Modeling for Ultra Low Noise CMOS Image Sensors

Total Page:16

File Type:pdf, Size:1020Kb

Modeling for Ultra Low Noise CMOS Image Sensors Thèse n° 7661 Modeling for Ultra Low Noise CMOS Image Sensors Présentée le 10 septembre 2020 à la Faculté des sciences et techniques de l’ingénieur Laboratoire de circuits intégrés Programme doctoral en microsystèmes et microélectronique pour l’obtention du grade de Docteur ès Sciences par Raffaele CAPOCCIA Acceptée sur proposition du jury Prof. E. Charbon, président du jury Prof. C. Enz, directeur de thèse Prof. A. Theuwissen, rapporteur Prof. E. Fossum, rapporteur Dr J.-M. Sallese, rapporteur 2020 Ma Nino non aver paura di sbagliare un calcio di rigore, non è mica da questi particolari che si giudica un giocatore, un giocatore lo vedi dal coraggio, dall’altruismo e dalla fantasia. — Francesco De Gregori To my family. Acknowledgements I would like to express my deep gratitude to my thesis advisor, Prof. Christian Enz. His guid- ance and support over the past few years helped me to expand my knowledge in the area of device modeling and sensor design. I am genuinely grateful for having taught me how important is to be methodical and to insist on the detail. My grateful thanks are also extended to Dr. Assim Boukhayma for his contribution and for having introduced me to the fascinating world of image sensors. His help and encouragement over the entire time of my Ph.D. studies daily motivated me to improve the quality of the research. I wish to thank Dr. Farzan Jazaeri for everything he taught me during my Ph.D. His passion for physics and device modeling has been a source of inspiration for the research. I would also like to express my deepest gratitude to Prof. Edoardo Charbon, Prof. Jean-Michel Salles, Prof. Eric Fossum and Prof. Albert Theuwissen for being part of my jury, evaluating my thesis and providing comments and remarks about my work. My gratitude also goes to Dr. Wei Gao for providing me with the opportunity to conduct an internship in an industrial environment and participate in projects beyond the scope of this thesis. In addition, I must also thank the whole sensor and camera team for giving me the possibility to join their team. I would like to thank Dr. Chiao Liu, Dr. Andrew Berkovich, Dr. Elliott Tsai, Dr. Ziyun Li, Dr. Syed Shakib Sarwar, Reid Pinkham, Tianyi Yang and Seth Hirsh. I would like to thank Prof. Leblebici and Dr. Akin for their help and encouragement that inspired me during my master thesis to purse a Ph.D. degree. During my PhD, I had the opportunity to work together with two master students, Tijmen Spreij and Alban Morelle. I would like to thank them for the collaboration we had and for their work, which is partially included in this thesis. Thanks also to Dr. Althaus for helping me editing this manuscript. Particular thanks go to all my colleagues from ICLAB, current and former, for making these past few years a memorable experience. I would like then to express my sincerest thanks to my of- fice mates, Arnout Beckers and Chunmin Zhang, for all the support we always gave each other. I also want to thank all my lab mates: Mattia Cacciotti, Francesco Chicco, Vladimir Kopta, i Acknowledgements Sammy Cerida, Alessandro Pezzotta, Huang Huaiqi, Raghavasimhan Thirunarayanan, Antonio D’Amico, Antonino Caizzone, Vincent Camus, Jérémy Schlachter, Minhao Yang, Daniel Bold, Marta Franceschini and Salvatore Collura for all the fun conversation we had. I am also thankful to all the friends I met in Switzerland and the fun time we had outside of EPFL. I must acknowledge Mikhail, Navid, Gain, Jonathan, Pamela, Cosimo, Giorgio, Chiara, Michela, Eleonora, Selma e Marta. At the same time I want to acknowledge my friends outside Switzerland for their continuous support, so I thank Beppe, Giulio, Inger, Biagio, Ellis, Ruben, Andrea, Peppe and Fabio. Finally, my deep gratitude to my family for their continuous love. I am grateful to my sister Marta for always being there for me as a friend, my brothers Francesco e Matteo for their unparalleled support, and my parents Paola and Arcangelo. I am forever indebted to them for giving me the opportunities that have made me who I am. Neuchâtel, 2020 Raffaele Capoccia ii Abstract The low-light performance of a CMOS image sensor (CIS) is one of the most important perfor- mance metrics in a camera, whether it is used in products for consumer electronics or in an image-acquisition system for machine vision or the Internet-of-Things (IoT). At very low levels of illumination, the image sensors are limited by the noise generated by the readout circuits used to convert the information stored in the photodetector element, the pinned photodiode (PPD). Thanks to the development of efficient noise reduction techniques, modern CISs offer extremely interesting performance with sub-electron input-referred noise values. However, further noise reduction is needed to enable the single photon counting capability, which will allow new opportunities in a large variety of scientific applications. This thesis focuses on the modeling of ultra-low noise CISs by exploring two main research topics. The first is the modeling of the PPD device together with the transfer gate (TG). The interface between these two structures limits performance in many advanced applications and requires a deep understanding of the charge transfer process. The core of the first compact model for the charge transfer in PPDs is reported here. The second evaluates the impact of different techniques on total noise reduction. In particular, the in-pixel source follower (SF) optimization, the combination of the column-level gain with the correlated multiple sampling (CMS) order and the effect of technology downscaling are analyzed and then verified by software simulations and experimental results. The core of a physics-based compact model for the charge transfer in PPDs for CIS is presented in this dissertation. A set of analytical expressions is derived for the 2D electrostatic profile, the PPD capacitance, and the charge transfer current. The proposed model relies on the thermionic emission current mechanism, the barrier modulation and the full-depletion approximation to obtain the charge transfer current. The model is fully validated with station- ary and opto-electrical technology computer-aided design (TCAD) simulations. The charge transfer model is validated experimentally by the expression of the total amount of the trans- ferred charges derived from the charge transfer current and evaluated for different values of light intensity, TG voltage and transfer time. The result is a proven resource for CIS pixel designers in the analysis, simulation and optimization of PPD-based pixel in CISs. The main circuit-level technique for noise reduction studied in this thesis is the CMS, which is used to reduce the thermal noise and the residual flicker noise originated in the in-pixel SF.To verify the impact of the combination of the column-level gain and the analog CMS on the readout noise, a readout chain with variable gain and variable CMS order has iii Abstract been integrated in a standard 180 nm CIS process. The match between the measurement and the noise model results validates experimentally the model itself. Based on transient noise simulation results, the combination of an optimized pMOS source follower (SF), a column- level gain equal to 64 and a CMS of order 8 allows the noise to be reduced to the value of 0.20 erms, with a readout time of 43 &s. Key words: Charge Transfer Current, CMOS Image Sensors (CIS), Compact Device Modeling, Correlated Double Sampling (CDS), Correlated Multiple Sampling (CMS), Flicker noise, Passive Switched Capacitor, Photon Shot Noise, Photon Transfer Curve (PTC), Pinned Photodiode (PPD), Readout Noise, Temporal Noise, Thermal noise, Thermionic Emission Theory. iv Abstract Le prestazioni a bassa luminosità dei sensori di immagini CMOS sono una delle metriche più importanti per la caratterizzazione di fotocamere utilizzate nell’elettronica di consumo o in sistemi per l’acquisizione di immagini processate da elaboratori o nell’internet delle cose (IdC o IoT). A livelli molto bassi di illuminazione, i sensori di immagini sono limitati dal rumore originato dai circuiti elettronici di lettura, utilizzati a loro volta per convertire l’informazione immagazzinata nel dispositivo fotosensibile, il fotodiodo pinned o pinned photodiode (PPD). Grazie allo sviluppo di efficienti tecniche di riduzione del rumore, i moderni sensori CMOS offrono performance estremamente interessanti con valori di rumore espresso in carica elettrica e riferito all’ingresso del circuito al di sotto del singolo elettrone. Tuttavia, una riduzione addizionale del rumore è necessaria per permettere il conteggio dei singoli elettroni generati durante l’illuminazione, il quale aprirebbe ad una serie di nuove opportunità in diverse applicazioni scientifiche. Questa tesi si concentra sul modelllo dei sensori CMOS a bassa luminosità esplorando due ambiti principali di ricerca. Il primo è il modello del dispositivo PPD insieme al gate di trasferimento (o transfer gate (TG)). L’interfaccia tra queste due strutture limita le prestazioni in molte applicazioni avanzate e necessita di una comprensione profonda del processo di trasferimento di carica. Il nucleo del primo modello compatto per il trasferimento di carica nei PPD è presentato in questo dissertazione. Il secondo argomento valuta l’impatto delle diverse tecniche di riduzione del rumore. In particolar modo, l’ottimizzazione dell’inseguitore di tensione (o source follower (SF)) presente in ciascun pixel, la combinazione del guadagno in tensione applicato per ogni colonna dell’array del sensore con il campionamento multiplo correlato (Correlated Multiple Sampling (CMS)) e l’effetto dello scaling tecnologico sono analizzati e verificati con simulazioni software e risultati sperimentali. Il nucleo del modello compatto qui presentato è basato sulla fisica del dispositivo e descrive il trasferimento di carica nei PPD usati nei CIS. Un insieme di espressioni analitiche è derivato partendo dal profilo elettrostatico in due dimensioni (2D), insieme alla capacità del PPD e alla corrente di trasferimento.
Recommended publications
  • CMOS Sensors Enable Phone Cameras, HD Video
    CMOS Sensors Enable Phone Cameras, HD Video NASA Technology to come of age by the late 1980s. These image sensors already used in CCDs. Using this technique, he measured comprise an array of photodetecting pixels that collect a pixel’s voltage both before and after an exposure. “It’s eople told me, ‘You’re an idiot to work on charges when exposed to light and transfer those charges, like when you go to the deli counter, and they weigh the this,’” Eric Fossum recalls of his early experi- pixel to pixel, to the corner of the array, where they are container, then weigh it again with the food,” he explains. ments with what was at the time an alternate “P amplified and measured. The sampling corrected for the slight thermal charges and form of digital image sensor at NASA’s Jet Propulsion While CCD sensors are capable of producing scientific- transistor fluctuations that are latent in photodetector Laboratory (JPL). grade images, though, they require a lot of power and readout, and it resulted in a clearer image. His invention of the complementary metal oxide extremely high charge-transfer efficiency. These difficulties Because CMOS pixels are signal amplifiers themselves, semiconductor (CMOS) image sensor would go on to are compounded when the number of pixels is increased for they can each read out their own signals, rather than trans- become the Space Agency’s single most ubiquitous spinoff higher resolution or when video frame rates are sped up. ferring all the charges to a single amplifier. This lowered technology, dominating the digital imaging industries and Fossum was an expert in CCD technology—it was why voltage requirements and eliminated charge transfer- enabling cell phone cameras, high-definition video, and JPL hired him in 1990—but he believed he could make efficiency issues.
    [Show full text]
  • CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems
    IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 32, NO. 2, FEBRUARY 1997 187 CMOS Active Pixel Image Sensors for Highly Integrated Imaging Systems Sunetra K. Mendis, Member, IEEE, Sabrina E. Kemeny, Member, IEEE, Russell C. Gee, Member, IEEE, Bedabrata Pain, Member, IEEE, Craig O. Staller, Quiesup Kim, Member, IEEE, and Eric R. Fossum, Senior Member, IEEE Abstract—A family of CMOS-based active pixel image sensors Charge-coupled devices (CCD’s) are currently the dominant (APS’s) that are inherently compatible with the integration of on- technology for image sensors. CCD arrays with high fill-factor, chip signal processing circuitry is reported. The image sensors small pixel sizes, and large formats have been achieved and were fabricated using commercially available 2-"m CMOS pro- cesses and both p-well and n-well implementations were explored. some signal processing operations have been demonstrated The arrays feature random access, 5-V operation and transistor- with charge-domain circuits [1]–[3]. However, CCD’s cannot transistor logic (TTL) compatible control signals. Methods of be easily integrated with CMOS circuits due to additional on-chip suppression of fixed pattern noise to less than 0.1% fabrication complexity and increased cost. Also, CCD’s are saturation are demonstrated. The baseline design achieved a pixel high capacitance devices so that on-chip CMOS drive electron- size of 40 "m 40 "m with 26% fill-factor. Array sizes of 28 28 elements and 128 128 elements have been fabricated and ics would dissipate prohibitively high power levels for large characterized. Typical output conversion gain is 3.7 "V/e for the area arrays (2–3 W).
    [Show full text]
  • Print Special Issue Flyer
    IMPACT FACTOR 3.576 an Open Access Journal by MDPI Photon-Counting Image Sensors Guest Editors: Message from the Guest Editors Prof. Dr. Eric Fossum Dear Colleagues, [email protected] The field of photon-counting image sensors is advancing Prof. Dr. Nobukazu Teranishi rapidly with the development of various solid-state image [email protected] sensor technologies including single photon avalanche Prof. Dr. Albert Theuwissen detectors (SPADs) and deep-sub-electron read noise CMOS [email protected] image sensor pixels. This foundational platform technology will enable opportunities for new imaging modalities and Dr. David Stoppa instrumentation for science and industry, as well as new [email protected] consumer applications. Papers discussing various photon- Prof. Dr. Edoardo Charbon counting image sensor technologies and selected new [email protected] applications are presented in this all-invited Special Issue. Prof. Dr. Eric R. Fossum Prof. Dr. Edoardo Charbon Deadline for manuscript Dr. David Stoppa submissions: closed (12 February 2016) Prof. Dr. Nobukazu Teranishi Prof. Dr. Albert Theuwissen Guest Editors mdpi.com/si/6076 SpeciaIslsue IMPACT FACTOR 3.576 an Open Access Journal by MDPI Editor-in-Chief Message from the Editor-in-Chief Prof. Dr. Vittorio M.N. Passaro Sensors is a leading journal devoted to fast publication of Dipartimento di Ingegneria the latest achievements of technological developments Elettrica e dell'Informazione and scientific research in the huge area of physical, (Department of Electrical and Information Engineering), chemical and biochemical sensors, including remote Politecnico di Bari, Via Edoardo sensing and sensor networks. Both experimental and Orabona n.
    [Show full text]
  • NASA Technologies Benefit Society
    National Aeronautics and Space Administration NASA TECH N OLOGIE S BE N EFI T SOCIE T Y 2010 spinoff SPINOFF Office of the Chief Technologist On the cover: During the STS-128 space shuttle mission, a space-walking astronaut took this photograph of a portion of the International Space Station (ISS) flying high above Earth’s glowing horizon. This year marks the 10th 2010 anniversary of the ISS, and is also a year of beneficial spinoff technologies, as highlighted by the smaller images lined up against the backdrop of space. Spinoff Program Office NASA Center for AeroSpace Information Daniel Lockney, Editor Bo Schwerin, Senior Writer Lisa Rademakers, Writer John Jones, Graphic Designer Deborah Drumheller, Publications Specialist Table of Contents 7 Foreword 9 Introduction 10 International Space Station Spinoffs 20 Executive Summary 30 NASA Technologies Enhance Our Lives on Earth 32 NASA Partnerships Across the Nation 34 NASA Technologies Benefiting Society Health and Medicine Burnishing Techniques Strengthen Hip Implants ...............................................................38 Signal Processing Methods Monitor Cranial Pressure ..........................................................40 Ultraviolet-Blocking Lenses Protect, Enhance Vision ..........................................................42 Hyperspectral Systems Increase Imaging Capabilities ..........................................................44 Transportation Programs Model the Future of Air Traffic Management ......................................................48
    [Show full text]
  • CMOS Active Pixel Sensor for Digital Cameras: Current State-Of- The-Art
    CMOS ACTIVE PIXEL SENSORS FOR DIGITAL CAMERAS: CURRENT STATE-OF-THE-ART Atmaram Palakodety Thesis Prepared for the Degree of MASTER OF SCIENCE UNIVERSITY OF NORTH TEXAS May 2007 APPROVED: Saraju P. Mohanty, Major Professor Elias Kougianos, Co-Major Professor Armin R. Mikler, Committee Member and Graduate Coordinator Krishna Kavi, Chair of the Department of Computer Science and Engineering Oscar Garcia, Dean of College of Engineering Sandra L. Terrell, Dean of the Robert B. Toulouse School of Graduate Studies Palakodety, Atmaram. CMOS Active Pixel Sensor for Digital Cameras: Current State-of- the-Art. Master of Science (Computer Engineering), May 2007, 62 pp., 11 tables, 22 figures, references, 79 titles. Image sensors play a vital role in many image sensing and capture applications. Among the various types of image sensors, complementary metal oxide semiconductor (CMOS) based active pixel sensors (APS), which are characterized by reduced pixel size, give fast readouts and reduced noise. APS are used in many applications such as mobile cameras, digital cameras, Webcams, and many consumer, commercial and scientific applications. With these developments and applications, CMOS APS designs are challenging the old and mature technology of charged couple device (CCD) sensors. With the continuous improvements of APS architecture, pixel designs, along with the development of nanometer CMOS fabrications technologies, APS are optimized for optical sensing. In addition, APS offers very low-power and low-voltage operations and is suitable for monolithic integration, thus allowing manufacturers to integrate more functionality on the array and building low-cost camera-on-a-chip. In this thesis, I explore the current state-of-the-art of CMOS APS by examining various types of APS.
    [Show full text]
  • Engineering Professor Wins Technology and Engineering Emmy | the Dartmouth
    2/19/2021 Engineering professor wins Technology and Engineering Emmy | The Dartmouth Support independent student journalism. SUPPORT THE DARTMOUTH $5 Engineering professor wins Technology and Engineering Emmy by Charlie Palsho (https://www.thedartmouth.com/sta/charlie-palsho) | 2/19/21 2:05am (http://www.facebook.com/sharer.php? u=https://www.thedartmouth.com/article/2021/02/engineering-professor-wins- technology-and-engineering-emmy) (http://twitter.com/intent/tweet? url=https://www.thedartmouth.com/article/2021/02/engineering-professor- wins-technology-and-engineering-emmy&text=Engineering professor wins Technology and Engineering Emmy) https://www.thedartmouth.com/article/2021/02/engineering-professor-wins-technology-and-engineering-emmy 1/4 2/19/2021 Engineering professor wins Technology and Engineering Emmy | The Dartmouth Engineering professor Eric Fossum won a Technology and Engineering Emmy for his invention of an image sensor used in cameras, like the one used to take this photo. Source: Courtesy of Eric Fossum Engineering professor Eric Fossum will receive an award at the 72nd Annual Technology and Engineering Emmys for his invention of a sensor now widely used in phone cameras and webcams that even aided in the Mars 2020 rover mission. Fossum’s complementary metal oxide semiconductor active pixel image sensor, or CMOS, converts light signals into digital information while using little battery power and tting easily into a smartphone.The sensor is also less costly than earlier technology. The Technology and Engineering Emmy Awards, which honor innovations in production, recording, transmission or reception of television, will be held virtually in October. Fossum initially created the CMOS while working for NASA at the Jet Propulsion Laboratory in California in the 1990s.
    [Show full text]
  • The Quanta Image Sensor: Every Photon Counts
    sensors Review The Quanta Image Sensor: Every Photon Counts Eric R. Fossum *, Jiaju Ma, Saleh Masoodian, Leo Anzagira and Rachel Zizza Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA; [email protected] (J.M.); [email protected] (S.M.); [email protected] (L.A.); [email protected] (R.Z.) * Correspondence: [email protected]; Tel.: +1-603-646-3486 Academic Editor: Nobukazu Teranishi Received: 24 April 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector. A series of bit planes is generated through high-speed readout, and a kernel or “cubicle” of bits (x, y, t) is used to create a single output image pixel. The size of the cubicle can be adjusted post-acquisition to optimize image quality. The specialized sub-diffraction-limit photodetectors in the QIS are referred to as “jots” and a QIS may have a gigajot or more, read out at 1000 fps, for a data rate exceeding 1 Tb/s. Basically, we are trying to count photons as they arrive at the sensor. This paper reviews the QIS concept and its imaging characteristics. Recent progress towards realizing the QIS for commercial and scientific purposes is discussed. This includes implementation of a pump-gate jot device in a 65 nm CIS BSI process yielding read noise as low as 0.22 e´ r.m.s.
    [Show full text]
  • The Quanta Image Sensor: Every Photon Counts
    Dartmouth College Dartmouth Digital Commons Dartmouth Scholarship Faculty Work 8-10-2016 The Quanta Image Sensor: Every Photon Counts Eric Fossum Dartmouth College Jiaju Ma Dartmouth College Saleh Masoodian Dartmouth College Leo Anzagira Dartmouth College Rachel Zizza Dartmouth College Follow this and additional works at: https://digitalcommons.dartmouth.edu/facoa Part of the Engineering Commons Dartmouth Digital Commons Citation Fossum, Eric; Ma, Jiaju; Masoodian, Saleh; Anzagira, Leo; and Zizza, Rachel, "The Quanta Image Sensor: Every Photon Counts" (2016). Dartmouth Scholarship. 3443. https://digitalcommons.dartmouth.edu/facoa/3443 This Article is brought to you for free and open access by the Faculty Work at Dartmouth Digital Commons. It has been accepted for inclusion in Dartmouth Scholarship by an authorized administrator of Dartmouth Digital Commons. For more information, please contact [email protected]. sensors Review The Quanta Image Sensor: Every Photon Counts Eric R. Fossum *, Jiaju Ma, Saleh Masoodian, Leo Anzagira and Rachel Zizza Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA; [email protected] (J.M.); [email protected] (S.M.); [email protected] (L.A.); [email protected] (R.Z.) * Correspondence: [email protected]; Tel.: +1-603-646-3486 Academic Editor: Nobukazu Teranishi Received: 24 April 2016; Accepted: 2 August 2016; Published: 10 August 2016 Abstract: The Quanta Image Sensor (QIS) was conceived when contemplating shrinking pixel sizes and storage capacities, and the steady increase in digital processing power. In the single-bit QIS, the output of each field is a binary bit plane, where each bit represents the presence or absence of at least one photoelectron in a photodetector.
    [Show full text]
  • Pixels? -- a Proposal for a Gigapixel Digital Film Sensor (DFS)* Eric R
    What To Do With Sub-Diffraction-Limit (SDL) Pixels? -- A Proposal for a Gigapixel Digital Film Sensor (DFS)* Eric R. Fossum† Abstract This paper proposes the use of sub-diffraction-limit (SDL) pixels in a new solid-state imaging paradigm – the emulation of the silver halide emulsion film process. The SDL pixels can be used in a binary mode to create a gigapixel digital film sensor (DFS). It is hoped that this paper may inspire revealing research into the potential of this paradigm shift. The relentless drive to reduce feature size in microelectronics has continued now for several decades and feature sizes have shrunk in accordance to the prediction of Gordon Moore in 1975. While the “repeal” of Moore’s Law has also been anticipated for some time, we can still confidently predict that feature sizes will continue to shrink in the near future. Using the shrinking-feature-size argument, it became clear in the early 1990’s that the opportunity to put more than 3 or 4 CCD electrodes in a single pixel would soon be upon us and from that the CMOS “active pixel” sensor concept was born. Personally, I was expecting the emergence of the “hyperactive pixel” with in-pixel signal conditioning and ADC. In fact, the effective transistor count in most CMOS image sensors has hovered in the 3-4 transistor range, and if anything, is being reduced as pixel size is shrunk by shared readout techniques. The underlying reason for pixel shrinkage is to keep sensor and optics costs as low as possible as pixel resolution grows.
    [Show full text]
  • Department Lecture Series
    Department Lecture Series The Photon-Counting Quanta Image Sensor John H. Krehbiel Sr. Professor Dr. Eric Fossum for Emerging Technologies, Associate Provost, Office of Entrepreneurship & Technology Transfer Dartmouth University Thursday, November 1st 4:30 pm Scott Hall 6142 Abstract: ECE Seminar Committee The talk will begin with a discussion on the CMOS image sensor – its invention, underlying principles, and commercialization. The Quanta Image Sensor (QIS) is a Aswin Sankaranarayanan possible 3rd generation solid-state image sensor technology that is based on photon- [email protected] counting. Primarily focused on scientific and defense applications, it may also be useful for consumer applications. The specialized QIS pixel device and its deep Maysam Chamanzar subelectron read noise will be discussed. The specialized pixel uses ultra-low capacitance rather than avalanche multiplication to achieve single photoelectron [email protected] detection capability. The high frame rate, low power readout will also be described. Recent results on a 1Mpixel QIS with 1.1um pixel pitch, deep sub-electron read noise Swarun Kumar (<0.3e- rms), 1000fps readout at <25mW total power dissipation at room temperature [email protected] will be reported. The device was implemented in a backside-illuminated stacked CMOS image sensor process with room temperature dark current less than 1e-/sec. Giulia Fanti The QIS opens new possibilities for computational imaging by computer scientists [email protected] and others. Bio: Dr. Eric R. Fossum is best known for the invention of the CMOS image sensor “camera-on-a-chip” used in billions of cameras, from smart phones to web cameras to pill cameras and many other applications.
    [Show full text]
  • Photobit TECHNOLOGY
    Photobit TECHNOLOGY DIGITAL CAMERA-ON-A-CHIP CMOS APS TECHNOLOGY © ER FOSSUM Rev 1 Photobit TECHNOLOGY Imaging Systems Timing & Optics DiDriver Circuits Detector Pixel Array ASSP Analog Signal Processor Analog to Digital Converter ADC Digital Signal Processor DSP © ER FOSSUM Photobit CMOS Image Sensor TECHNOLOGY Camera-on-a-Chip Digital Logic for • User Interface CMOS Active Pixel Color Imaging Array • Sensor Setup • Timing Generator • Digital Signal Processing –Color Processing –White Balance –Image Enhancement • Data Output Formatting AlAnalog SilSignal Processing • Data Sampling • Noise Reduction • Gain Analog-To-Digital Conversion © ER FOSSUM Photobit CMOS Image Sensor TECHNOLOGY Functional Advantages over CCDs •On-chip timing and control circuits •On-chippggpg analog signal processing •Correlated double sampling •Local neighborhood image processing •Multiresolution processing •Compression preprocessing •Pixel defect correction •Ultra high dynamic range •Window readout for electronic pan/tilt •Skip-mode for low resolution readout •On-chip analog-to-digital conversion •High speed digital output •On-chip DSP and digital sensor control •Lower supply voltages and power (5V, 3. 3V, 2. 7V… ) •Easier interface, easier board design © ER FOSSUM Photobit TECHNOLOGY Pixels Vpd Cpd Ipd Vss voltage time © ER FOSSUM Photobit TECHNOLOGY Color Filter Array (CFA) • Each pixel gets covered by a colored filter – Wdbl(RGB)CFAWe use red, green, blue (RGB) CFA - btbest ma thfRGBtch for RGB displays in “Bayer” pattern – Could use complementary colors (cyan,
    [Show full text]
  • Fall 2015 the Big Picture: CMOS Image Sensors from Zero to Billions and Beyond Eric Fossum PICTURE Professor of Engineering, Director, Ph.D
    Distinguished Lecture Series EECS COLLOQUIUM Fall 2015 The Big Picture: CMOS Image Sensors From Zero to Billions and Beyond Eric Fossum PICTURE Professor of Engineering, Director, Ph.D. Innovation Program, Dartmouth Abstract This talk will discuss the technology story behind CMOS image sensors, from invention to state of the art ubiquitous imaging. We will also discuss some of the fundamental scientific principles behind image sensor operation and limits. The Quanta Image Sensor, a new paradigm in image acquisition will also be introduced. The QIS moves the process of image formation from the Wednesday physical pixel to a computational environment through the use of spatial and September 9 temporal oversampling, and the elimination of read noise. 4:00 - 5:00pm Biography Dr. Eric Fossum is a Professor at the Thayer School of Engineering at Dart- mouth and Director of the School’s Ph.D. Innovation Program. He is a semi- Refreshments conductor device physicist and engineer specializing in image sensor tech- served at 3:30pm nology. He is best known for the invention of the CMOS image sensor now used in billions of cameras. He was inducted into the National Inventors Hall of Fame in 2011. Hewlett-Packard He received his B.S. in Physics and Engineering from Trinity College in 1979, Auditorium his Ph.D. from Yale in 1984 and became an EE faculty member at Columbia University. In 1990 he was recruited to the NASA Jet Propulsion Laboratory 306 Soda Hall at Caltech where he managed JPL’s image sensor and focal-plane technology R&D and invented the CMOS image sensor.
    [Show full text]