Particle Detectors for Non-Accelerator Physics
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
The Gran Sasso Underground Laboratory Program
The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab -
In the Light of LSND, Miniboone and Other Data
DAPNIA-SPhT Joint Seminar, 21 May 2007 Exotic Neutrino Physics in the light of LSND, MiniBooNE and other data Marco Cirelli + Stéphane Lavignac SPhT - CEA/Saclay Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK CHOOZ erde 10–3 PaloV Super-K+SNO Cl +KamLAND ] 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND [eV 2 –6 SNO m 10 Super-K ∆ Ga –9 10 νe↔νX νµ↔ντ νe↔ντ νe↔νµ 10–12 10–4 10–2 100 102 tan2θ http://hitoshi.berkeley.edu/neutrino Particle Data Group 2006 Introduction CDHSW Neutrino Physics (pre-MiniBooNE): CHORUS NOMAD NOMAD NOMAD 0 KARMEN2 CHORUS Everything fits in terms of: 10 LSND 3 neutrino oscillations (mass-driven) Bugey BNL E776 K2K SuperK Simple ingredients: CHOOZ erde 10–3 PaloV νe, νµ, ντ m1, m2, m3 Super-K+SNO Cl +KamLAND ] θ12, θ23, θ13 δCP 2 KamLAND Simple theory: [eV 2 –6 SNO m 10 |ν! = cos θ|ν1! + sin θ|ν2! Super-K ∆ −E1t −E2t |ν(t)! = e cos θ|ν1! + e sin θ|ν2! Ga 2 Ei = p + mi /2p 2 –9 ν ↔ν m L 10 e X 2 2 ∆ ν ↔ν P ν → ν θ µ τ ( α β) = sin 2 αβ sin ν ↔ν E e -
Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ [email protected] E-mail: ∗ [email protected] Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature. -
Nuclear Physics
Nuclear Physics Overview One of the enduring mysteries of the universe is the nature of matter—what are its basic constituents and how do they interact to form the properties we observe? The largest contribution by far to the mass of the visible matter we are familiar with comes from protons and heavier nuclei. The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. Although the fundamental particles that compose nuclear matter—quarks and gluons—are themselves relatively well understood, exactly how they interact and combine to form the different types of matter observed in the universe today and during its evolution remains largely unknown. Nuclear physicists seek to understand not just the familiar forms of matter we see around us, but also exotic forms such as those that existed in the first moments after the Big Bang and that exist today inside neutron stars, and to understand why matter takes on the specific forms now observed in nature. Nuclear physics addresses three broad, yet tightly interrelated, scientific thrusts: Quantum Chromodynamics (QCD); Nuclei and Nuclear Astrophysics; and Fundamental Symmetries: . QCD seeks to develop a complete understanding of how the fundamental particles that compose nuclear matter, the quarks and gluons, assemble themselves into composite nuclear particles such as protons and neutrons, how nuclear forces arise between these composite particles that lead to nuclei, and how novel forms of bulk, strongly interacting matter behave, such as the quark-gluon plasma that formed in the early universe. Nuclei and Nuclear Astrophysics seeks to understand how protons and neutrons combine to form atomic nuclei, including some now being observed for the first time, and how these nuclei have arisen during the 13.8 billion years since the birth of the cosmos. -
A Survey of the Physics Related to Underground Labs
ANDES: A survey of the physics related to underground labs. Osvaldo Civitarese Dept.of Physics, University of La Plata and IFLP-CONICET ANDES/CLES working group ANDES: A survey of the physics related to underground labs. – p. 1 Plan of the talk The field in perspective The neutrino mass problem The two-neutrino and neutrino-less double beta decay Neutrino-nucleus scattering Constraints on the neutrino mass and WR mass from LHC-CMS and 0νββ Dark matter Supernovae neutrinos, matter formation Sterile neutrinos High energy neutrinos, GRB Decoherence Summary The field in perspective How the matter in the Universe was (is) formed ? What is the composition of Dark matter? Neutrino physics: violation of fundamental symmetries? The atomic nucleus as a laboratory: exploring physics at large scale. Neutrino oscillations Building neutrino flavor states from mass eigenstates νl = Uliνi i X Energy of the state m2c4 E ≈ pc + i i 2E Probability of survival/disappearance 2 ′ −i(Ei−Ep)t/h¯ ∗ P (νl → νl′ )= | δ(l, l )+ Ul′i(e − 1)Uli | 6 Xi=p 2 2 4 (mi −mp )c L provided 2Ehc¯ ≥ 1 Neutrino oscillations The existence of neutrino oscillations was demonstrated by experiments conducted at SNO and Kamioka. The Swedish Academy rewarded the findings with two Nobel Prices : Koshiba, Davis and Giacconi (2002) and Kajita and Mc Donald (2015) Some of the experiments which contributed (and still contribute) to the measurements of neutrino oscillation parameters are K2K, Double CHOOZ, Borexino, MINOS, T2K, Daya Bay. Like other underground labs ANDES will certainly be a good option for these large scale experiments. -
THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement . -
RES-NOVA Sensitivity to Core-Collapse and Failed Core-Collapse Supernova Neutrinos
Prepared for submission to JCAP RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos L. Pattavinaa;b;1 N. Ferreiro Iachellinic;1 L. Pagnaninia;d L. Canonicac E. Celib;d M. Clemenzae F. Ferronid;f E. Fiorinie A. Garaic L. Gironie M. Mancusoc S. Nisia F. Petriccac S. Pirroa S. Pozzie A. Puiua;d J. Rotheb S. Schönertb L. Shtembaric R. Straussb V. Wagnerb aINFN Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy bPhysik-Department and Excellence Cluster Origins, Technische Universität München, 85747 Garching, Germany arXiv:2103.08672v2 [astro-ph.IM] 16 Aug 2021 cMax-Planck-Institut für Physik, 80805 München, Germany dGran Sasso Science Institute, 67100, L’Aquila, Italy eINFN Sezione Milano - Bicocca and Dipartimento di Fisica, Università di Milano - Bicocca, 20126 Milano, Italy f INFN Sezione di Roma1, 00185, Roma, Italy 1Corresponding authors. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], ettore.fi[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe). -
Realization of the Low Background Neutrino Detector Double Chooz: from the Development of a High-Purity Liquid & Gas Handling Concept to first Neutrino Data
Realization of the low background neutrino detector Double Chooz: From the development of a high-purity liquid & gas handling concept to first neutrino data Dissertation of Patrick Pfahler TECHNISCHE UNIVERSITAT¨ MUNCHEN¨ Physik Department Lehrstuhl f¨urexperimentelle Astroteilchenphysik / E15 Univ.-Prof. Dr. Lothar Oberauer Realization of the low background neutrino detector Double Chooz: From the development of high-purity liquid- & gas handling concept to first neutrino data Dipl. Phys. (Univ.) Patrick Pfahler Vollst¨andigerAbdruck der von der Fakult¨atf¨urPhysik der Technischen Universit¨atM¨unchen zur Erlangung des akademischen Grades eines Doktors des Naturwissenschaften (Dr. rer. nat) genehmigten Dissertation. Vorsitzender: Univ.-Prof. Dr. Alejandro Ibarra Pr¨uferder Dissertation: 1. Univ.-Prof. Dr. Lothar Oberauer 2. Priv.-Doz. Dr. Andreas Ulrich Die Dissertation wurde am 3.12.2012 bei der Technischen Universit¨atM¨unchen eingereicht und durch die Fakult¨atf¨urPhysik am 17.12.2012 angenommen. 2 Contents Contents i Introduction 1 I The Neutrino Disappearance Experiment Double Chooz 5 1 Neutrino Oscillation and Flavor Mixing 6 1.1 PMNS Matrix . 6 1.2 Flavor Mixing and Neutrino Oscillations . 7 1.2.1 Survival Probability of Reactor Neutrinos . 9 1.2.2 Neutrino Masses and Mass Hierarchy . 12 2 Reactor Neutrinos 14 2.1 Neutrino Production in Nuclear Power Cores . 14 2.2 Energy Spectrum of Reactor neutrinos . 15 2.3 Neutrino Flux Approximation . 16 3 The Double Chooz Experiment 19 3.1 The Double Chooz Collaboration . 19 3.2 Experimental Site: Commercial Nuclear Power Plant in Chooz . 20 3.3 Physics Program and Experimental Concept . 21 3.4 Signal . 23 3.4.1 The Inverse Beta Decay (IBD) . -
Results in Neutrino Oscillations from Super-Kamiokande I
Status of the RENO Reactor Neutrino Experiment RENO = Reactor Experiment for Neutrino Oscillation (For RENO Collaboration) K.K. Joo Chonnam National University February 15, 2011 Research Techniques Seminar @FNAL Outline Experiment Goals of the RENO Exp. - Short introduction - Expected q13 sensitivity - Systematic uncertainty Overview of the RENO Experiment - Experimental Setup of RENO - Schedule - Tunnel excavation - Status of detector construction - DAQ, data analysis tools Summary Brief History of Neutrinos 1930: Pauli postulated neutrino to explain b decay problem 1933: Fermi baptized the neutrino in his weak-interaction theory 1956: First discovery of neutrino by Reines & Cowan from reactor 1957: Neutrinos are left-handed by Glodhaber et al. 1962: Discovery of nm by Lederman et al. (Brookhaven Lab) 1974: Discovery of neutral currents due to neutrinos 1977: Tau lepton discovery by Perl et al. (SLAC) 1998: Atmospheric neutrino oscillation observed by Super-K 2000: nt discovery by DONUT (Fermilab) 2002: Solar neutrino oscillation observed by SNO and confirmed by Kamland What NEXT? Standard Model Neutrinos in SM Neutrino Oscillation . Three types of neutrinos exist & mixing among them Oscillation parameters (q12 , q23 , q13) Not measured yet . Elementary particles with almost no interactions . Almost massless: impossible to measure its mass Neutrino Mixing Parameters Matrix Components: νe Ue1 Ue2 Ue3 ν1 3 Angles (θ ; θ ; θ ) 12 13 23 ν U U U ν 1 CP phase (δ) μ μ1 μ2 μ3 2 2 Mass differences ντ Uτ1 Uτ2 Uτ3 ν3 1 0 0 c 0 s ei c s 0 13 13 12 12 U 0 c23 s23 0 1 0 s12 c12 0 i 0 s23 c23 s13e 0 c13 0 0 1 atmospheric SK, K2K The Next Big Thing? SNO, solar SK, KamLAND ≈ ≈ ° q23 qatm 45 q12 ≈qsol ≈ 32° Large and maximal mixing! Reduction of reactor neutrinos due to oscillations Disappearance Reactor neutrino disappearance Prob. -
Full TIPP 2011 Program Book
Second International Conference on Technology and Instrumentation in Particle Physics June 9-14, 2011 Program & Abstracts Sheraton Chicago Hotel and Towers, Chicago IL ii TIPP 2011 — June 9-14, 2011 Table of Contents Acknowledgements .................................................................................................................................... v Session Conveners ...................................................................................................................................vii Session Chairs .......................................................................................................................................... ix Agenda ....................................................................................................................................................... 1 Abstracts .................................................................................................................................................. 35 Poster Abstracts ..................................................................................................................................... 197 Abstract Index ........................................................................................................................................ 231 Poster Index ........................................................................................................................................... 247 Author List ............................................................................................................................................. -
Letter of Interest Forthcoming Science from The
Snowmass2021 - Letter of Interest Forthcoming Science from the PROSPECT-I Data Set Neutrino Frontier Topical Groups: (NF02) Sterile neutrinos (NF03) Beyond the Standard Model (NF07) Applications (NF09) Artificial neutrino sources Contact Information: Nathaniel Bowden (LLNL) [[email protected]] Karsten Heeger (Yale University) [[email protected]] Pieter Mumm (NIST) [[email protected]] M. Andriamirado,6 A. B. Balantekin,16 H. R. Band,17 C. D. Bass,8 D. E. Bergeron,10 D. Berish,13 N. S. Bowden,7 J. P.Brodsky,7 C. D. Bryan,11 R. Carr,9 T. Classen,7 A. J. Conant,4 G. Deichert,11 M. V.Diwan,2 M. J. Dolinski,3 A. Erickson,4 B. T. Foust,17 J. K. Gaison,17 A. Galindo-Uribarri,12, 14 C. E. Gilbert,12, 14 C. Grant,1 B. T. Hackett,12, 14 S. Hans,2 A. B. Hansell,13 K. M. Heeger,17 D. E. Jaffe,2 X. Ji,2 D. C. Jones,13 O. Kyzylova,3 C. E. Lane,3 T. J. Langford,17 J. LaRosa,10 B. R. Littlejohn,6 X. Lu,12, 14 J. Maricic,5 M. P.Mendenhall,7 A. M. Meyer,5 R. Milincic,5 I. Mitchell,5 P.E. Mueller,12 H. P.Mumm,10 J. Napolitano,13 C. Nave,3 R. Neilson,3 J. A. Nikkel,17 D. Norcini,17 S. Nour,10 J. L. Palomino,6 D. A. Pushin,15 X. Qian,2 E. Romero-Romero,12, 14 R. Rosero,2 P.T. Surukuchi,17 M. A. Tyra,10 R. L. Varner,12 D. Venegas-Vargas,12, 14 P.B. -
APC Scientific Board 2017 Tech
2012-2016 APC Laboratory Technical Activities T. Zerguerras on behalf of the Technical Departments 20/11/2017 APC Scientific Board 2017 1 Technical Departments Organisation Equipment, facilities and platform Instrumentation Department (Techniques Expérimentales) Electronics and Microelectronics Department Mechanics Department IT Department Quality Unit R&D: CMB µelectronic, Compton, GAMMACUBE, Liquido Analysis & Prospects 20/11/2017 APC Scientific Board 2017 2 General organisation • 5 technical departments + Quality Unit + the FACe platform • Building an instrument => combining skills 22/09/2017 APC Scientific Board 2017 3 Technical departments organisation Matrix organisation structure: Project/Department (Assignment to a department, participation to projects) One specific skill (Mechanics, Electronics/µelectronics, Instrumentation, IT, QA/PA) Transverse activities of the Quality Unit Supervision : Head of department Project coordination: Project manager Indicator Boards for activities and assignments monitoring Project Monitoring Committee (Comité de Suivi de Projets CSP) This organisation aims to create a bond of trust with funding and tutelage agencies 20/11/2017 APC Scientific Board 2017 4 Organisation: Technical staff evolution On 31/12 Technical departments staff evolution 60 Technical departments staff - Gender 45 50 40 40 35 34 30 30 33 35 38 38 Permanent 25 MEN Fixed-term 20 38 40 39 40 39 20 WOMEN 15 10 10 15 17 13 12 12 5 10 11 9 10 11 0 0 2012 2013 2014 2015 2016 2012 2013 2014 2015 2016 Technical departments