Standard X-Ray Diffraction Powder Patterns
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Recovery of Lithium from Spent Lithium Ion Batteries
Recovery of Lithium from Spent Lithium Ion Batteries Gabriel Chinyama Luzendu Chemical Engineering, masters level 2016 Luleå University of Technology Department of Engineering Sciences and Mathematics MASTER’S DEGREE PROJECT IN CHEMICAL ENGINEERING WITH SPECIALIZATION IN MINERALS AND METALLURGICAL ENGINEERING X7009K RECOVERY OF LITHIUM FROM SPENT LITHIUM ION BATTERIES Author: Gabriel Chinyama Luzendu Supervisors: Fredrik Engström & Jakob Kero Examiner: Caisa Samuelsson 31/08/2016 Division of Minerals and Metallurgical Engineering Department of Civil, Environmental & Natural Resource Engineering Luleå University of Technology Luleå, Sweden Declaration By submitting this thesis, I solemnly declare that the work contained therein is my own original work and that I am the sole author thereof and that it contains no material that has been accepted for the award of any other degree or diploma in any university. I also wish to declare that to the very best of my knowledge, it contains no material published previously or inscribed by another person, except where due reference is made in the text and that publication by Luleå University of Technology will not infringe any third party rights. Gabriel Chinyama Luzendu August, 2016 © Gabriel Chinyama Luzendu 2 Acknowledgement This thesis has been carried out at Luleå University of Technology, Division of Minerals and Metallurgical Research Laboratory. Further acknowledgement goes to the Swedish Institute for the financial support through the scholarship for my studies. I also wish to acknowledge my examiner Associate Professor Fredrik Engström and Jakob Kero for the knowledge, guidance and advice they shared with me during this thesis. Special thanks go to Professor Caisa Samuelsson for the opportunity to do the thesis in the department. -
Www .Fancycn.Cn 6FN CYRESOURCE
FANCY RESOURCE www .fancycn.cn 6FN CYRESOURCE Company Introduction Fancy Mineral Resource Co, Ltd.(referred as “FR”) is As an energy conservation and environmental protection a manufacturing enterprise concentrated on converting enterprise, Fancy Resource, a hi-tech enterprise engaged in mineral resources into materials of industrial development and applications of mineral resources, has possessed applications, which dedicated itself to global resource mineral resources and strong Science and Technology Research & exploration & development, minerals application R&D, Development capabilities, specialized in scaled and refined production and end products sales for a long term, has a production of industrial mineral materials. After years’ continuous group of talented personnel and masters specialized high-speed development, Fancy Resource has achieved good mineral extraction technologies and R&D capabilities. results in terms of company size and operation profit. Envisioning For recent years, FR has specialized on the R&D of new the future, guided by national industrial policies and also according energy, new material , production process and the level to industry development and market demands, Fancy Resource will of industrialization development. As production bases continue to strengthen its efforts in the construction of New Energy both at home and abroad putting into operation in and New Materials Industry Chain, with mineral resources as its succession, Fancy will possess a broader extension guarantee and technological innovation -
Graphite and Lithium
www.oeko.de Environmental and socio-economic challenges in battery supply chains: graphite and lithium Short study prepared within the framework of the BMBF Darmstadt, joint project Fab4Lib - Research on measures to increase 29.07.2020 material and process efficiency in lithium-ion battery cell production along the entire value chain (FKZ 03XP0142E) Authors Geschäftsstelle Freiburg Postfach 17 71 79017 Freiburg Peter Dolega Hausadresse Dr. Matthias Buchert Merzhauser Straße 173 Dr. Johannes Betz 79100 Freiburg Telefon +49 761 45295-0 Oeko-Institut Büro Berlin Schicklerstraße 5-7 10179 Berlin Telefon +49 30 405085-0 Büro Darmstadt Rheinstraße 95 64295 Darmstadt Telefon +49 6151 8191-0 [email protected] www.oeko.de Fab4Lib Table of contents List of figures 4 List of abbreviations 5 1. Battery supply chains - towards sustainable cell manufacturing in the EU 7 2. Graphite 7 2.1. Natural graphite 8 2.2. Synthetic graphite 11 3. Lithium 12 3.1. Brines – Lithium triangle 13 3.2. Spodumene – Lithium from Australia 14 4. The future of battery supply chains 20 5. References 20 3 Fab4Lib List of figures Figure 2-1: Overview over the production process of natural graphite. 9 Figure 2-2: Overview over the production process of synthetic graphite. 11 Figure 3-1: Map of currently active lithium brines 13 Figure 3-2: Global lithium production from 2016 to 2018 by country 14 Figure 3-3: Map of Australian lithium mines 15 Figure 3-4: Location of Australian lithium mines in areas of critical habiat 18 Figure 3-5: Greenbushes and critical habitat in the surroundings -
United States Patent Office 368)
Patented May 8, 1945 2,375,638 UNITED STATES PATENT OFFICE 368). OSPORCAC) AND METHOD OF PSEPARNG SE SAE Leonard H. Egguani, Winona, illinn. No Drawing. App3.cation May 17, 1942, Seria Ne, 393,938 6 Claims. (C. 23-166) This invention relates to the provision and pro phosphorus pentoxide P2O5, to about four molec diction of phosphorus pentoxide derivatives and ular equivalents of the boric acid B(OH) are has as a general object the provision and prepa employed in the reaction which is represented by ration of a novel boro-phosphoric acid and a the following equation: . method of preparing various salts thereof. A more specific object of the invention is the provision of a novel powdery non-hygroscopic While do not wish the invention imited to acid comprising acid oxide groups of boron and any theory of the reactions which may be in phosphorus together with certain molecular pro voived, in view of the generai belief stated above, portions of water. C it Enight toe we to point out by way of possible Another object of the invention is the pro explanation that i believe the two molecular vision of a novel boro-phosphoric acid which has equivalents of the phosphorus pentoxide, 2Paos, a relatively great capacity for neutralizing bases abstract from the four noiecular equivalents of and which can be readily stored and handled as the horic acid, 43(OH)3, three Eholecular equiva other non-corrosive powders without requiring lents of Water. Tiki as the boron oxide groups experasive subber-coated or rubber-lined equip ray be C33 'feite it one notects r equivalent ment and containers. -
Batteries for Electric and Hybrid Heavy Duty Vehicles
Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The United States Government does not endorse products of manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. The mention of commercial products, their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products by U.S. Department of Transportation or the contractor. For questions or copies please contact: CALSTART 48 S Chester Ave. Pasadena, CA 91106 Tel: (626) 744 5600 www.calstart.org Energy Storage Compendium: Batteries for Electric and Hybrid Heavy Duty Vehicles March 2010 CALSTART Prepared for: U.S. Department of Transportation Abstract The need for energy storage solutions and technologies is growing in support of the electrification in transportation and interest in hybrid‐electric and all electric heavy‐duty vehicles in transit and the commercial vehicles. The main purpose of this document is to provide an overview of advanced battery energy storage technologies available currently or in development for heavy‐duty, bus and truck, applications. The same set of parameters, such as energy density, power density, lifecycle and weight were used in review of the specific battery technology solution. The important performance requirements for energy storage solutions from the vehicle perspective were reviewed and the basic advantages of different cell chemistries for vehicle batteries were summarized. A list of current battery technologies available for automotive applications is provided. -
Boron Compounds As Additives to Lubricants
ISSN: 1402-1544 ISBN 978-91-86233-XX-X Se i listan och fyll i siffror där kryssen är LICENTIATE T H E SIS Faiz Ullah to Shah Lubricants Additives Compounds Boron as Division of Chemical Engineering Division of Machine Elements Boron Compounds as Additives to Lubricants ISSN: 1402-1757 ISBN 978-91-7439-027-8 Synthesis, Characterization and Tribological Luleå University of Technology 2009 Optimization Synthesis, Characterization and Tribological Optimization Tribological Characterization and Synthesis, Faiz Ullah Shah Boron Compounds as Additives to Lubricants: Synthesis, Characterization and Tribological Optimization Faiz Ullah Shah Division of Chemical Engineering & Division of Machine Elements Luleå University of Technology SE- 971 87 Luleå SWEDEN November 2009 Printed by Universitetstryckeriet, Luleå 2009 ISSN: 1402-1757 ISBN 978-91-7439-027-8 Luleå www.ltu.se The most fundamental and lasting objective of synthesis is NOT production of new compounds but PRODUCTION OF NEW PROPERTIES George S. Hammond. Norris Award lecture, 1968 SUMMARY Developing new technological solutions, such as use of lightweight materials, less harmful fuels, controlled fuel combustion processes or more efficient exhaust gas after-treatment, are possible ways to reduce the environmental impact of machines. Both the reduction of wear and the friction control are key issues for decreasing of energy losses, improving efficiency and increasing of the life-span of an engine. Dialkyldithiophosphates (DTPs) of different metals have been extensively used as multifunctional additives in lubricants to control friction and reduce wear in mechanical systems. Among these DTP-compounds, zinc dialkyldithiophosphates (ZnDTPs) are the most common additives used for more than 60 years. These additives form protective films on steel surfaces and, thus, control friction and reduce wear. -
Treaty Series
Treaty Series Treaties and internationalagreements registered or filed and recorded with the Secretariat of the United Nations VOLUME 446 Recueil des Traites Traites et accords internationaux enregistres ou classes et inscrits au repertoire au Secrtariat de l'Organisationdes Nations Unies United Nations * Nations Unies New York, 1963 Treaties and international agreements registered or filed and recorded with the Secretariat of the United Nations VOLUME 446 1962 I. Nos. 6397-6409 TABLE OF CONTENTS Treaties and internationalagreements registered /rom 29 November 1962,to 4 December 1962 Page No. 6397. Denmark and People's Republic of China: Exchange of notes constituting an agreement relating to mutual exemption from taxation of residents of either State who are temporarily staying in the other State for educational purposes. Copenhagen, 7 and 23 Septem- ber 1961 .............. .............. ........ 3 No. 6398. United States of America and Denmark: Interim Agreement relating to the General Agreement on Tariffs and Trade (with schedules). Signed at Geneva, on 5 March 1962 ............ 9 No. 6399. United States of America and Finland: Interim Agreement relating to the General Agreement on Tariffs and Trade (with schedules). Signed at Geneva, on 5 March 1962 ......... ... 19 No. 6400. United States of America and Israel: Interim Agreement relating to the General Agreement on Tariffs and Trade (with schedules). Signed at Geneva, on 5 March 1962 ......... ... 29 No. 6401. United States of America and New Zealand: Interim Agreement relating to the General Agreement on Tariffs and Trade (with schedules). Signed at Geneva, on 5 March 1962 ......... ... 39 No. 6402. United States of America and Norway: Interim Agreement relating to the General Agreement on Tariffs and Trade (with schedules). -
The Lithium-Ion Battery Value Chain
THE LITHIUM-ION BATTERY VALUE CHAIN New Economy Opportunities for Australia Acknowledgment Austrade would like to express our appreciation to Future Smart Strategies, especially Howard Buckley, for his professional guidance, advice and assistance, with earlier versions of this report. We would also like to thank Adrian Griffin at Lithium Australia for his insights and constructive suggestions. And we would like to acknowledge the insights provided by Prabhav Sharma at McKinsey & Company. More broadly, we would like to thank the following companies and organisations for providing data and information that assisted our research: › Association of Mining and Exploration Australia (AMEC); › Geoscience Australia; › Albemarle; and › TianQi Australia. Disclaimer Copyright © Commonwealth of Australia 2018 This report has been prepared by the Commonwealth of Australia represented by the Australian Trade and Investment Commission (Austrade). The report is a general overview and is not intended to The material in this document is licensed under a Creative Commons provide exhaustive coverage of the topic. The information is made Attribution – 4.0 International licence, with the exception of: available on the understanding that the Commonwealth of Australia is • the Australian Trade and Investment Commission’s logo not providing professional advice. • any third party material While care has been taken to ensure the information in this report • any material protected by a trade mark is accurate, the Commonwealth does not accept any liability for any • any images and photographs. loss arising from reliance on the information, or from any error or More information on this CC BY licence is set out at the creative omission, in the report. -
Download and Execute the Full Code for These Examples Themselves and Modify Them for Their Own Applications
Lawrence Berkeley National Laboratory Recent Work Title Benchmarking Coordination Number Prediction Algorithms on Inorganic Crystal Structures Permalink https://escholarship.org/uc/item/0sj353dg Journal Inorganic Chemistry: including bioinorganic chemistry, 60(3) ISSN 0020-1669 Authors Pan, Hillary Ganose, Alex Horton, Matthew et al. Publication Date 2021-02-01 DOI 10.1021/acs.inorgchem.0c02996 Peer reviewed eScholarship.org Powered by the California Digital Library University of California Benchmarking Coordination Number Prediction Algorithms on Inorganic Crystal Structures Hillary Pan,y,{ Alex M. Ganose,y,{ Matthew Horton,y,z Muratahan Aykol,y Kristin Persson,y,z Nils E.R. Zimmermann,∗,y and Anubhav Jain∗,y yLawrence Berkeley National Laboratory, Energy Technologies Area, 1 Cyclotron Road, Berkeley, CA 94720, United States zDepartment of Materials Science & Engineering, University of California, Berkeley, United States {Equal contribution E-mail: [email protected]; [email protected] Abstract Coordination numbers and geometries form a theoretical framework for understand- ing and predicting materials properties. Algorithms to determine coordination num- bers automatically are increasingly used for machine learning and automatic structural analysis. In this work, we introduce MaterialsCoord, a benchmark suite containing 56 experimentally-derived crystal structures (spanning elements, binaries, and ternary compounds) and their corresponding coordination environments as described in the research literature. We also describe CrystalNN, a novel algorithm for determining near neighbors. We compare CrystalNN against 7 existing near-neighbor algorithms on the MaterialsCoord benchmark, finding CrystalNN to perform similarly to several well-established algorithms. For each algorithm, we also assess computational demand and sensitivity towards small perturbations that mimic thermal motion. Finally, we 1 investigate the similarity between bonding algorithms when applied to the Materials Project database. -
Patented July 21, 1953 2,646,344
Patented July 21, 1953 2,646,344 Jonas Kamlet, Easton, Conn, assignor to Amer ican Potash & Chemical Corporation, Trona, Calif., a corporation of Delaware No Drawing. Application September 27, 1952, serial No. 311,943 s. 1. Claim. (C1.23-203) 1 : 2 : . This invention relates to a process for the with ammonia in the Vapor phase to form adipo manufacture of boron phosphate (BPO4). More dinitrile for the nylon process (Arnold and partietary, it relates to a simple process where Iazier-U.S. Patent : 2,200,734); . by-boron phosphate:may be manufactured in a (e). As a catalyst in the dehydration of ethyl single step from cheap and readily available raw senic and cycloaliphatic alcohols (Usines. de . Melle-British Patent. 589,709); materials.Boron phosphate has heretofore been s manu (f) As a catalyst in the vapor phase methyl factured by the following methods: . ation of benzene with dimethyl ether to form (a) By the reaction of boric anhydride with toluene . (Given and Hammick, Journ. Chem. phosphorus oxychloride or phosphorus penta () Soc. 1947,928-935); chloride, according to the equations: (g) As a catalyst in the vapor phase nitration of aromatic hydrocarbons in petroleum with NO2 (Rout, U. S. Patent 2,431,585); (h) As a catalyst in the desulfurization of at 150°-170° C. for 8-10 hours, or by the reaction hydrocarbons in petroleum refining (Krug, U. S. of phosphorus pentoxide with boron trichloride Patent 2,441,493); at 200° C. for 2-3 days (Gustavson, Berichte 3, (i) As a catalyst in the dehydration of hy 426 (1871), Zeit. -
Lithium Titanate Hydrates with Superfast and Stable Cycling in Lithium Ion Batteries
ARTICLE DOI: 10.1038/s41467-017-00574-9 OPEN Lithium titanate hydrates with superfast and stable cycling in lithium ion batteries Shitong Wang1,2, Wei Quan1, Zhi Zhu2, Yong Yang3, Qi Liu4, Yang Ren4, Xiaoyi Zhang4, Rui Xu5, Ye Hong1, Zhongtai Zhang1, Khalil Amine5, Zilong Tang1, Jun Lu 5 &JuLi 2,6 Lithium titanate and titanium dioxide are two best-known high-performance electrodes that can cycle around 10,000 times in aprotic lithium ion electrolytes. Here we show there exists more lithium titanate hydrates with superfast and stable cycling. That is, water promotes structural diversity and nanostructuring of compounds, but does not necessarily degrade electrochemical cycling stability or performance in aprotic electrolytes. As a lithium ion battery anode, our multi-phase lithium titanate hydrates show a specific capacity of about 130 mA h g−1 at ~35 C (fully charged within ~100 s) and sustain more than 10,000 cycles with capacity fade of only 0.001% per cycle. In situ synchrotron diffraction reveals no 2-phase transformations, but a single solid-solution behavior during battery cycling. So instead of just a nanostructured intermediate to be calcined, lithium titanate hydrates can be the desirable final destination. 1 State Key Lab of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, China. 2 Department of Nuclear Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA. 3 Department of Chemistry, Tsinghua University, Beijing 100084, China. 4 X-ray Science Division, Advanced Photon Source, Argonne National Laboratory, Lemont, Illinois 60439, USA. 5 Chemical Sciences and Engineering Division, Argonne National Laboratory, Lemont, Illinois 60439, USA. -
Exemption for the Use of Cadmium in Portable Batteries and Accumulators
Exemption for the use of cadmium in portable batteries and accumulators intended for the use in cordless power tools in the context of the Batteries Directive 2006/66/EC Final Report (revised) 26 January 2010 Consortium ESWI Expert TeamBIPRO, to S upportUmweltbundesamt Waste Implementation BiPRO Beratungsgesellschaft für integrierte Problemlösungen ENV.G.4/FRA/2007/0066 iii European Commission ESWI Final Report - Replacement of Cadmium Batteries in Cordless Power Tools ENV.G.4/FRA/2007/0066 iv Executive Summary Background The Batteries Directive 2006/66/EC (repealing Directive 91/157/EEC) entered into force on 26 September 20061. The Directive sets out rules applicable to all batteries and accumulators that are put on the European Union market. These rules include, among others, restriction on the use of cadmium in portable batteries and accumulators (PBA) according to Article 4(1)(b) of the Directive. Portable batteries and accumulators, including those incorporated into appliances, that contain more than 0,002% of cadmium by weight shall not be placed on the market. However, according to Article 4(3) of the Directive the above requirement shall not apply to portable batteries and accumulators intended for use in: (a) emergency and alarm systems, including emergency lighting; (b) medical equipment; or (c) cordless power tools. Furthermore, based on Article 4(4) of the Directive the Commission shall review the exemption from the cadmium ban for use in cordless power tool with a view to the prohibition of cadmium in batteries and accumulators. The Commission shall submit a corresponding report to the European Parliament and to the Council by 26 September 2010, together, if appropriate, with relevant proposals.