Wind Farm/Park - Meaning & Types
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File
SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. Department of Energy - Energy Information Administration (EIA) 2014 and 2015 Q1 EIA-923 Monthly Time Series File Q1'2015 Q1'2014 State MW CF CF Arizona 227 15.8% 21.0% California 5,182 13.2% 19.8% Colorado 2,299 36.4% 40.9% Hawaii 171 21.0% 18.3% Iowa 4,977 40.8% 44.4% Idaho 532 28.3% 42.0% Illinois 3,524 38.0% 42.3% Indiana 1,537 32.6% 29.8% Kansas 2,898 41.0% 46.5% Massachusetts 29 41.7% 52.4% Maryland 120 38.6% 37.6% Maine 401 40.1% 36.3% Michigan 1,374 37.9% 36.7% Minnesota 2,440 42.4% 45.5% Missouri 454 29.3% 35.5% Montana 605 46.4% 43.5% North Dakota 1,767 42.8% 49.8% Nebraska 518 49.4% 53.2% New Hampshire 147 36.7% 34.6% New Mexico 773 23.1% 40.8% Nevada 152 22.1% 22.0% New York 1,712 33.5% 32.8% Ohio 403 37.6% 41.7% Oklahoma 3,158 36.2% 45.1% Oregon 3,044 15.3% 23.7% Pennsylvania 1,278 39.2% 40.0% South Dakota 779 47.4% 50.4% Tennessee 29 22.2% 26.4% Texas 12,308 27.5% 37.7% Utah 306 16.5% 24.2% Vermont 109 39.1% 33.1% Washington 2,724 20.6% 29.5% Wisconsin 608 33.4% 38.7% West Virginia 583 37.8% 38.0% Wyoming 1,340 39.3% 52.2% Total 58,507 31.6% 37.7% SPREADSHEET PREPARED BY WINDACTION.ORG Based on U.S. -
Renewable Energy Guide a Guide for Local Governments
s GREAT PLAINS INSTITUTE December 2020 Indiana Renewable Energy Guide A Guide for Local Governments This guide was authored by Jenna Greene, Brian Ross, and Jessi Wyatt of the Great Plains Institute in collaboration with the Environmental Resilience Institute at Indiana University. The information and work presented herein was funded in part by Energy Foundation. Photo from Great Plains Institute by Katharine Chute SUMMARY Wind and solar energy are among the least expensive forms of electric generation in the country. Solar and wind resources are abundant throughout Indiana. Costs of both solar and wind energy systems are forecast to continue declining. Increased market activity in renewable energy development will therefore continue well into the future. This guide provides Indiana communities with a long-range perspective on utility- and community-scale solar and wind energy markets and development trends. Understanding the long-term context helps communities make informed decisions in evaluating renewable energy proposals and creating plans about how future development should happen. The Great Plains Institute is engaging local governments across the Upper Midwest on long- term planning for renewable energy. Additional guides are available on the Great Plains Institute website: www.betterenergy.org. SITING UTILITY-SCALE SOLAR AND WIND IN INDIANA 1 SUMMARY OF RENEWABLE ENERGY SITING AUTHORITY Siting authority for solar and wind systems in Indiana resides at the local level.1 Additional permits are granted by state bodies, but these projects are still subject to local land use controls. For example, the Indiana Utility Regulatory Commission issues a Certificate of Public Convenience and Necessity for large-scale energy facilities, but neither solar nor wind energy systems require a state-level siting permit.2 Zoning and land use standards vary widely across Indiana’s counties. -
A Multi Criteria Decision Making Approach for the Selection of Optimum Location for Wind Power Project in India
EAI Endorsed Transactions on Energy Web Research Article A Multi Criteria Decision Making Approach for the Selection of Optimum Location for Wind Power Project in India V. Manoj1,*, V. Sai Sravani2 and A. Swathi3 1Asst. Professor, Power Engineering Department, GMRIT, India 2UG Scholar, Power Engineering Department, GMRIT, India 3PG Scholar, Mechanical Engineering Department, GMRIT, India Abstract This study tried to find out the selection of site for the wind turbine in India. We have chosen six wind power projects which are located different places in India. Wind power, Hub height, Distance, Cost, CO2, Wind speed and Blade height are the seven criteria had taken for the selection of best location. The analytical hierarchy process (AHP) is integrated with technique for order reference by similarity to ideal solution (TOPSIS) to meet the objective of this study. Firstly, the weights of each criterion are to determine using AHP. These weights will be used in TOPSIS method to select the best project. A case study is performed to exhibit the application of the methods was conducted to evaluate six types of wind power projects. The AHP- TOPSIS result showed that the Muppandal wind farm, Kanyakumari is the best wind power project among the six projects. Keywords: AHP, Energy, MCDM, Renewable Source, TOPSIS, Wind turbine selection Received on 16 April 2020, accepted on 18 August 2020, published on 21 August 2020 Copyright © 2020 V. Manoj et al., licensed to EAI. This is an open access article distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/3.0/), which permits unlimited use, distribution and reproduction in any medium so long as the original work is properly cited. -
January 31, 2019 the Honorable Kimberly D. Bose Secretary Federal
PJM Interconnection, L.L.C. 2750 Monroe Boulevard Audubon, PA 19403 Steven R. Pincus Associate General Counsel T: (610) 666-4438 ǀ F: (610) 666-8211 [email protected] January 31, 2019 The Honorable Kimberly D. Bose Secretary Federal Energy Regulatory Commission 888 First Street, N.E., Room 1A Washington, D.C. 20426 Re: PJM Interconnection, L.L.C., Docket No. ER19-925-000 PJM Operating Agreement, Schedule 12 Membership List Amendments PJM Reliability Assurance Agreement, Schedule 17 Amendments Dear Secretary Bose: Pursuant to section 205 of the Federal Power Act, 16 U.S.C § 824d (2006), and Section 35.13 of the Federal Energy Regulatory Commission’s (the “Commission’s” or “FERC’s”)1 regulations, 18 C.F.R. Part 35, PJM Interconnection, L.L.C. (“PJM”) submits for filing proposed revisions to the Amended and Restated Operating Agreement of PJM Interconnection, L.L.C. (“Operating Agreement”), Schedule 12, and Reliability Assurance Agreement among Load Serving Entities in the PJM Region (“RAA”), Schedule 17, to update these lists to include new members, remove withdrawn members, reflect the signatories to the RAA, and reflect corporate name changes for the fourth quarter of 2018 beginning October 1, 2018 and ending December 31, 2018. 1 Capitalized terms not otherwise defined herein have the meaning specified in the PJM Operating Agreement, PJM Open Access Transmission Tariff, and PJM RAA, as appropriate. Honorable Kimberly D. Bose January 31, 2019 Page 2 I. DESCRIPTION OF FILING A. Revised Operating Agreement, Schedule 12 PJM hereby submits for filing proposed revisions to the Operating Agreement, Schedule 12, which lists all the current PJM Members and includes updates to reflect (1) the addition of new PJM Members; (2) the removal of withdrawn PJM Members;2 and (3) PJM Members’ corporate name changes up to, and including, December 31, 2018. -
Wind Turbine Design for a Hybrid System with the Emphasis on Generation Complementarity
Wind Turbine Design for a Hybrid System with the emphasis on generation complementarity F. A. Qamar Wind Turbine Design for a Hybrid System with the emphasis on generation complementarity by Fadhil Ahmad Qamar to obtain the degree of Master of Science in Sustainable Energy Technology at the Delft University of Technology, to be defended publicly on Tuesday August 18, 2020 at 13.00 PM. Student number: 4741986 Project duration: October 17, 2019 – August 18, 2020 Thesis committee: Prof. dr. D. A. von Terzi, TU Delft, chairperson Dr. ir. M. L. Zaayer, TU Delft, First supervisor Dr. ir. J. Quist, TU Delft, Second supervisor An electronic version of this thesis is available at http://repository.tudelft.nl/. Summary Reason for this research The global issue on global warming and climate change are one of the motivations that led nations to reform their means of generating power and meeting the electricity demand. Decarbonisation of the power system is imperative to reduce the carbon emission, and the penetration of renewable energy to the power system is expected to rise in the future. However, as the nature of renewable energy source being weather dependent, high penetration of this technology in the power system will pose additional challenges to the utilities and system operators. The hybrid power plants that include multi- ple generation technologies can combine the strengths and weaknesses of different technologies and results in a power system with better performance. For instance, combining wind, solar or other gen- eration technologies can results in a more stable generation with a generation profile similar to the base-load generation technology. -
14.3 Review of Progress of Works on New 400 KV & 220 KV Sub
: 1 : :1: 1. 30 जून 2016 को थापित क्षमता 'मे.वा.' मᴂ Southern Region Installed Capacity in MW as on 30th June 2016 (As per CEA) THERMAL STATE HYDRO THERMAL NUCLEAR (W M+R.E.S)** TOTAL COAL GAS DIESEL TOTAL Andhra Pradesh 1758.87 6075.91 3182.65 16.97 9275.53 0.00 2676.30 13710.70 Telangana 2135.66 5076.59 1697.75 19.83 6794.17 0.00 605.54 9535.37 Karnataka 3599.80 6280.00 0.00 234.42 6514.42 0.00 5105.52 15219.74 Kerala 1881.50 0.00 174.00 159.96 333.96 0.00 255.47 2470.93 Tamil Nadu 2182.20 7720.00 1027.18 411.66 9158.84 0.00 9511.26 20852.30 Puducherry 0.00 0.00 32.50 0.00 32.50 0.00 0.03 32.53 Central Sector 0.00 11890.00 359.58 0.00 12249.58 2320.00 0.00 14569.58 Southern Region 11558.03 37042.50 6473.66 842.84 44359.00 2320.00 18154.12 76391.15 The graphical representaion is in page IA 2. June 2016 मᴂ जोडी गई क्षमता Additions to Installed Capacity in MW Capacity Date of Synchronising/ State Type Sector Station (MW) commissioning Tamil Nadu Wind Private Wind 6.00 June 2016 MW 10000 11000 12000 13000 1000 2000 3000 4000 5000 6000 7000 8000 9000 0 Reference: Page Page No. Reference: Andhra Andhra Pradesh Hydro, 1,759 Thermal, 9276 Nuclear, 0 W.M + R.E.S, 2676 1 , Item No. -
Meadow Lake Wind Farm
Meadow Lake Wind Farm Meadow Lake Wind Farm is located in northwestern Indiana in White County. The site offers many advantages as a location for a modern wind power project, including a strong, proven wind resource, excellent access to a transmission line, compatibility with existing land uses and proximity to power markets. The wind farm co-exists well with the agricultural land use in the area, allowing farmers to continue growing crops while generating revenue from the wind turbines. Energy Output Meadow Lake I Wind Farm has an installed capacity of 199.65 megawatts (MW), Phase II has an installed capacity of 99 MW and Phase III has an installed capacity of 103.5 MW, and Phase IV has an installed capacity of 98.7 MW. The wind farms generate enough clean, renewable energy to power approximately 138,000 average Indiana homes each year. EDP Renewables North America’s Development team is developing additional phases with a potential installed capacity of up to 500 megawatts in White and Benton Counties. Benefits to the Community The four phases of Meadow Lake Wind Farm yield significant economic benefits to the community in the form of payments to landowners, local spending and annual community investment. In addition, the development, construction and operation of the wind farms have generated a significant number of jobs. During construction, more than 1,000 contracters were hired. The wind farm helps provide energy security to the United States by diversifying the electricity generation portfolio, protecting against volatile natural gas spikes and utilizing a renewable, domestic source of energy. -
1. Introduction
Tamil Nadu State Action Plan for Climate Change 1. INTRODUCTION 1.1 BACKGROUND Globally observations point towards a climate change scenario as temperatures are increasing, sea levels are rising, with a perceivable increase in severity and frequency of extreme events (IPCC 2007a; Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX), 2012) and the speed of the change is evidently fast. This is leading to a complex situation, whereby all spheres of our existence are being impacted. Model projections; indicate a further escalation of the situation if greenhouse gas concentrations in the atmosphere from anthropogenic sources keep on rising unabated. It is surprising that solutions to adapt or mitigate the situation essentially are emerging from indigenous knowledge, State of art technology and research in all disciplines and fields. Due to global temperature rise and speed at which climate change is occurring, it is evident that countries are becoming vulnerable to climate change, which reduces the development path. Hence, capacity to adapt should be increased through implementation of suitable national adaptation plans. Future vulnerability depends not only on climate change but also on the type of development path that is pursued. Thus adaptation needs to be implemented in the context of national and global sustainable development efforts. The international community is identifying resources, tools, and approaches to support this effort. Adapting to climate change entails taking the right measures to reduce the negative effects of climate change (or exploit the positive ones) by making the appropriate adjustments and changes. There are many options and opportunities to adapt. -
JC 04 Date of Exam
Question Paper Title : JC_04 Date of Exam : 03-12-2019 02:30 PM Reference ID:(8260) खालील के वलयोगी अय ओळखा. A.शाास, वाहवा B.व, अन C.पुढे, समोर D.सम, ारा Answer: A.शाास, वाहवा Reference ID:(10070) Pick the right idiom which fits into the sentence: Her speech ____ controversial issues. A.Steered clear off B.Danced to the tune off C.Was hand in glove with D.Burnt fingers on Answer: A.Steered clear off Reference ID:(8540) रकाा जागी यो िवभी य लावा आिण वा पूण करा. ही छी दोनशे पयां____ आहे. A.ना B.ला C.चे D.त Answer: A.ना Reference ID:(8780) खालील वाांचे के वल वाात पांतर करा. ांचे मोकळे बोलणे ऐकले. ितला आय वाटले. A.ांचे मोकळे बोलणे ऐकू न ितला आय वाटले. B.जेा ांचे मोकळे बोलणे ऐकले तेा ितला आय वाटले. C.ांचे मोकळे बोलणे ऐकले की ितला आय वाटले. D.ांचे मोकळे बोलणे ऐकले आिण ितला आय वाटले. Answer: A.ांचे मोकळे बोलणे ऐकू न ितला आय वाटले. Reference ID:(14600) जर OH = 2915, S U N = 374127, तर P L A Y = ___? If OH = 2915, S U N = 374127, then P L A Y = ___? A.3224250 A.3224250 B.3123249 B.3123249 C.3123149 C.3123149 D.3124250 D.3124250 Answer: C.3123149 C.3123149 Reference ID:(16072) जर x> 12 आिण x <21 तर खालीलपैकी कोणता अपूणाक सवात लहान आहे? If x > 12 and x < 21 then which of the following fractions is the least? A.4x/200 A.4x/200 B.0.5x/400 B.0.5x/400 C.x/266 C.x/266 D.2x/0.5 D.2x/0.5 Answer: B.0.5x/400 B.0.5x/400 Reference ID:(12310) ‘कोडाईकनाल’ हे थंड हवेचे िठकाण हे कोणा पवतावर आहे? Kodaikanal hill station lies in which hills? A.पलणी पवत A.Palani Hills B.गढवाल पवत B.Garhwal Hills C.सातपुडा पवत C.Satpura Hills D.नीलिगरी पवत D.Nilgiri Hills Answer: A.पलणी -
Research Based Learning
Research Based Learning SCIENTIFIC ARTICLE WRITING On the topic “Wind Energy : Study & Scope in India” By Mast. Udit Bansal Purpose: To make them aware about the status of Wind Energy Utilization in India and Madhya Pradesh and to involve the status in research related to the topic “Sources of Energy which the chapter of Physics in Class X-CBSE Curriculum” Delhi Public Elementary School, Sanwer Road, Indore (An Initiative of Upnishad Shiksha Prakalp) www.upnishadinodre.org, 9644511103, [email protected] Wind Energy: Study and Scope in India Udit Bansal1, Yogesh Popat2* 1 Student, Grade X, Delhi Public Elementary School, Indore, India 2 Principal, Delhi Public Elementary School, Indore, India Abstract In the last few decades, the field of Renewable Energy Sources (RESs) is the most attracting field for researchers as far as the global demand of electricity is concerned, with many innovations, technologies, and applications become a reality. Wind Energy is one of the important categories of Renewable sources of energy which will be helpful for the sustainable development of India. Wind Energy and Solar Power is currently is the most dominating category of renewable sources of energy. This paper depicts the current situation and future perspective of utilization of wind energy. In this paper, efforts have been made to summarize the analysis of consumption, current status, and future capability, barriers to implementation and major achievements of solar energy in different states of India. Keywords - Renewable Energy Sources (RESs), wind energy, sustainable development. Introduction At the present time renewable energy is one of the most important topics in world. It is important because the fossil fuel reserves in the world are reducing rapidly and no reserves will be found in the future. -
Offshore Wind Energy and SAGARMALA a Case for Blue Economy and Low Carbon Development
Climate Ambition and Sustainability Action Partner Series Research August 2021 Discussion Paper Offshore Wind Energy and SAGARMALA A Case for Blue Economy and Low Carbon Development Priyanka Choudhury, Akshay Honmane, Sameer Guduru, and Pushp Bajaj Key Messages >>> • For countries such as India, that have a huge developmental reliance on oceans, economic growth encompasses the endeavor to transition from a ‘brown’ economy into a ‘blue’ one. • Central to economic endeavors for any country is the adoption of clean energy. In India, the drive towards renewable sources of energy has, thus far, been limited to the adoption of solar energy and onshore wind energy. • Offshore wind energy installations can play a major role in powering ports and various ancillary industries including shipbuilding, tourism, and fishing. It is, therefore, worthy of serious consideration as an option of choice for India and can readily supplement the ongoing advocacy for the adoption of ‘blue’ hydrogen derived from ocean renewable energy resources. • Mega development projects such as SAGARMALA which is based on port-led development need to be based on a vision relying on alternative sources of renewable energy. 1 Introduction: SAGARMALA and Energy Needs proximity of the port, which ensures easy access to raw materials such as coal, natural gas, and crude oil Launched in 2015, the SAGARMALA Project (SP) that are typically transported by ships. is a contemporary, mega undertaking of the Government of India (GoI) that is aimed at ‘port- India, being one of the biggest consumers of energy led’ comprehensive and holistic development of the resources, is also the third largest contributor in the country. -
An Investigation Analysis of Growth Impact On
www.ijcrt.org © 2017 IJCRT | Volume 5, Issue 4 October 2017 | ISSN: 2320-2882 AN INVESTIGATION ANALYSIS OF GROWTH IMPACT ON RENEWABLE POWER GENERATION IN INDIA 1Y.ANASUYA,2V.KISHORE BABU 1Assistant Professor,2Assistant Professor 1Mechanical Engineering Department, 1Srinivasa Institute of Engineering & Technology, Amalapuram,India. ________________________________________________________________________________________________________ Abstract:Most of the commercial energy demand in India is met largely by imported fossil fuels. In 2013, India was the 4th biggest consumer and net importer of crude and petroleum products in the world (Barpatragohain, 2015). As the country is essentially dependent on energy import, any shortfall due to unforeseen geopolitical situation may cause acute energy scarcities which will consecutively impede the industrial growth and economic progress. In order to achieve energy independence, the dependency on imported oil has to be reduced by developing alternate energy sources. If renewable power systems deliver such impressive benefits, but still we produce only 20-25% percent of national electricity generation in the India. The share of renewable energy sources, primarily wind and solar is poised to growth significantly power system. The In dian government has set a target of 175 GW of installed renewable capacity by 2022. Including 60GW of wind and 100 GW of Solar, up from an installed capacity of 29 GW wind and 9 GW solar at the beginning of 2017. Whether the target is achievable or not will be determined by market and policy led forces. However a key question that arises is what would be the operational impact of meeting these targets and what actions can be taken for effective integration of renewables.