Full TIPP 2011 Program Book

Total Page:16

File Type:pdf, Size:1020Kb

Full TIPP 2011 Program Book Second International Conference on Technology and Instrumentation in Particle Physics June 9-14, 2011 Program & Abstracts Sheraton Chicago Hotel and Towers, Chicago IL ii TIPP 2011 — June 9-14, 2011 Table of Contents Acknowledgements .................................................................................................................................... v Session Conveners ...................................................................................................................................vii Session Chairs .......................................................................................................................................... ix Agenda ....................................................................................................................................................... 1 Abstracts .................................................................................................................................................. 35 Poster Abstracts ..................................................................................................................................... 197 Abstract Index ........................................................................................................................................ 231 Poster Index ........................................................................................................................................... 247 Author List .............................................................................................................................................. 253 Sponsor Exhibitors ................................................................................................................................. 271 General Information ................................................................................................................................ 279 Hotel Maps ....................................................................................................................................... 281 Casual Dining ....................................................................................................................................... 284 Registrant List ...................................................................................................................................... 286 Schedule at a Glance .......................................................................................................Inside back cover Technology and Instrumentation in Particle Physics iii iv TIPP 2011 — June 9-14, 2011 Acknowledgements Overall Program Silvia Amerio, INFN (Scientific Secretary) Marcel Demarteau, Argonne National Laboratory (Co-Chair) Ted Liu, Fermi National Accelerator Laboratory (Co-Chair) Local Organizing Committee (USA) Dan Bauer (Fermilab) Cynthia Sazama (Fermilab) Karen Byrum (Argonne) Constance Vanni (Argonne) Henry Frisch (Univ. of Chicago) Bob Wagner (Argonne) Nancy LaRue (Argonne) Suzanne Weber (Fermilab) Ronald Lipton (Fermilab) Manfred Wendt (Fermilab) Michele Nelson (Argonne) Peter Wilson (Fermilab) Erik Ramberg (Fermilab) International Program Committee Klaus Attenkofer (Argonne, USA) Young-Kee Kim (Fermilab, USA) Sergio Bertolucci (CERN, Switzerland) Patrick LeDû (Lyon, France) Daniela Bortoletto (Purdue, USA) David MacFarlane (SLAC, USA) James Brau (Oregon, USA) Joachim Mnich (DESY, Germany) Arielle Cattai (CERN, Switzerland) Ko Nishikawa (KEK, Japan) Cristiano Galbiati (Princeton, USA) David Nygren (LBNL, USA) Sunil Gupta (TIFR, India) Veljko Radeka (BNL, USA) Junji Haba (KEK, Japan) Yifang Wang (IHEP, China) Sun Kee Kim (Seoul, Korea) Scientific Secretaries Camacho, Enrique (CINVESTAV) Lu, Ying (University of Maryland) Green, Jessica (Purdue University) Orduna, Jesus (Rice University) Joglekar, Aniket (Univ. of Chicago) Prewitt, Michelle (Rice University) Ketchum, Wesley (Univ. of Chicago) Pupillo, Francesco Lanza, Robert (Univ. of Chicago) Tang, Jian (University of Chicago) Li, Ho Ling (University of Chicago) Wu, Min (Purdue University) Liu, Qiuguang (Purdue University) Zheng, Yu (Purdue University) Technology and Instrumentation in Particle Physics v vi TIPP 2011 — June 9-14, 2011 Session Conveners Experimental Detector Systems Ariella Cattai Junji Haba Calorimetry Jose Repond Tohru Takeshita Gaseous Detectors Paul Colas Makoto Kobayashi Particle Identification Toru Iijima Photon Detectors Razmik Mirzoyan Tsuyoshi Nakaya Semiconductor Detectors Paula Collins Petra Riedler Dark Matter Detectors Jeter Hall Kara Hoffman Detectors for Neutrino Physics Antonio Eriditato Mitchell Soderberg Astrophysics and Space Instrumentation Akito Kusaka Oswald Siegmund Instrumentation for medical, biological and Materials Research Chin-Tu Chen Peter Weilhammer Front-End Electronics Jean-Pierre Walder Yasuo Arai Trigger and Data Acquisition Riccardo Paoletti Fred Wickens Machine Detector Interface and Beam Instrumentation Philip Burrows Manfred Wendt Technology and Instrumentation in Particle Physics vii viii TIPP 2011 — June 9-14, 2011 Session Chairs Experimental Detector Systems Semiconductor Detectors Brient, Jean-Claude [email protected] Affolder, Tony [email protected] Cattai, Ariella [email protected] Andricek, Laci [email protected] Junji, Haba [email protected] Beole, Stefania [email protected] Kawamoto, Tatsuo [email protected] Collins, Paula [email protected] Lipton, Ronald [email protected] Fiorini, Massimiliano massimiliano.fi[email protected] Para, Adam [email protected] Keil, Markus [email protected] Calorimetry Kwan, Simon [email protected] Macchiolo, Anna [email protected] Repond, Jose [email protected] Mikuz, Marko [email protected] Takeshita, Tohru [email protected] Parzefall, Ulrich [email protected] Gaseous Detectors Riedler, Petra [email protected] Bertolucci, Sergio [email protected] Van Der Graaf, Harry [email protected] Colas, Paul [email protected] Dark Matter Detectors Giomataris, Ioanis [email protected] Hall, Jeter [email protected] Kobayashi, Makoto [email protected] Hoffman, Kara [email protected] Nygren, David [email protected] Ochi, Atsuhiko [email protected] Detector for Neutrino Physics Particle Identification Ereditato, Antonio [email protected] Soderberg, Mitchell [email protected] Iijima,Toru [email protected] Photon Detectors Astrophysics and Space Instrumentation Kusaka, Akito [email protected] Buchanan, Norm [email protected] Siegmund, Oswald [email protected] Byrum, Karen [email protected] Mirzoyan, Razmik [email protected] Moser, Hans-Gunther [email protected] Nakaya, Tsuyoshi [email protected] Yokoyama, Masashi [email protected] Technology and Instrumentation in Particle Physics ix Instrumentation for Medical, Biological Trigger and DAQ Systems and Materials Research Bartoldus, Rainer [email protected] Chen, Chin-Tu [email protected] Biland, Adrian [email protected] Kao, Chien-Min [email protected] Jost, Beat [email protected] Le Du, Patrick [email protected] Kim, Young-Kee [email protected] Weilhammer, Peter [email protected] Meijers, Frans [email protected] Front-end Electronics Paoletti, Riccardo [email protected] Arai, Yasuo [email protected] Rajagopalan, Srini [email protected] Cancelo, Gustavo [email protected] Ristori, Luciano [email protected] Grace, Carl [email protected] Wickens, Fred [email protected] Moser, Hans-Günther [email protected] Machine Detector Interface and Beam Re, Valerio [email protected] Instrumentation Walder, Jean Pierre [email protected] Burrows, Philips [email protected] Wang, Zheng [email protected] Cummings, Mary Anne [email protected] Scarpine, Victor [email protected] Wendt, Manfred [email protected] White, Glen [email protected] x TIPP 2011 — June 9-14, 2011 AGENDA Technology and Instrumentation in Particle Physics 1 Agenda 2 TIPP 2011 — June 9-14, 2011 Wednesday — June 8, 2011 DPF Instrumentation Task Force meeting Mayfair Room (16:00-18:00) ŽƌŐĂŶŝnjĞĚďLJƚŚĞW&/ŶƐƚƌƵŵĞŶƚĂƟŽŶdĂƐŬ&ŽƌĐĞƚŽĚŝƐĐƵƐƐƚŚĞh^ŶĂƟŽŶĂůƉƌŽŐƌĂŵ ŽŶŝŶƐƚƌƵŵĞŶƚĂƟŽŶŝŶŚŝŐŚĞŶĞƌŐLJƉŚLJƐŝĐƐ ϭϴ͗ϬϬͲϮϬ͗ϬϬ ZĞŐŝƐƚƌĂƟŽŶͶĂůůƌŽŽŵWƌŽŵĞŶĂĚĞ Thursday — June 9, 2011 Ϭϳ͗ϯϬͲϬϴ͗ϯϬ ZĞŐŝƐƚƌĂƟŽŶͶWƌŽŵĞŶĚĂĚĞ Ϭϴ͗ϯϬͲϬϵ͗ϬϬ KƉĞŶŝŶŐ^ƉĞĞĐŚͶŚŝĐĂŐŽĂůůƌŽŽŵƐϴ͕ϵ͕ϭϬ ƌ͘DZdh͕DĂƌĐĞů Ϭϵ͗ϬϬͲϬϵ͗ϰϱ /ŶŶŽǀĂƟŽŶ͗,Žǁ/ƚ,ĂƉƉĞŶƐͶŚŝĐĂŐŽĂůůƌŽŽŵƐϴ͕ϵ͕ϭϬ ƌ͘Z/E<DE͕ŝůů Ϭϵ͗ϰϱͲϭϬ͗ϯϬ džƚƌĞŵĞƐŽĨůĞĐƚƌŽŶŝĐƐͶŚŝĐĂŐŽĂůůƌŽŽŵƐϴ͕ϵ͕ϭϬ ƌ͘ZE^d/E͕<ĞƌƌLJ ϭϭ͗ϬϬͲϭϭ͗ϰϱ dŚĞ>,ĞƚĞĐƚŽƌƐ͗DĂƌǀĞůƐŽĨdĞĐŚŶŽůŽŐLJͶŚŝĐĂŐŽĂůůƌŽŽŵƐϴ͕ϵ͕ϭϬ ƌ͘ZdK>h/͕^ĞƌŐŝŽ ϭϭ͗ϰϱͲϭϮ͗ϯϬ ĞƚĞĐƚŽƌƐĨŽƌŽƐŵŽůŽŐLJͶŚŝĐĂŐŽĂůůƌŽŽŵƐϴ͕ϵ͕ϭϬ WƌŽĨ͘Z>^dZKD͕:ŽŚŶ ϭϮ͗ϰϱͲϭϰ͗ϬϬ W&/ŶƐƚƌƵŵĞŶƚĂƟŽŶdĂƐŬĨŽƌĐĞdŽǁŶ,ĂůůŵĞĞƟŶŐͶDĂLJĨĂŝƌZŽŽŵ W&ƚĂƐŬĨŽƌĐĞ Astrophysics and Space Instr. — Chicago Ballroom 9 ϭϰ͗ϬϬͲϭϱ͗ϯϬ ŽŶǀĞŶĞƌƐ͗<ƵƐĂŬĂ͕ŬŝƚŽ͖^ŝĞŐŵƵŶĚ͕KƐǁĂůĚ ϭϰ͗ϬϬ ΀ϮϴϬ΁ĞƚĞĐƚŽƌƐĨŽƌƚŚĞ^ŽƵƚŚWŽůĞdĞůĞƐĐŽƉĞ ƌ͘,E'͕ĐůĂƌĞŶĐĞ ϭϰ͗ϯϬ ΀ϰϯϳ΁^ƵƉĞƌĐŽŶĚƵĐƟŶŐĞƚĞĐƚŽƌƐĂŶĚDƵůƟƉůĞdžĞĚ^Yh/ZĞĂĚŽƵƚ^LJƐƚĞŵƐ ĨŽƌDWŽůĂƌŝŵĞƚƌLJ ƌ͘E/D<͕DŝĐŚĂĞů ϭϰ͗ϱϬ ΀ϱϬϭ΁ĞǀĞůŽƉŵĞŶƚŽĨ^ƵƉĞƌĐŽŶĚƵĐƟŶŐĞƚĞĐƚŽƌƐĨŽƌDĞĂƐƵƌĞŵĞŶƚƐ ŽĨŽƐŵŝĐDŝĐƌŽǁĂǀĞĂĐŬŐƌŽƵŶĚĂŶĚKƚŚĞƌƉƉůŝĐĂƟŽŶƐ͘ Dƌ͘D/D͕^ĂƚŽƌƵ ϭϱ͗ϭϬ ΀ϯϲ΁dŚĞYh/dWƐĞƵĚŽŽƌƌĞůĂƟŽŶWŽůĂƌŝŵĞƚƌLJĨŽƌDĞĂƐƵƌŝŶŐƚŚĞDƉŽůĂƌŝnjĂƟŽŶ ƌ͘E'hzE͕,ŽŐĂŶ Technology and Instrumentation in Particle Physics 3 Agenda Calorimetry — Ontario ϭϰ͗ϬϬͲϭϱ͗ϯϬ ŽŶǀĞŶĞƌƐ͗d͘dĂŬĞƐŚŝƚĂ͖ZĞƉŽŶĚ͕:ŽƐĞ ϭϰ͗ϬϬ ΀ϮϬϭ΁ƌLJƐƚĂůĂůŽƌŝŵĞƚƌLJĨŽƌƚŚĞEĞdžƚĞĐĂĚĞ ƌ͘ZEͲzhE͕ŚƵ ϭϰ͗ϯϬ ΀ϱϭϭ΁/ŵĂŐŝŶŐĂůŽƌŝŵĞƚĞƌƐ y/͕>Ğŝ ϭϱ͗ϬϬ ΀ϱϭϬ΁ƵĂůZĞĂĚŽƵƚĂůŽƌŝŵĞƚƌLJ Dƌ͘WZ͕ĚĂŵ Detector for Neutrinos — Superior A ϭϰ͗ϬϬͲϭϱ͗ϯϬ ŽŶǀĞŶĞƌƐ͗WƌŽĨ͘ƌĞĚŝƚĂƚŽ͕ŶƚŽŶŝŽ͖^ŽĚĞƌďĞƌŐ͕DŝƚĐŚĞůů ϭϰ͗ϬϬ
Recommended publications
  • Detection of Gravitational Collapse J
    Detection of gravitational collapse J. Craig Wheeler and John A. Wheeler Citation: AIP Conference Proceedings 96, 214 (1983); doi: 10.1063/1.33938 View online: http://dx.doi.org/10.1063/1.33938 View Table of Contents: http://scitation.aip.org/content/aip/proceeding/aipcp/96?ver=pdfcov Published by the AIP Publishing Articles you may be interested in Chaos and Vacuum Gravitational Collapse AIP Conf. Proc. 1122, 172 (2009); 10.1063/1.3141244 Dyadosphere formed in gravitational collapse AIP Conf. Proc. 1059, 72 (2008); 10.1063/1.3012287 Gravitational Collapse of Massive Stars AIP Conf. Proc. 847, 196 (2006); 10.1063/1.2234402 Analytical modelling of gravitational collapse AIP Conf. Proc. 751, 101 (2005); 10.1063/1.1891535 Gravitational collapse Phys. Today 17, 21 (1964); 10.1063/1.3051610 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP: 128.83.205.78 On: Mon, 02 Mar 2015 21:02:26 214 DETECTION OF GRAVITATIONAL COLLAPSE J. Craig Wheeler and John A. Wheeler University of Texas, Austin, TX 78712 ABSTRACT At least one kind of supernova is expected to emit a large flux of neutrinos and gravitational radiation because of the collapse of a core to form a neutron star. Such collapse events may in addition occur in the absence of any optical display. The corresponding neutrino bursts can be detected via Cerenkov events in the same water used in proton decay experiments. Dedicated equipment is under construction to detect the gravitational radiation.
    [Show full text]
  • The Gran Sasso Underground Laboratory Program
    The Gran Sasso Underground Laboratory Program Eugenio Coccia INFN Gran Sasso and University of Rome “Tor Vergata” [email protected] XXXIII International Meeting on Fundamental Physics Benasque - March 7, 2005 Underground Laboratories Boulby UK Modane France Canfranc Spain INFN Gran Sasso National Laboratory LNGSLNGS ROME QuickTime™ and a Photo - JPEG decompressor are needed to see this picture. L’AQUILA Tunnel of 10.4 km TERAMO In 1979 A. Zichichi proposed to the Parliament the project of a large underground laboratory close to the Gran Sasso highway tunnel, then under construction In 1982 the Parliament approved the construction, finished in 1987 In 1989 the first experiment, MACRO, started taking data LABORATORI NAZIONALI DEL GRAN SASSO - INFN Largest underground laboratory for astroparticle physics 1400 m rock coverage cosmic µ reduction= 10–6 (1 /m2 h) underground area: 18 000 m2 external facilities Research lines easy access • Neutrino physics 756 scientists from 25 countries Permanent staff = 66 positions (mass, oscillations, stellar physics) • Dark matter • Nuclear reactions of astrophysics interest • Gravitational waves • Geophysics • Biology LNGS Users Foreigners: 356 from 24 countries Italians: 364 Permanent Staff: 64 people Administration Public relationships support Secretariats (visa, work permissions) Outreach Environmental issues Prevention, safety, security External facilities General, safety, electrical plants Civil works Chemistry Cryogenics Mechanical shop Electronics Computing and networks Offices Assembly halls Lab
    [Show full text]
  • Autumn Department of Physics Newsletter Issue
    Autumn 2018, Number 13 Department of Physics Newsletter BEECROFT BUILDING OFFICIAL OPENING BEAUTIFUL HIGGS BOSON DECAYS MAGNETIC PINWHEELS EXTREME BEAM CONTROL COSMIC SHOCKS IN THE LABORATORY PEOPLE, EVENTS AND MORE www.physics.ox.ac.uk PROUD WINNERS OF: SCIENCE NEWS SCIENCE NEWS www.physics.ox.ac.uk/research www.physics.ox.ac.uk/research BEAUTIFUL HIGGS BOSON EXTREME BEAM CONTROL An Oxford team has succeeded in stabilising the arrival time of a ‘relativistic’ beam of electrons, travelling at almost the speed of light, to 50 femtoseconds. This overcomes one of the major challenges facing the proposed DECAYS Compact Linear Collider (CLIC). On 28 August 2018 the ATLAS and Higgs from the background. These Standard Model, the prevailing theory CMS collaborations announced, with results were used in the final Tevatron of particle physics. If this prediction had a seminar at CERN, the observation of combination, which reached almost turned out to be incorrect, it would have the Higgs boson decaying into pairs of three standard deviations in 2012, not shaken the foundations of the Standard beauty (b) quarks. Both experiments enough for a discovery. Model and pointed to new physics. at the Large Hadron Collider (LHC) Instead, this is an important milestone had surpassed the five standard and a beautiful confirmation of the EXPERIMENTAL CONFIRMATION deviations (sigma) mark for this process, so-called 'Yukawa couplings', which in Prof Daniela Bortoletto which is the convention in particle Goethe said: ‘Not art and science the Standard Model give masses to all Head of Particle Physics physics to claim a discovery. Five- serve alone; patience must in the quarks and leptons, the building blocks sigma corresponds to a probability of work be shown.’ It was with patience, of matter.
    [Show full text]
  • LIGO Detector and Hardware Introduction
    LIGO Detector and Hardware Introduction Virtual Open Data Workshop May 2020 LIGO-G2000795 Outline • Introduction 45W • Interferometry 40W 1.6kW 200kW Locking Optical cavities • Hardware • Noise Fundamental Technical • Commissioning/Observation Runs • Future Detector Plans • Bibliography Gravitational Waves • Metric tensor perturbation in GR = + 2 polarization in GR Scalar and other possible waves ℎ • Free falling masses • Change in laser propagation time • Phase difference in light ∝ ℎ • Interferometry detects phase difference ∝ ℎ • Astronomical Sources Modeling Modeled Unmodeled /Length Modeled vs Unmodeled Short Inspirals (BBH, Bursts Short vs Long BNS, BH/NS) (Supernova) Long Continuous Waves Stochastic Known vs Unknown (Pulsars) Background Sensitivity Estimate • Strain from single photon: = 10 2 • Need strain 10 � −10 ℎ ≅ • Shot noise SNR− 22 = 10 improvement,∝ � 10 photons At1 1002 Hz equivalent to power24 of 20 MW • • With 200 W of input laser power, 45W 200kW 40W 1.6kW requires power gain of 100,000 Total optical gain in LIGO is ~50,000 Ignores other noise sources Gravitational Wave Detector Network GEO 600: Germany Virgo: Italy KAGRA: Japan Interferometry • Book by Peter Saulson • Michelson interferometer Fringe splitting • Fabry-Perot arms Cavity pole, = ⁄4ℱ • Pound-Drever-Hall locking 45W 200kW 40W 1.6kW Match laser frequency to cavity length RF modulation with EOM • Feedback and controls Other LIGO Cavities • Mode cleaners Input and output 45W 200kW 40W 1.6kW Single Gauss-Laguerre mode • Power recycling Output dark
    [Show full text]
  • Required Sensitivity to Search the Neutrinoless Double Beta Decay in 124Sn
    Required sensitivity to search the neutrinoless double beta decay in 124Sn Manoj Kumar Singh,1;2∗ Lakhwinder Singh,1;2 Vivek Sharma,1;2 Manoj Kumar Singh,1 Abhishek Kumar,1 Akash Pandey,1 Venktesh Singh,1∗ Henry Tsz-King Wong2 1 Department of Physics, Institute of Science, Banaras Hindu University, Varanasi 221005, India. 2 Institute of Physics, Academia Sinica, Taipei 11529, Taiwan. E-mail: ∗ [email protected] E-mail: ∗ [email protected] Abstract. The INdias TIN (TIN.TIN) detector is under development in the search for neutrinoless double-β decay (0νββ) using 90% enriched 124Sn isotope as the target mass. This detector will be housed in the upcoming underground facility of the India based Neutrino Observatory. We present the most important experimental parameters that would be used in the study of required sensitivity for the TIN.TIN experiment to probe the neutrino mass hierarchy. The sensitivity of the TIN.TIN detector in the presence of sole two neutrino double-β decay (2νββ) decay background is studied at various energy resolutions. The most optimistic and pessimistic scenario to probe the neutrino mass hierarchy at 3σ sensitivity level and 90% C.L. is also discussed. Keywords: Double Beta Decay, Nuclear Matrix Element, Neutrino Mass Hierarchy. arXiv:1802.04484v2 [hep-ph] 25 Oct 2018 PACS numbers: 12.60.Fr, 11.15.Ex, 23.40-s, 14.60.Pq Required sensitivity to search the neutrinoless double beta decay in 124Sn 2 1. Introduction Neutrinoless double-β decay (0νββ) is an interesting venue to look for the most important question whether neutrinos have Majorana or Dirac nature.
    [Show full text]
  • LIGO Listens for Gravitational Waves
    Probing Physics and Astrophysics with Gravitational Wave Observations Peter Shawhan Mid-Atlantic Senior Physicists’ Group January 18, 2017 GOES-8 image produced by M. Jentoft-Nilsen, F. Hasler, D. Chesters LIGO-G1600320-v10 (NASA/Goddard) and T. Nielsen (Univ. of Hawaii) NEWS FLASH: We detected gravitational waves 2 We = the LIGO Scientific Collaboration ))) together with the Virgo Collaboration ))) … using the LIGO* Observatories * LIGO = Laser Interferometer Gravitational-wave Observatory LIGO Hanford LIGO Livingston 4 ))) … after the Advanced LIGO Upgrade Comprehensive upgrade of Initial LIGO instrumentation in same vacuum system Higher-power laser Larger mirrors First Advanced LIGO Higher finesse arm cavities observing run, “O1”, was Stable recycling cavities Sep 2015 to Jan 2016 Signal recycling mirror Output mode cleaner Improvements and more … 5 ))) GW150914 Signal arrived 7 ms earlier at L1 Bandpassfiltered 6 ))) Looks just like a binary black hole merger! Bandpass filtered Matches well to BBH template when filtered the same way 7 ))) Announcing the Detection 8 ))) A Big Splash in February with both the scientific community and the general public! • Press conference • PRL web site • Twitter • Facebook • Newspapers & magazines • YouTube videos • The Late Show, SNL, … 9 A long-awaited confirmation 10 ((( Gravitational Waves ))) Predicted to exist by Einstein’s general theory of relativity … which says that gravity is really an effect of “curvature” in the geometry of space-time, caused by the presence of any object with mass Expressed
    [Show full text]
  • Nuclear Physics
    Nuclear Physics Overview One of the enduring mysteries of the universe is the nature of matter—what are its basic constituents and how do they interact to form the properties we observe? The largest contribution by far to the mass of the visible matter we are familiar with comes from protons and heavier nuclei. The mission of the Nuclear Physics (NP) program is to discover, explore, and understand all forms of nuclear matter. Although the fundamental particles that compose nuclear matter—quarks and gluons—are themselves relatively well understood, exactly how they interact and combine to form the different types of matter observed in the universe today and during its evolution remains largely unknown. Nuclear physicists seek to understand not just the familiar forms of matter we see around us, but also exotic forms such as those that existed in the first moments after the Big Bang and that exist today inside neutron stars, and to understand why matter takes on the specific forms now observed in nature. Nuclear physics addresses three broad, yet tightly interrelated, scientific thrusts: Quantum Chromodynamics (QCD); Nuclei and Nuclear Astrophysics; and Fundamental Symmetries: . QCD seeks to develop a complete understanding of how the fundamental particles that compose nuclear matter, the quarks and gluons, assemble themselves into composite nuclear particles such as protons and neutrons, how nuclear forces arise between these composite particles that lead to nuclei, and how novel forms of bulk, strongly interacting matter behave, such as the quark-gluon plasma that formed in the early universe. Nuclei and Nuclear Astrophysics seeks to understand how protons and neutrons combine to form atomic nuclei, including some now being observed for the first time, and how these nuclei have arisen during the 13.8 billion years since the birth of the cosmos.
    [Show full text]
  • THE BOREXINO IMPACT in the GLOBAL ANALYSIS of NEUTRINO DATA Settore Scientifico Disciplinare FIS/04
    UNIVERSITA’ DEGLI STUDI DI MILANO DIPARTIMENTO DI FISICA SCUOLA DI DOTTORATO IN FISICA, ASTROFISICA E FISICA APPLICATA CICLO XXIV THE BOREXINO IMPACT IN THE GLOBAL ANALYSIS OF NEUTRINO DATA Settore Scientifico Disciplinare FIS/04 Tesi di Dottorato di: Alessandra Carlotta Re Tutore: Prof.ssa Emanuela Meroni Coordinatore: Prof. Marco Bersanelli Anno Accademico 2010-2011 Contents Introduction1 1 Neutrino Physics3 1.1 Neutrinos in the Standard Model . .4 1.2 Massive neutrinos . .7 1.3 Solar Neutrinos . .8 1.3.1 pp chain . .9 1.3.2 CNO chain . 13 1.3.3 The Standard Solar Model . 13 1.4 Other sources of neutrinos . 17 1.5 Neutrino Oscillation . 18 1.5.1 Vacuum oscillations . 20 1.5.2 Matter-enhanced oscillations . 22 1.5.3 The MSW effect for solar neutrinos . 26 1.6 Solar neutrino experiments . 28 1.7 Reactor neutrino experiments . 33 1.8 The global analysis of neutrino data . 34 2 The Borexino experiment 37 2.1 The LNGS underground laboratory . 38 2.2 The detector design . 40 2.3 Signal processing and Data Acquisition System . 44 2.4 Calibration and monitoring . 45 2.5 Neutrino detection in Borexino . 47 2.5.1 Neutrino scattering cross-section . 48 2.6 7Be solar neutrino . 48 2.6.1 Seasonal variations . 50 2.7 Radioactive backgrounds in Borexino . 51 I CONTENTS 2.7.1 External backgrounds . 53 2.7.2 Internal backgrounds . 54 2.8 Physics goals and achieved results . 57 2.8.1 7Be solar neutrino flux measurement . 57 2.8.2 The day-night asymmetry measurement . 58 2.8.3 8B neutrino flux measurement .
    [Show full text]
  • RES-NOVA Sensitivity to Core-Collapse and Failed Core-Collapse Supernova Neutrinos
    Prepared for submission to JCAP RES-NOVA sensitivity to core-collapse and failed core-collapse supernova neutrinos L. Pattavinaa;b;1 N. Ferreiro Iachellinic;1 L. Pagnaninia;d L. Canonicac E. Celib;d M. Clemenzae F. Ferronid;f E. Fiorinie A. Garaic L. Gironie M. Mancusoc S. Nisia F. Petriccac S. Pirroa S. Pozzie A. Puiua;d J. Rotheb S. Schönertb L. Shtembaric R. Straussb V. Wagnerb aINFN Laboratori Nazionali del Gran Sasso, 67100 Assergi, Italy bPhysik-Department and Excellence Cluster Origins, Technische Universität München, 85747 Garching, Germany arXiv:2103.08672v2 [astro-ph.IM] 16 Aug 2021 cMax-Planck-Institut für Physik, 80805 München, Germany dGran Sasso Science Institute, 67100, L’Aquila, Italy eINFN Sezione Milano - Bicocca and Dipartimento di Fisica, Università di Milano - Bicocca, 20126 Milano, Italy f INFN Sezione di Roma1, 00185, Roma, Italy 1Corresponding authors. E-mail: [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], ettore.fi[email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected], [email protected] Abstract. RES-NOVA is a new proposed experiment for the investigation of astrophysical neutrino sources with archaeological Pb-based cryogenic detectors. RES-NOVA will exploit Coherent Elastic neutrino-Nucleus Scattering (CEνNS) as detection channel, thus it will be equally sensitive to all neutrino flavors produced by Supernovae (SNe).
    [Show full text]
  • Joseph Weber's Contribution to Gravitational Waves and Neutrinos
    Firenze University Press www.fupress.com/substantia Historical Article New Astronomical Observations: Joseph Weber’s Contribution to Gravitational Waves Citation: S. Gottardo (2017) New Astronomical Observations: Joseph and Neutrinos Detection Weber’s Contribution to Gravitational Waves and Neutrinos Detection. Sub- stantia 1(1): 61-67. doi: 10.13128/Sub- stantia-13 Stefano Gottardo Copyright: © 2017 S. Gottardo.This European Laboratory for Nonlinear Spectroscopy (LENS), 50019 Sesto Fiorentino (Flor- is an open access, peer-reviewed arti- ence), Italy cle published by Firenze University E-mail: [email protected] Press (http://www.fupress.com/substan- tia) and distribuited under distributed under the terms of the Creative Com- Abstract. Joseph Weber, form Maryland University, was a pioneer in the experimen- mons Attribution License, which per- tal research of gravitational waves and neutrinos. Today these two techniques are very mits unrestricted use, distribution, and promising for astronomical observation, since will allow to observe astrophysical phe- reproduction in any medium, provided nomena under a new light. We review here almost 30 years of Weber’s career spent the original author and source are on gravity waves and neutrinos; Weber’s experimental results were strongly criticized credited. by the international community, but his research, despite critics, boosted the brand Data Availability Statement: All rel- new (in mid-sixties of last century) research field of gravity waves to become one of evant data are within the paper and its the most important in XXI century. On neutrino side, he found an unorthodox way Supporting Information files. to reduce the size of detectors typically huge and he claimed to observe neutrinos flux with a small pure crystal of sapphire.
    [Show full text]
  • Current Status of GW Detection Wei-Tou Ni 倪维斗 National Tsing Hua University Refs: (I) S
    Current Status of GW Detection Wei-Tou Ni 倪维斗 National Tsing Hua University Refs: (i) S. Kuroyanagi, L-W Luo and WTN, GW sensitivities over all frequency band (ii) K Kuroda, WTN, WP Pan, IJMPD 24 (2015) 1530031 (iii) LIGO/Virgo Collaborations, GWTC-1: A GW Transient Catalog of Compact Binary Mergers Observed by LIGO and Virgo O1 & O2 (iv) LIGO/Virgo Collaborations, BBH Population Properties Inferred from O1 & O2 Observing Runs (v) WTN, GW detection in space IJMPD 25 (2016) 1530002 ……… 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 1 Among other things, 20th Century will be memorized by the advancement of fundamental physical theory and the experimental precision • 1915 General Relativity, 1916 Gravitational Waves (Einstein) • Early 1900’s: Strain Measurement precision 10-6 • 1960’s: Strain Measurement precision 10-16 Weber Bar (50 Years ago) 10 orders of gap abridged • Cryogenic Resonators; Laser Interferometry • Early 2000’s: Strain Measurement precision 10-21 • 2015: 10-22 strain precision on Detection of GWs 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 2 LIGO Ground-based GW detectors KAGRA VIRGO ET 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 3 2016 February 11 Announcement of first (direct) detection of Black Holes and GWs 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 4 2017.08.17 NSB coalescence, ApJ 848 2018/12/28 NCTS Hsinchu Current Status of GW Detection Ni 5 - Population model: A. Power law p(m) m , mmin=5M, B. Power law m-, C. A mixture of a power law and a Gaussian distribution
    [Show full text]
  • Daya at Antineutrinos Reactor Eebr1 2006 1, December Proposal Aabay Daya Θ 13 Using Daya Bay Collaboration
    Daya Bay Proposal December 1, 2006 A Precision Measurement of the Neutrino Mixing Angle θ13 Using Reactor Antineutrinos At Daya Bay arXiv:hep-ex/0701029v1 15 Jan 2007 Daya Bay Collaboration Beijing Normal University Xinheng Guo, Naiyan Wang, Rong Wang Brookhaven National Laboratory Mary Bishai, Milind Diwan, Jim Frank, Richard L. Hahn, Kelvin Li, Laurence Littenberg, David Jaffe, Steve Kettell, Nathaniel Tagg, Brett Viren, Yuping Williamson, Minfang Yeh California Institute of Technology Christopher Jillings, Jianglai Liu, Christopher Mauger, Robert McKeown Charles Unviersity Zdenek Dolezal, Rupert Leitner, Viktor Pec, Vit Vorobel Chengdu University of Technology Liangquan Ge, Haijing Jiang, Wanchang Lai, Yanchang Lin China Institute of Atomic Energy Long Hou, Xichao Ruan, Zhaohui Wang, Biao Xin, Zuying Zhou Chinese University of Hong Kong, Ming-Chung Chu, Joseph Hor, Kin Keung Kwan, Antony Luk Illinois Institute of Technology Christopher White Institute of High Energy Physics Jun Cao, Hesheng Chen, Mingjun Chen, Jinyu Fu, Mengyun Guan, Jin Li, Xiaonan Li, Jinchang Liu, Haoqi Lu, Yusheng Lu, Xinhua Ma, Yuqian Ma, Xiangchen Meng, Huayi Sheng, Yaxuan Sun, Ruiguang Wang, Yifang Wang, Zheng Wang, Zhimin Wang, Liangjian Wen, Zhizhong Xing, Changgen Yang, Zhiguo Yao, Liang Zhan, Jiawen Zhang, Zhiyong Zhang, Yubing Zhao, Weili Zhong, Kejun Zhu, Honglin Zhuang Iowa State University Kerry Whisnant, Bing-Lin Young Joint Institute for Nuclear Research Yuri A. Gornushkin, Dmitri Naumov, Igor Nemchenok, Alexander Olshevski Kurchatov Institute Vladimir N. Vyrodov Lawrence Berkeley National Laboratory and University of California at Berkeley Bill Edwards, Kelly Jordan, Dawei Liu, Kam-Biu Luk, Craig Tull Nanjing University Shenjian Chen, Tingyang Chen, Guobin Gong, Ming Qi Nankai University Shengpeng Jiang, Xuqian Li, Ye Xu National Chiao-Tung University Feng-Shiuh Lee, Guey-Lin Lin, Yung-Shun Yeh National Taiwan University Yee B.
    [Show full text]