Download Schematic-Symbols-Page-1.Pdf

Total Page:16

File Type:pdf, Size:1020Kb

Download Schematic-Symbols-Page-1.Pdf SCHEMATIC COMPONENT LINE / PACKAGE SYMBOL / COMPONENT DEFINITION OR APPLICATION TYPE / SUB-TYPE DRAWING REF DES A device used in electrical circuits to maintain a constant relation between current flow and voltage. Resistors are used to step up or lower the voltage at Resistor different points in a circuit and to transform a current signal into a voltage signal or vice versa, among other uses. The electrical behavior of a resistor obeys Ohm's law for a constant resistance; however, some resistors are sensitive to heat, light, or other variables. Variable resistors, or rheostats, have a resistance that may be varied across a Variable certain range, usually by means of a mechanical device that alters the position of one terminal of the resistor along a strip of resistant material. The Resistor length of the intervening material determines the resistance. Mechanical variable resistors are also called potentiometers, and are used in the volume knobs of audio equipment and in many other devices. a device with three terminals, two of which are connected to a resistance wire and the third to a brush moving along the wire, so that a variable Potentiometer potential can be tapped off: used in electronic circuits, esp as a volume control Sometimes shortened to pot Potentiometer. Manually adjustable, variable, electrical resistor. It has a resistance element that is attached to the circuit by three contacts, or terminals. The ends of the resistance element are attached to two input voltage conductors of the Trimmer Pot circuit, and the third contact, attached to the output of the circuit, is usually a movable terminal that slides across the resistance element, effectively dividing it into two resistors. An electrical device consisting of two conducting plates separated by an ### nF electrical insulator (the dielectric), designed to hold an electric charge. Capacitor Charge builds up when a voltage is applied across the plates, creating an electric field between them. Current can flow through a capacitor only as the voltage across it is changing, not when it is constant. Capacitors are used in power supplies, amplifiers, signal processors, oscillators, and logic gates. ### nF An electrolytic, tantalum or Aluminum, capacitor in which the dielectric film Polarized is formed adjacent to only one metal electrode; the impedance to the flow of current is then greater in one direction than in the other. Capacitor A capacitor whose capacitance can be varied continuously by moving one set ### nF of metal plates with respect to another. The physics principle being the Variable capacitance varies with both the surface area of the plates and how far they Capacitor are from each other. Trimmer capacitors are used mainly to effect the alignment of resonant oscillatory circuits. As a rule, the capacitance of a trimmer capacitor is set Trimmer during the circuit test process. After such setting, the movable parts of the Capacitor trimmer capacitor are locked in place and remain in their fixed positions while the device is operating. A trimmer capacitor is generally a simplified parallel-plate variable capacitor with one stator plate and one rotor plate. An inductor is a passive electrical component that can store energy in a magnetic field created by the electric current passing through it. An inductor Fixed is measured by its inductance, in units of henries. Typically, an inductor is a Inductor conducting wire shaped as a coil; the loops help to create a strong magnetic field. Due to the time-varying magnetic field inside the coil, a voltage is induced that opposes the change in current that created it. A variable inductor can be constructed by making one of the terminals of the device a sliding spring contact that can move along the surface of the coil, Variable increasing or decreasing the number of turns of the coil included in the Inductor circuit. An alternative construction method is to use a moveable magnetic core, which can be slid in or out of the coil. Moving the core farther into the coil increases the permeability, increasing the inductance. A transformer is a device that transfers electrical energy from one circuit to another through inductively coupled conductors—the transformer's coils. A Transformer varying current in the first or primary winding creates a varying magnetic flux in the transformer's core and thus a varying magnetic field through the secondary winding. This varying magnetic field induces a varying electromotive force (EMF), or "voltage", in the secondary winding. SCHEMATIC COMPONENT LINE / PACKAGE SYMBOL / COMPONENT DEFINITION OR APPLICATION TYPE / SUB-TYPE DRAWING REF DES An electrical device with two active terminals, an anode and a cathode, through which current passes more easily in one direction (from anode to Diode cathode) than in the reverse direction. Diodes have many uses, including conversion of AC power to DC power, and the decoding of audio-frequency signals from radio signals. A Schottky diode is a special type of diode with a very low forward-voltage drop. When current flows through a diode there is a small voltage drop across Schokkey the diode terminals. A normal silicon diode has a voltage drop between 0.6– Diode 1.7 volts, while a Schottky diode voltage drop is between approximately 0.15– 0.45 volts. This lower voltage drop can provide higher switching speed and better system efficiency. Zener diodes are widely used as voltage references and as shunt regulators to ## V regulate the voltage across small circuits. When connected in parallel with a Zener Diode variable voltage source so that it is reverse biased, a Zener diode conducts when the voltage reaches the diode's reverse breakdown voltage. From that point on, the relatively low impedance of the diode keeps the voltage across the diode at that value. A tunnel diode or Esaki diode is a type of semiconductor diode which is capable of very fast operation, well into the microwave frequency region, by Tunnel using quantum mechanical effects. Diode Diode for alternating current', is a diode that conducts current only after its breakdown voltage has been reached momentarily. When this occurs, diode Diac enters the region of negative dynamic resistance, leading to a decrease in the voltage drop across the diode and, usually, a sharp increase in current through the diode. The diode remains "in conduction" until the current through it drops below a value characteristic for the device, called the holding current. From Triode for Alternating Current, is a electronic component which can conduct current in either direction when it is triggered (turned on), and is Triac formally called a bidirectional triode thyristor or bilateral triode thyristor. It is approximately equivalent to two complementary unilateral thyristors joined in antiparallel (paralleled but with the polarity reversed) and with their gates connected together. a varicap diode, varactor diode, variable capacitance diode, variable reactance diode or tuning diode is a type of diode which has a variable capacitance that is Varactor a function of the voltage impressed on its terminals. Diode A PIN diode is a diode with a wide, lightly doped 'near' intrinsic semiconductor region between a p-type semiconductor and an n-type semiconductor region. It is typically heavily doped because they are used for ohmic contacts.The wide Pin Diode intrinsic region makes the PIN diode an inferior rectifier (one typical function of a diode), but it makes the PIN diode suitable for attenuators, fast switches, photo detectors, and high voltage power electronics applications. When a light-emitting diode is forward biased (switched on), electrons are able to recombine with electron holes within the device, releasing energy in the Light Emitting form of photons. This effect is called electroluminescence and the color of the Diode light (corresponding to the energy of the photon) is determined by the energy gap of the semiconductor. An LED is often small in area (less than 1 mm2), and integrated optical components may be used to shape its radiation pattern. A photodiode is a type of photo detector capable of converting light into either current or voltage, depending upon the mode of operation. Photodiodes are Photodiode similar to regular semiconductor diodes except that they may be either exposed (to detect vacuum UV or X-rays) or packaged with a window or optical fiber connection to allow light to reach the sensitive part of the device. A diode bridge is an arrangement of four (or more) diodes in a bridge configuration that provides the same polarity of output for either polarity of Diode Bridge AC AC input. When used in its most common application, for conversion of an alternating current (AC) input into direct current a (DC) output, it is known as a bridge rectifier. SCHEMATIC COMPONENT LINE / PACKAGE SYMBOL / COMPONENT DEFINITION OR APPLICATION TYPE / SUB-TYPE DRAWING REF DES A transient voltage suppression (TVS) diode is an electronic component used to protect sensitive electronics from voltage spikes induced on connected wires. Transorb It is also commonly referred to as a transorb. A transient voltage suppression diode may be either unidirectional or bidirectional. A Gunn diode, also known as a transferred electron device (TED), is a form of diode used in high-frequency electronics. In the Gunn diode, three regions Gunn exist: two of them are heavily N-doped on each terminal, with a thin layer of Diode lightly doped material in between. When a voltage is applied to the device, the electrical gradient will be largest across the thin middle layer. A silicon-controlled rectifier (or semiconductor-controlled rectifier) is a four- Silicon layer solid state device that controls current. In the normal "off" state, the G device restricts current to the leakage current. When the gate-to-cathode Controlled A K voltage exceeds a certain threshold, the device turns "on" and conducts Rectifier current.
Recommended publications
  • Using Rctime to Measure Resistance
    Basic Express Application Note Using RCtime to Measure Resistance Introduction One common use for I/O pins is to measure the analog value of a variable resistance. Although a built-in ADC (Analog to Digital Converter) is perhaps the easiest way to do this, it is also possible to use a digital I/O pin. This can be useful in cases where you don't have enough ADC channels, or if a particular processor doesn't have ADC capability. Procedure RCtime BasicX provides a special procedure called RCtime for this purpose. RCtime measures the time it takes for a pin to change state to a defined value. By connecting a fixed capacitor and a variable resistor in an RC circuit, you can use an I/O pin to measure the value of the variable resistor, which might be a device such as a potentiometer or thermistor. There are two common ways to wire an RCtime system. The first is to tie the variable resistor to ground. Figure 1 shows this configuration. The advantage here is less chance of damage from static electricity: Figure 1 Figure 2 The second configuration is shown in Figure 2. Here we use the opposite connection, where the capacitor C is tied to ground and the variable resistor RV is tied to 5 volts: In both circuits resistor R1 is there to protect the BasicX chip's output driver from driving too much current when charging the capacitor. To take a sample, the capacitor is first discharged by taking the pin to the correct state. In the case of Figure 1, the pin needs to be taken high (+5 V) to produce essentially 0 volts across the capacitor, which causes it to discharge.
    [Show full text]
  • Memristor-The Future of Artificial Intelligence L.Kavinmathi, C.Gayathri, K.Kumutha Priya
    International Journal of Scientific & Engineering Research, Volume 5, Issue 4, April-2014 358 ISSN 2229-5518 Memristor-The Future of Artificial Intelligence L.kavinmathi, C.Gayathri, K.Kumutha priya Abstract- Due to increasing demand on miniaturization and low power consumption, Memristor came into existence. Our design exploration is Reconfigurable Threshold Logic Gates based Programmable Analog Circuits using Memristor. Thus a variety of linearly separable and non- linearly separable logic functions such as AND, OR, NAND, NOR, XOR, XNOR have been realized using Threshold logic gate using Memristor. The functionality can be changed between these operations just by varying the resistance of the Memristor. Based on this Reconfigurable TLG, various Programmable Analog circuits can be built using Memristor. As an example of our approach, we have built Programmable analog Gain amplifier demonstrating Memristor-based programming of Threshold, Gain and Frequency. As our idea consisting of Programmable circuit design, in which low voltages are applied to Memristor during their operation as analog circuit element and high voltages are used to program the Memristor’s states. In these circuits the role of memristor is played by Memristor Emulator developed by us using FPGA. Reconfigurable is the option we are providing with the present system, so that the resistance ranges are varied by preprogram too. Index Terms— Memristor, TLG-threshold logic gates, Programmable Analog Circuits, FPGA-field programmable gate array, MTL- memristor threshold logic, CTL-capacitor Threshold logic, LUT- look up table. —————————— ( —————————— 1 INTRODUCTION CCORDING to Chua’s [founder of Memristor] definition, 9444163588. E-mail: [email protected] the internal state of an ideal Memristor depends on the • L.kavinmathi is currently pursuing bachelors degree program in electronics A and communication engineering in tagore engineering college under Anna integral of the voltage or current over time.
    [Show full text]
  • Lab 1: the Bipolar Junction Transistor (BJT): DC Characterization
    Lab 1: The Bipolar Junction Transistor (BJT): DC Characterization Electronics II Contents Introduction 2 Day 1: BJT DC Characterization 2 Background . 2 BJT Operation Regions . 2 (i) Saturation Region . 4 (ii) Active Region . 4 (iii) Cutoff Region . 5 Part 1: Diode-Like Behavior of BJT Junctions, and BJT Type 6 Experiment . 6 Creating Your Own File . 6 Report..................................................... 8 Part 2: BJT IC vs. VCE Characteristic Curves - Point by Point Plotting 8 Prelab . 8 Experiment . 8 Creating Your Own File . 8 Parameter Sweep . 9 Report..................................................... 10 Part 3: The Current Mirror 11 Experiment . 12 Simulation . 12 Checkout . 12 Report..................................................... 13 1 ELEC 3509 Electronics II Lab 1 Introduction When designing a circuit, it is important to know the properties of the devices that you will be using. This lab will look at obtaining important device parameters from a BJT. Although many of these can be obtained from the data sheet, data sheets may not always include the information we want. Even if they do, it is also useful to perform our own tests and compare the results. This process is called device characterization. In addition, the tests you will be performing will help you get some experience working with your tools so you don't waste time fumbling around with them in future labs. In Day 1, you will be looking at the DC characteristics of your transistor. This will give you an idea of what the I-V curves look like, and how you would measure them. You will also have to build and test a current mirror, which should give you an idea of how they work and where their limitations are.
    [Show full text]
  • Modelling and Characterization of DCO Using Pass Transistors
    2833 E.Kanniga et al./ Elixir Power Elec. Engg. 35 (2011) 2833-2835 Available online at www.elixirpublishers.com (Elixir International Journal) Power Electronics Engineering Elixir Power Elec. Engg. 35 (2011) 2833-2835 Modelling and characterization of DCO using Pass Transistors E.Kanniga 1 and M.Sundararajan 2 1Department of ECE, Bharath University, Chennai-73 2Gojan School of Business & Technology, Chennai-52. ARTICLE INFO ABSTRACT Article history: In the field of simulation work, it could proceed to an extent that, simulate with arbitrary Received: 6 April 2011; values of the passive component and the voltage sources. The simulation results recorded Received in revised form: various strategic points in the circuit indicate and validate the fact that the circuit is working 19 May 2011; in the expected lines with regard to the energy transfer in the expected lines with regard to Accepted: 26 May 2011; the energy transfer in the tank circuit and sustenance in DC transient Analysis. Also in this proposed experimental work, it is observed that for an arbitrary load, the voltage obtained is Keywords agreeing with the theoretically computed DC-Voltage levels. The scope of the work can be Digital controlled oscillator, extended to the actual calculation of the passives, the initial voltages across the capacitors Steady state transient response, and inductors. In addition to the exciting DC levels of the sources employed. The small Simulation LTSPICE, signal analysis can also be done with due regard to the desired behavioural properties of Varactors. switching devices used. © 2011 Elixir All rights reserved. ntroduction In the digital world there is an increased requirement for Fig1 shows that NMOS transistors configured as a Varactor Digitally Controlled Oscillator (DCO).
    [Show full text]
  • Commissioning of the Mice Rf System* A
    5th International Particle Accelerator Conference IPAC2014, Dresden, Germany JACoW Publishing ISBN: 978-3-95450-132-8 doi:10.18429/JACoW-IPAC2014-WEPME020 COMMISSIONING OF THE MICE RF SYSTEM* A. Moss, A. Wheelhouse, T. Stanley, C. White, STFC, Daresbury Laboratory, Warrington, UK K. Ronald, C.G. Whyte, A.J. Dick, D.C. Speirs, SUPA, Dept.of Physics, University of Strathclyde, Glasgow, UK S. Alsari, Imperial College of Science and Technology, London, UK on behalf of the MICE Collaboration Abstract feature adjustable sections to change the response of the cavity to both input line and resistive load. On the output The Muon Ionisation Cooling Experiment (MICE) is of the amplifier, the cavity length and hence its resonant being constructed at Rutherford Appleton Laboratory in frequency can be adjusted, whilst a stub tuner is located in the UK. The muon beam will be cooled using multiple the output coax section to alter the coupling factor into hydrogen absorbers then reaccelerated using an RF cavity the output coax so that the amplifier may be used to drive system operating at 201MHz. This paper describes recent a range of different load conditions. For use in the MICE progress in commissioning the amplifier systems at their system the 4616 operates in long pulse mode using grid design operation conditions, installation and operation as pulsed operation and can provide up to 250kW RF output part of the MICE project. power. INTRODUCTION 4616 Power Supply The muon ionisation cooling experiment is a The power supply for the tetrode amplifier consists of a demonstration of practical cooling for future muon TDK-Lambda 500A capacitor charger power supply acceleration schemes.
    [Show full text]
  • Discrete Oscillator Design
    Discrete Oscillator Design Linear, Nonlinear, Transient, and Noise Domains Randall W. Rhea ARTECH HOUSE BOSTON|LONDON artechhouse.com Contents Preface xv 1 Linear Techniques 1 1.1 Open-Loop Method 1 1.2 Starting Conditions 2 1.2.1 Match Requirements 3 1.2.2 Aligning the Maximum Phase Slope 10 1.2.3 Stable Amplifier 11 1.2.4 Gain Peak at Phase Zero Intersection 11 1.2.5 Moderate Gain 11 1.3 Random Resonator and Amplifier Combination 12 1.4 Naming Conventions 13 1.5 Amplifiers for Sustaining Stages 15 1.5.1 Bipolar Amplifier Configurations 15 1.5.2 Stabilizing Bipolar Amplifiers 19 1.5.3 Stabilized FET Amplifier Configurations 21 1.5.4 Basic Common Emitter Amplifier 23 1.5.5 Statistical Analysis of the Amplifier 25 1.5.6 Amplifier with Resistive Feedback 26 1.5.7 General-Purpose Resistive-Feedback Amplifier 29 1.5.8 Transformer-Feedback Amplifiers 33 1.5.9 Monolythic Microwave Integrated Circuit Amplifiers 34 1.5.10 Differential Amplifiers 35 1.5.11 Phase-Lead Compensation 37 1.5.12 Amplifier Summary 39 1.6 Resonators 40 1.6.1 R-C Phase Shift Network 40 1.6.2 Delay-Line Phase-Shift Network 41 1.6.3 L-C Parallel and Series Resonators 43 1.6.4 Loaded Q 45 1.6.5 Unloaded Q 46 1.6.6 Resonator Loss 47 1.6.7 Colpitts Resonator 49 1.6.8 Resonator Coupling 51 1.6.9 Matching with the Resonator 52 1.6.10 Measuring the Unloaded Q 55 1.6.11 Coupled Resonator Oscillator Example 56 vii viii Discrete Oscillator Design 1.6.12 Resonator Summary 56 1.7 One-Port Method 57 1.7.1 Negative-Resistance Oscillators 58 1.7.2 Negative-Conductance Oscillators 69 1.8
    [Show full text]
  • Ltspice Tutorial Part 4- Intermediate Circuits
    Sim Lab 8 P art 2 – E fficiency R evisited Prerequisites ● Please make sure you have completed the following: ○ LTspice tutorial part 1-4 Learn ing Objectives 1. Build circuits that control the motor speed with resistor network and with MOSFET usingLTSpice XVII. 2. By calculating the power efficiency of two speed control circuits, learn that the use of MOSFET in a speed control circuit can increase the power efficiency. Speed control by resist or network ● First, place the components as the following figure. For convenience, we use a resistor in series with an inductor to model the motor. Set the values of resistors, the inductor and the voltage source like the figure. Speed control by resist or network ● Next, connect the circuit as the following figure. We first connect the left three 100 Ω resistors to the circuit. Also, add a label net called “Vmotor_1” and place it right above R6. W e want to monitor the voltage across the motor in this way. ● At the same time, like what we did to a capacitor in previous labs, we also need to set initial conditions for an inductor. Click “Edit” -> Spice Directive -> set “.ic i(L1) = 0”. Speed control by resist or network ● Next, set the simulation condition as the left figure. We are ready to start the simulation. ● The reason to set the stop time as 0.1ms is to observe the change of Vmotor_1 through time from a transient state to steady state. Motor Model Speed control by resist or network ● Run the simulation. ● Plot Vmotor_1 and the current flowing through R6.
    [Show full text]
  • Basic DC Motor Circuits
    Basic DC Motor Circuits Living with the Lab Gerald Recktenwald Portland State University [email protected] DC Motor Learning Objectives • Explain the role of a snubber diode • Describe how PWM controls DC motor speed • Implement a transistor circuit and Arduino program for PWM control of the DC motor • Use a potentiometer as input to a program that controls fan speed LWTL: DC Motor 2 What is a snubber diode and why should I care? Simplest DC Motor Circuit Connect the motor to a DC power supply Switch open Switch closed +5V +5V I LWTL: DC Motor 4 Current continues after switch is opened Opening the switch does not immediately stop current in the motor windings. +5V – Inductive behavior of the I motor causes current to + continue to flow when the switch is opened suddenly. Charge builds up on what was the negative terminal of the motor. LWTL: DC Motor 5 Reverse current Charge build-up can cause damage +5V Reverse current surge – through the voltage supply I + Arc across the switch and discharge to ground LWTL: DC Motor 6 Motor Model Simple model of a DC motor: ❖ Windings have inductance and resistance ❖ Inductor stores electrical energy in the windings ❖ We need to provide a way to safely dissipate electrical energy when the switch is opened +5V +5V I LWTL: DC Motor 7 Flyback diode or snubber diode Adding a diode in parallel with the motor provides a path for dissipation of stored energy when the switch is opened +5V – The flyback diode allows charge to dissipate + without arcing across the switch, or without flowing back to ground through the +5V voltage supply.
    [Show full text]
  • November/December 1999
    About the Cover QEX (ISSN: 0886-8093) is published bimonthly Bill Sabin’s 100-W PA. in January ’99, March ’99, May ’99, July ’99, September ’99, and November ’99 by the See the article on p 31. A American Radio Relay League, 225 Main Street, Newington CT 06111-1494. Subscrip- tion rate for 6 issues to ARRL members is $22; nonmembers $34. Other rates are listed below. R R Periodicals postage paid at Hartford, CT and at additional mailing offices. L POSTMASTER: Form 3579 requested. Send address changes to: QEX, 225 Main St, Newington, CT 06111-1494 Issue No 197 Features David Sumner, K1ZZ Publisher Doug Smith, KF6DX 3 Technology and the Future of Amateur Radio Editor By QEX Editor Doug Smith, KF6DX Robert Schetgen, KU7G Managing Editor Lori Weinberg Assistant Editor 5 A Noise/Gain Analyzer By Harke Smits, PA0HRK Zack Lau, W1VT Contributing Editor Production Department Mark J. Wilson, K1RO 11 A Stable, Low-Noise Crystal Oscillator for Microwave Publications Manager and Millimeter-Wave Transverters Michelle Bloom, WB1ENT Production Supervisor By John Stephensen, KD6OZH Sue Fagan Graphic Design Supervisor David Pingree, N1NAS 18 Signal Sources Technical Illustrator By Bruce Pontius, N0ADL Joe Shea Production Assistant Advertising Information Contact: John Bee, NI6NV, Advertising Manager 31 A 100-W MOSFET HF Amplifier 860-594-0207 direct By William E. Sabin, W0IYH 860-594-0200 ARRL 860-594-0259 fax Circulation Department Debra Jahnke, Manager 41 A High-Performance Homebrew Transceiver: Part 3 Kathy Capodicasa, N1GZO, Deputy Manager Cathy Stepina,
    [Show full text]
  • Ceramic Resonator (Ceralock®)
    This is the PDF file of catalog No.P16E-9. P16E9.pdf 97.09.29 CERAMIC RESONATOR (CERALOCK®) CERAMIC RESONATOR (CERALOCK®) Murata Manufacturing Co., Ltd. This is the PDF file of catalog No.P16E-9. P16E9.pdf 97.09.29 cCONTENTS With Built-in Types Series Frequency Range Page Capacitors CSTCMMG K 2Mb3.5MHz 2 b 3 Chip 3 Terminals CSTCCMMG K 3.51Mb8.0MHz 2 b 3 CSTCSMMT MX K 8.0Mb60MHz 2 b 3 CSACMMGC MGCM e 1.8Mb6MHz 4 b 5 Chip 2 Terminals CSACSMMT MX e 6.01Mb60MHz 4 b 5 430kb500kHz 6 b 7 SMD, kHz range CSBFMJ e 700kb1250kHz 6 b 7 CSBMP E D J e 190kb1250kHz 8 b10 2 Terminals, leaded CSAMMK MG MTZ MXZ e 1.26Mb60MHz 8 b10 CSUMP K 450kb500kHz 11b12 3 Terminals, leaded CSTMMG MGW MTW MXW K 1.8Mb60MHz 11b12 Application Circuits ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••••13b15 ✽ Available in several standard frequencies cNOTICE aUnstable oscillation or oscillation stoppage might happen when CERALOCK® is used in improper way in conjunction with ICs. We are happy to evaluate the application circuit to avoid this for you. aOscillation frequency of our standard CERALOCK is adjusted with our standard measuring circuit. There could be slight shift is frequency if other types of IC are used. When you require exact oscillation frequency in your application, we can adjust it with your specified circuit. aPlease consult with us regarding ultrasonic cleaning conditions to avoid possible damage during ultrasonic cleaning. 1 This is the PDF file of catalog No.P16E-9. P16E9.pdf 97.09.29 CERAMIC RESONATOR (CERALOCK®) Chip Ceramic Resonator CSTC/CSTCC/CSTCS Series (CERALOCK®) Chip CERALOCKR with built-in load capacitance in an extremely small package.
    [Show full text]
  • AN826 Crystal Oscillator Basics and Crystal Selection for Rfpic™ And
    AN826 Crystal Oscillator Basics and Crystal Selection for rfPICTM and PICmicro® Devices • What temperature stability is needed? Author: Steven Bible Microchip Technology Inc. • What temperature range will be required? • Which enclosure (holder) do you desire? INTRODUCTION • What load capacitance (CL) do you require? • What shunt capacitance (C ) do you require? Oscillators are an important component of radio fre- 0 quency (RF) and digital devices. Today, product design • Is pullability required? engineers often do not find themselves designing oscil- • What motional capacitance (C1) do you require? lators because the oscillator circuitry is provided on the • What Equivalent Series Resistance (ESR) is device. However, the circuitry is not complete. Selec- required? tion of the crystal and external capacitors have been • What drive level is required? left to the product design engineer. If the incorrect crys- To the uninitiated, these are overwhelming questions. tal and external capacitors are selected, it can lead to a What effect do these specifications have on the opera- product that does not operate properly, fails prema- tion of the oscillator? What do they mean? It becomes turely, or will not operate over the intended temperature apparent to the product design engineer that the only range. For product success it is important that the way to answer these questions is to understand how an designer understand how an oscillator operates in oscillator works. order to select the correct crystal. This Application Note will not make you into an oscilla- Selection of a crystal appears deceivingly simple. Take tor designer. It will only explain the operation of an for example the case of a microcontroller.
    [Show full text]
  • Eimac Care and Feeding of Tubes Part 3
    SECTION 3 ELECTRICAL DESIGN CONSIDERATIONS 3.1 CLASS OF OPERATION Most power grid tubes used in AF or RF amplifiers can be operated over a wide range of grid bias voltage (or in the case of grounded grid configuration, cathode bias voltage) as determined by specific performance requirements such as gain, linearity and efficiency. Changes in the bias voltage will vary the conduction angle (that being the portion of the 360° cycle of varying anode voltage during which anode current flows.) A useful system has been developed that identifies several common conditions of bias voltage (and resulting anode current conduction angle). The classifications thus assigned allow one to easily differentiate between the various operating conditions. Class A is generally considered to define a conduction angle of 360°, class B is a conduction angle of 180°, with class C less than 180° conduction angle. Class AB defines operation in the range between 180° and 360° of conduction. This class is further defined by using subscripts 1 and 2. Class AB1 has no grid current flow and class AB2 has some grid current flow during the anode conduction angle. Example Class AB2 operation - denotes an anode current conduction angle of 180° to 360° degrees and that grid current is flowing. The class of operation has nothing to do with whether a tube is grid- driven or cathode-driven. The magnitude of the grid bias voltage establishes the class of operation; the amount of drive voltage applied to the tube determines the actual conduction angle. The anode current conduction angle will determine to a great extent the overall anode efficiency.
    [Show full text]