Heat Transfer Characteristics of Natural Convection Within an Enclosure Using Liquid Cooling System
Total Page:16
File Type:pdf, Size:1020Kb
Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System Farouq Ali S. GDHAIDH Submitted for the Degree of Doctor of Philosophy School of Engineering and Informatics University of Bradford 2015 i Abstract Farouq Ali S. Gdhaidh Heat Transfer Characteristics of Natural Convection within an Enclosure Using Liquid Cooling System Keywords: Computer-cooling system, CPU fan, chips limit temperature, electronic chips, experimental study, internal heat sink, natural convection, numerical study, real boundary conditions, rectangular enclosure, single phase liquid. In this investigation, a single phase fluid is used to study the coupling between natural convection heat transfer within an enclosure and forced convection through computer covering case to cool the electronic chip. Two working fluids are used (water and air) within a rectangular enclosure and the air flow through the computer case is created by an exhaust fan installed at the back of the computer case. The optimum enclosure size configuration that keeps a maximum temperature of the heat source at a safe temperature level (85℃) is determined. The cooling system is tested for varying values of applied power in the range of 15 − 40푊. The study is based on both numerical models and experimental observations. The numerical work was developed using the commercial software (ANSYS-Icepak) to simulate the flow and temperature fields for the desktop computer and the cooling system. The numerical simulation has the same physical geometry as those used in the experimental investigations. The experimental work was aimed to gather the details for temperature field and use them in the validation of the numerical prediction. The results showed that, the cavity size variations influence both the heat transfer process and the maximum temperature. Furthermore, the experimental results i compared favourably with those obtained numerically, where the maximum deviation in terms of the maximum system temperature, is within 3.5%. Moreover, it is seen that using water as the working fluid within the enclosure is capable of keeping the maximum temperature under 77℃ for a heat source of 40푊, which is below the recommended electronic chips temperature of not exceeding 85℃. As a result, the noise and vibration level is reduced. In addition, the proposed cooling system saved about 65% of the CPU fan power. ii Acknowledgments All praises are only for God. I would also like to express my deep and sincere gratitude to my sponsor for providing the study opportunity. I am truly grateful to my research supervisors, Dr. K. Hussain and Dr. H. Qi for their valuable guidance and direction, their constant inspiration and support as well as their creative influence on my professional activities. My sincere appreciations are also extended to all faculty and staff members in the School of Engineering. Finally, I wish to thank my parents, as well as my family for their love, sacrifices, support and encouragement throughout my life. Without their sacrifices and support, I could never have been able to achieve my ambitions. iii Table of Contents Abstract .................................................................................................................................... i Acknowledgments ................................................................................................................. iii List of Figures ...................................................................................................................... viii List of Tables ........................................................................................................................ xii Glossary ............................................................................................................................... xiii Nomenclature .......................................................................................................................xiv Chapter 1: Introduction ........................................................................................................ 1 1.1 General Background on Heat Transfer and Cooling ...................................................... 1 1.2 The fundamentals of Conversion of Electricity to Heat Energy .................................... 4 1.3 Requirement of Liquid Coolant for Electronic Components ......................................... 5 1.4 Research Aims ............................................................................................................... 6 1.5 Research Objectives ....................................................................................................... 6 1.6 Methodology .................................................................................................................. 7 1.7 Research Problems ......................................................................................................... 7 1.8 Outline of the Thesis ...................................................................................................... 8 Chapter 2: Literature Review ............................................................................................. 10 2.1 Introduction .................................................................................................................. 10 2.2 Importance of Cooling Electronic Systems.................................................................. 10 2.3 Electronic Thermal Management ................................................................................. 11 2.4 Natural Convection Cooling System Using Single Phase ............................................ 13 2.4.1 Air Cooling System ............................................................................................... 14 2.4.2 Liquid Cooling System ......................................................................................... 19 2.4.3 Comparison between Using Different Fluids ........................................................ 27 2.4.4 Effect of Adding Fins inside the Enclosure .......................................................... 30 2.5 Summary ...................................................................................................................... 34 Chapter 3: Fluid Flow and Heat Transfer Governing Equations ................................... 38 3.1 Introduction .................................................................................................................. 38 3.2 Governing Equations ................................................................................................... 38 3.2.1 Continuity Equation .............................................................................................. 38 3.2.2 Momentum Equations ........................................................................................... 39 3.2.3 Energy Equation .................................................................................................... 40 3.3 Turbulence Models ...................................................................................................... 41 3.3.1 The 풌 − 휺 Model ................................................................................................... 42 iv 3.4 Boundary and Initial Conditions .................................................................................. 45 3.5 Summary ...................................................................................................................... 46 Chapter 4: Numerical Model Development and Solution Procedures ............................ 47 4.1 Introduction .................................................................................................................. 47 4.2 System Constraints ....................................................................................................... 48 4.2.1 The Rate of Removed Heat ................................................................................... 48 4.2.2 The Maximum Operating Temperature ................................................................ 48 4.2.3 Ambient Temperature ........................................................................................... 49 4.2.4 The Maximum Volume of the Cooling System .................................................... 49 4.3 Geometric Setup ........................................................................................................... 49 4.4 Solution Procedure ....................................................................................................... 53 4.4.1 Grid and Control Volume ..................................................................................... 54 4.4.2 Discretization of the Governing Equations ........................................................... 55 4.4.3 Over Relaxation and Under Relaxation ................................................................ 57 4.4.4 Treating the Coupling between Pressure and Velocity ......................................... 59 4.5 Geometry Definition and Mesh Generation ................................................................. 64 4.6 Assumptions ................................................................................................................. 70 4.6.1 Main Assumptions ................................................................................................ 70 4.6.2 Other Assumption ................................................................................................. 70 4.7 Boundary Conditions: .................................................................................................