroquinone only weakly inhibit human tyrosinase with a half maximal inhibitory concentration (IC50) in the millimolar range. Kojic acid is 10 times more potent with an IC50 of approximately 500 lmol ⁄ L. However, by far the most potent inhibitor of human tyrosinase is 4-n-butylresorcinol with an IC50 of 21 lmol ⁄ L. In artificial skin models, arbutin was least active with an IC50 for inhibition of melanin production > 5000 lmol ⁄ L. Kojic acid inhibited with an IC50 > 400 lmol ⁄ L. -
Sesquiterpenoids and Phenolics from Crepis Conyzifolia
Sesquiterpenoids and Phenolics from Crepis conyzifolia Wanda Kisiel* and Klaudia Michalska Department of Phytochemistry, Institute of Pharmacology, Polish Academy of Sciences, Pl-31-343 Krakow, Poland. Fax: +48 126374500. E-mail: [email protected] * Author for correspondence and reprint requests Z. Naturforsch. 56c, 961-964 (2001); received July 30/August 28, 2001 Crepis conyzifolia, Sesquiterpenoids, Phenolics From the roots of Crepis conyzifolia, two new and two known guaianolides were isolated together with three known phenylpropanoids. Structures of the new compounds were estab lished as 8ß-hydroxy-4ß, 15-dihydrozaluzanin C and 4ß, 15, llß, 13-tetrahydrozaluzanin C-3- O-ß-glucopyranoside by spectral methods. The identity of 8 -epiisolippidiol and dentalactone was also discussed. Introduction previously isolated from Crepis and Lactuca spe cies in our laboratory (Kisiel, 1983; Kisiel and Screening tests for potential anticancer agents Barszcz, 1995; Kisiel and Barszcz, 1997; Kisiel et from natural sources showed that crude alcoholic al., 2000). The identity of cichoriin (7) was estab extracts from plants belonging to the tribe Lactu- lished by comparison of its spectral data with those ceae of the Asteraceae exhibited chemoprotective in the literature (Kuwajima et al., 1992). The com effects on chemical carcinogenesis and differentia pound is reported for the first time from Crepis tion-inducing activities on human leukemia and species. Since no complete XH NMR data are mause melanoma cell lines. Some bioactive triter- available for 4 (Kisiel, 1983), we have included all pene and sesquiterpene lactone constituents of the our assignments in Table I, along with unreported plant extracts were isolated and identified (Taka- 13C NMR data in CDC13 and pyridine-d5. -
Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia That Depends on Early Activation of the Camp Pathway
The Journal of Neuroscience, July 1, 2002, 22(13):5687–5693 Stimulation of Deep Somatic Tissue with Capsaicin Produces Long-Lasting Mechanical Allodynia and Heat Hypoalgesia that Depends on Early Activation of the cAMP Pathway K. A. Sluka Graduate Program in Physical Therapy and Rehabilitation Science, Neuroscience Graduate Program, Pain Research Program, University of Iowa, Iowa City, Iowa 52242 Pain and hyperalgesia from deep somatic tissue (i.e., muscle tissue was reversed by spinal blockade of adenylate cyclase or and joint) are processed differently from that from skin. This protein kinase A (PKA). Interestingly, mechanical allodynia was study examined differences between deep and cutaneous tis- reversed if adenylate cyclase or PKA inhibitors were adminis- sue allodynia and the role of cAMP in associated behavioral tered spinally 24 hr, but not 1 week, after injection of capsaicin. changes. Capsaicin was injected into the plantar aspect of the Spinally administered 8-bromo-cAMP resulted in a similar pat- skin, plantar muscles of the paw, or ankle joint, and responses tern, with heat hypoalgesia and mechanical allodynia occurring to mechanical and heat stimuli were assessed until allodynia simultaneously. Thus, injection of capsaicin into deep tissues resolved. Capsaicin injected into skin resulted in a secondary results in a longer-lasting mechanical allodynia and heat hy- mechanical allodynia and heat hypoalgesia lasting ϳ3hr.In poalgesia compared with injection of capsaicin into skin. The contrast, capsaicin injection into muscle or joint resulted in a mechanical allodynia depends on early activation of the cAMP long-lasting bilateral (1–4 weeks) mechanical allodynia with a pathway during the first 24 hr but is independent of the cAMP simultaneous unilateral heat hypoalgesia. -
Optimization of the Extraction of Procyanidin B-2 Rich Extract From
Louisiana State University LSU Digital Commons LSU Master's Theses Graduate School 2017 Optimization of the Extraction of Procyanidin B-2 Rich Extract from Unfermented Cocoa Using Response Surface Methodology and Interaction of Procyanidin B-2 Rich Cocoa Extract with Collagenase and Elastase as Biomarkers of Skin Aging Marco Eduardo Toc Sagra Louisiana State University and Agricultural and Mechanical College, [email protected] Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_theses Part of the Life Sciences Commons Recommended Citation Toc Sagra, Marco Eduardo, "Optimization of the Extraction of Procyanidin B-2 Rich Extract from Unfermented Cocoa Using Response Surface Methodology and Interaction of Procyanidin B-2 Rich Cocoa Extract with Collagenase and Elastase as Biomarkers of Skin Aging" (2017). LSU Master's Theses. 4498. https://digitalcommons.lsu.edu/gradschool_theses/4498 This Thesis is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in LSU Master's Theses by an authorized graduate school editor of LSU Digital Commons. For more information, please contact [email protected]. OPTIMIZATION OF THE EXTRACTION OF PROCYANIDIN B-2 RICH EXTRACT FROM UNFERMENTED COCOA USING RESPONSE SURFACE METHODOLOGY AND INTERACTION OF PROCYANIDIN B-2 RICH COCOA EXTRACT WITH COLLAGENASE AND ELASTASE AS BIOMARKERS OF SKIN AGING A Thesis Submitted to the Graduate Faculty of the Louisiana State University and Agricultural and Mechanical College in partial fulfillment of the requirements for the degree of Master of Science in The School of Nutrition and Food Sciences by Marco Eduardo Toc Sagra B.S., Zamorano University, 2013 August 2017 ACKNOWLEDGMENTS I would like to thank God for always being my inspiration to work hard and with excellence during this stage of my life. -
Total Phenolic Content, Free Radical Scavenging Capacity, and Anti- Cancer Activity of Silymarin
Journal of International Society for Food Bioactives Nutraceuticals and Functional Foods Review J. Food Bioact. 2020;10:53–63 Total phenolic content, free radical scavenging capacity, and anti- cancer activity of silymarin Uyory Choea, Monica Whenta*, Yinghua Luob and Liangli Yua aDepartment of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA bCollege of Food Science and Engineering, National Engineering Research Center for Fruit and Vegetable Processing, Ministry of Educa- tion, China Agricultural University, Beijing, China *Corresponding author: Monica Whent, Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA. Tel: +1 301 4054521; E-mail: [email protected] DOI: 10.31665/JFB.2020.10227 Received: June 19, 2020; Revised received & accepted: June 29, 2020 Citation: Choe, U., Whent, M., Luo, Y., and Yu, L. (2020). Total phenolic content, free radical scavenging capacity, and anti-cancer activity of silymarin. J. Food Bioact. 10: 53–63. Abstract Milk thistle (Silybum marianum) seeds are a good source of dietary polyphenols. The bioactive component of milk thistle seeds, silymarin, contains flavonolignans including silybin A, silybin B, isosilybin A, isosilybin B, sily- christin, isosilychristin, and silydiain along with the flavonol taxifolin. Silymarin is used traditionally as a natural herbal medicine with minimal side effects. Structurally, each silymarin component possesses phenolic hydroxyl groups and thus works as an antioxidant. In addition to free radical scavenging capacities, silymarin’s anti-cancer activities were reported for many different types of cancers including bladder, breast, colon, gastric, kidney, lung, oral, ovarian, prostate, and skin. The current review will discuss silymarin’s chemical components, total phenolic content, free radical scavenging capacities, and anti-cancer activities. -
A Review on Stems Composition and Their Impact on Wine Quality
molecules Review A Review on Stems Composition and Their Impact on Wine Quality Marie Blackford 1,2,* , Montaine Comby 1,2, Liming Zeng 2, Ágnes Dienes-Nagy 1, Gilles Bourdin 1, Fabrice Lorenzini 1 and Benoit Bach 2 1 Agroscope, Route de Duillier 50, 1260 Nyon, Switzerland; [email protected] (M.C.); [email protected] (Á.D.-N.); [email protected] (G.B.); [email protected] (F.L.) 2 Changins, Viticulture and Enology, HES-SO University of Applied Sciences and Arts Western Switzerland, Route de Duillier 50, 1260 Nyon, Switzerland; [email protected] (L.Z.); [email protected] (B.B.) * Correspondence: [email protected] Abstract: Often blamed for bringing green aromas and astringency to wines, the use of stems is also empirically known to improve the aromatic complexity and freshness of some wines. Although applied in different wine-growing regions, stems use remains mainly experimental at a cellar level. Few studies have specifically focused on the compounds extracted from stems during fermentation and maceration and their potential impact on the must and wine matrices. We identified current knowledge on stem chemical composition and inventoried the compounds likely to be released during maceration to consider their theoretical impact. In addition, we investigated existing studies that examined the impact of either single stems or whole clusters on the wine quality. Many parameters influence stems’ effect on the wine, especially grape variety, stem state, how stems are incorporated, Citation: Blackford, M.; Comby, M.; when they are added, and contact duration. Other rarely considered factors may also have an impact, Zeng, L.; Dienes-Nagy, Á.; Bourdin, G.; Lorenzini, F.; Bach, B. -
Sesquiterpene Glycosides from the Roots of Codonopsis Pilosula
Acta Pharmaceutica Sinica B 2016;6(1):46–54 Chinese Pharmaceutical Association Institute of Materia Medica, Chinese Academy of Medical Sciences Acta Pharmaceutica Sinica B www.elsevier.com/locate/apsb www.sciencedirect.com ORIGINAL ARTICLE Sesquiterpene glycosides from the roots of Codonopsis pilosula Yueping Jianga,b, Yufeng Liua, Qinglan Guoa, Chengbo Xua, Chenggen Zhua, Jiangong Shia,n aState Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050, China bDepartment of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China Received 6 August 2015; received in revised form 10 September 2015; accepted 14 September 2015 KEYWORDS Abstract Three new sesquiterpene glycosides, named codonopsesquilosides AÀC(1À3), were isolated from an aqueous extract of the dried roots of Codonopsis pilosula. Their structures including absolute Codonopsis pilosula; fi Campanulaceae; con gurations were determined by spectroscopic and chemical methods. These glycosides are categorized Sesquiterpene glycoside; as C15 carotenoid (1), gymnomitrane (2), and eudesmane (3) types of sesquiterpenoids, respectively. Codonopsesquilosides Compound 1 is the first diglycoside of C15 carotenoids to be reported. Compound 2 represents the second AÀC; reported example of gymnomitrane-type sesquiterpenoids from higher plants. The absolute configurations C15 carotenoid; were supported by comparison of the experimental circular dichroism (CD) spectra with the calculated Gymnomitrane; electronic CD (ECD) spectra of 1À3, their aglycones, and model compounds based on quantum- Eudesmane mechanical time-dependent density functional theory. The influences of the glycosyls on the calculated ECD spectra of the glycosidic sesquiterpenoids, as well as some nomenclature and descriptive problems with gymnomitrane-type sesquiterpenoids are discussed. -
Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination. -
Arbutin Increases Caenorhabditis Elegans Longevity and Stress Resistance
Arbutin increases Caenorhabditis elegans longevity and stress resistance Lin Zhou, Xueqi Fu, Liyan Jiang, Lu Wang, Shuju Bai, Yan Jiao, Shu Xing, Wannan Li and Junfeng Ma School of Life Sciences, Jilin University, Changchun, Jilin Province, China ABSTRACT Arbutin (p-hydroxyphenyl-β-D-glucopyranoside), a well-known tyrosinase inhibitor, has been widely used as a cosmetic whitening agent. Although its natural role is to scavenge free radicals within cells, it has also exhibited useful activities for the treatment of diuresis, bacterial infections and cancer, as well as anti-inflammatory and anti-tussive activities. Because function of free radical scavenging is also related to antioxidant and the effects of arbutin on longevity and stress resistance in animals have not yet been confirmed, here the effects of arbutin on Caenorhabditis elegans were investigated. The results demonstrated that optimal concentrations of arbutin could extend lifespan and enhance resistance to oxidative stress. The underlying molecular mechanism for these effects involves decreased levels of reactive oxygen species (ROS), improvement of daf- 16 nuclear localization, and up-regulated expression of daf-16 and its downstream targets, including sod-3 and hsp16.2. In this work the roles of arbutin in lifespan and health are studied and the results support that arbutin is an antioxidant for maintaining overall health. Subjects Animal Behavior, Biochemistry, Molecular Biology Keywords Arbutin, C. elegans, daf-16, Stress, Longevity INTRODUCTION Tannins, also known as plant polyphenols, comprise the most common category of Submitted 16 October 2017 secondary metabolites and are present in all vegetative organs of flowering plants (Scalbert Accepted 27 November 2017 Published 20 December 2017 et al., 2005). -
Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks
processes Article Exploring Plant Sesquiterpene Diversity by Generating Chemical Networks Waldeyr M. C. da Silva 1,2,3,∗ , Jakob L. Andersen 4 , Maristela T. Holanda 5 , Maria Emília M. T. Walter 3 , Marcelo M. Brigido 2 , Peter F. Stadler 5,6,7,8,9 and Christoph Flamm 7 1 Federal Institute of Goiás, Rua 64, esq. c/ Rua 11, s/n, Expansão Parque Lago, Formosa, GO 73813-816, Brazil 2 Departamento de Biologia Celular, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] 3 Bioinformatics Group, Department of Computer Science, Interdisciplinary Center for Bioinformatics, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany; [email protected] 4 Department of Mathematics and Computer Science, University of Southern Denmark, Campusvej 55, DK-5230 Odense, Denmark; [email protected] 5 Departamento de Ciência da Computação, Instituto de Ciências Exatas, Universidade de Brasília, Brasília, DF 70910-900, Brazil; [email protected] (M.T.H.); [email protected] (P.F.S.) 6 German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Competence Center for Scalable Data Services and Solutions Dresden-Leipzig, and Leipzig Research Center for Civilization Diseases, University of Leipzig, Härtelstraße 16-18, D-04107 Leipzig, Germany 7 Institute for Theoretical Chemistry, University of Vienna, Währingerstraße 17, A-1090 Wien, Austria; [email protected] 8 Max Planck Institute for Mathematics in the Sciences, Inselstraße 22, D-04103 Leipzig, Germany 9 Santa Fe Institute, 1399 Hyde Park Rd., Santa Fe, NM 87501, USA * Correspondence: [email protected]; Tel.: +55-61-99671-6025 Received: 28 February 2019; Accepted: 11 April 2019; Published: 25 April 2019 Abstract: Plants produce a diverse portfolio of sesquiterpenes that are important in their response to herbivores and the interaction with other plants.