Exemption for the Use of Cadmium in Portable Batteries and Accumulators

Total Page:16

File Type:pdf, Size:1020Kb

Exemption for the Use of Cadmium in Portable Batteries and Accumulators Exemption for the use of cadmium in portable batteries and accumulators intended for the use in cordless power tools in the context of the Batteries Directive 2006/66/EC Final Report (revised) 26 January 2010 Consortium ESWI Expert TeamBIPRO, to S upportUmweltbundesamt Waste Implementation BiPRO Beratungsgesellschaft für integrierte Problemlösungen ENV.G.4/FRA/2007/0066 iii European Commission ESWI Final Report - Replacement of Cadmium Batteries in Cordless Power Tools ENV.G.4/FRA/2007/0066 iv Executive Summary Background The Batteries Directive 2006/66/EC (repealing Directive 91/157/EEC) entered into force on 26 September 20061. The Directive sets out rules applicable to all batteries and accumulators that are put on the European Union market. These rules include, among others, restriction on the use of cadmium in portable batteries and accumulators (PBA) according to Article 4(1)(b) of the Directive. Portable batteries and accumulators, including those incorporated into appliances, that contain more than 0,002% of cadmium by weight shall not be placed on the market. However, according to Article 4(3) of the Directive the above requirement shall not apply to portable batteries and accumulators intended for use in: (a) emergency and alarm systems, including emergency lighting; (b) medical equipment; or (c) cordless power tools. Furthermore, based on Article 4(4) of the Directive the Commission shall review the exemption from the cadmium ban for use in cordless power tool with a view to the prohibition of cadmium in batteries and accumulators. The Commission shall submit a corresponding report to the European Parliament and to the Council by 26 September 2010, together, if appropriate, with relevant proposals. The review should be based on the experience of the application of the Directive, the developments in science and technology, environmental requirements, and the functioning of the internal market. It should assess the environmental, social and economic impacts in an integrated manner. Objective Based on this background the general objective of the study is to assess and synthesise available data and information, identify and address remaining needs with a view to assisting the Commission services with the review in prohibition of cadmium in batteries and accumulators intended for use in cordless power tools taking account of available technical and scientific evidence. Market analyses The task of the market analyses was to provide an overview on the EU and worldwide market of portable batteries intended for the use in cordless power tools as a basis for the technical and impact assessment of a possible ban of NiCd batteries intended for the use in CPTs (see chapter 3). The 2008 world market for portable rechargeable batteries (9200 million US $) is dominated by Japan (5100 million US $), China (2300 million US $) and Korea (1800 million US $). Sales in the rest of the world are below 100 million US $. The market of portable rechargeable batteries used for CPTs is increasing and was in 2008 13% of the world market value. In the dynamic and growing CPT sector, the trend for NiCd batteries is decreasing whereas it is increasing for Li-ion-batteries and more or less stable for NiMH batteries. Other battery technologies are currently not used in CPTs. 1 OJ L 266, 26.9.2006, p. 1., as last amended by Directive 2008/103/EC (OJ L 327, 5.12.2008, p. 7–8). European Commission ESWI Final Report - Replacement of Cadmium Batteries in Cordless Power Tools ENV.G.4/FRA/2007/0066 v In total a number of around 1060 million cells (of all relevant types) have been used in cordless power tools (CPTs) worldwide in 2008. This corresponds to a value of about 1400 million US $. The number of cells used in CPTs in Europe in 2008 is about 41 % of the world market and estimated to amount to 436 million cells2. These were used in about 12.9 million CPT units related to a market value of 1440 million $. The following table summarises shares of battery technologies applied in Europe in cordless power tools (CPTs): Table 0-1 : Shares of battery technologies applied in cordless power tools (Europe) NiCd Li-ion NiMH Information and source 55% 36% 9% Current share [EPTA 2009a] A recent EPTA survey has shown that for 9 EPTA member companies (which represent a significant proportion of the market), the total share of battery technologies was NiCd 49%, NiMH 11% and Li- ion 40%. For the professional CPTs the corresponding shares were 42%, 19% and 39%. For the DIY CPTs the corresponding shares were 54%, 6% and 40% [EPTA 2009d]. These data indicate that the share of NiCd technology may actually be lower and that of Li-ion be higher than shown in Table 0-1 (Table 3-7 respectively) and that the penetration of Li-ion technology is higher in the segment of professional CPTs compared to DIY CPTs. The number of NiCd cells used in CPTs in 2008 was about 515 million cells worldwide and 240 million cells within the EU. This corresponds to a world market share of 47%. The average mass of a NiCd cell used in CPTs is 55 g resulting in a total mass of 13,200 tonnes of NiCd cells used in CPTs in Europe in 2008. SAFT is the last European producer of NiCd cells. Applications of portable NiCd batteries from SAFT are for example medical equipment, radio communication and tracking equipment, military equipment, emergency lighting units or security devices3. The production of NiCd cells by SAFT has decreased to 8% of the world market in 2008 i.e. to approximately 56 million US $ or about 84 million portable NiCd cells. SAFT does not produce any more NiCd cells for batteries intended for the use in CPTs in the EU. All portable NiCd batteries used in CPTs are imported to the EU. 2 All relevant cell types, i.e. NiCd, Li-ion and NiMH cells 3 See http://www.saftbatteries.com/Technologies_Nickel_NiCd_293/Language/en-US/Default.aspx European Commission ESWI Final Report - Replacement of Cadmium Batteries in Cordless Power Tools ENV.G.4/FRA/2007/0066 vi Technical assessment The task of the technical and the impact assessment was to elaborate what would be the consequence of a ban of NiCd batteries for their application in cordless power tools (CPTs) or more exactly what would be the consequence of limiting the cadmium concentration in the energy storage system of cordless power tools at 0,002% by weight (see chapter 4). Current market trends and the technical assessment let expect that: • For existing NiCd-driven cordless power tools4 NiMH power packs would be used as replacement (power tools that are sold today can be driven by either NiCd or NiMH batteries, only a different charging equipment may be necessary) • New cordless power tools5 would be driven by Li-ion power packs • In the medium to long term, improved Lithium or Lithium-ion batteries, Nickel-zinc batteries, Carbon Nanotube Enhanced Supercapacitors may substitute the Li-ion battery of today • In the long term possibly portable fuel cells or redox flow batteries may substitute the Li-ion battery of today. However, already today’s Li-ion battery is a more than good substitute for NiCd batteries in cordless power tools (CPT). Li-ion batteries are: • lighter, • lose less energy during storage, • have a better energy efficiency, • store more energy per volume and • Li-ion batteries having three times the cell voltage of NiCd batteries, will allow to design much more powerful CPTs in future. Shortcomings of Li-ion batteries in comparison to NiCd batteries are the limitation in operations below 0 °C and a yet uncertain lifetime. The poor sub-zero °C performance of Li-ion batteries, however, does not keep professionals from preferring Li-ion batteries over NiCd batteries even in cold areas such as Northern Sweden. The uncertain lifetime is less a technical as an economic restriction. Even a more conservative estimate [EPTA 2009b] reports Li-ion batteries of having 62 % of the NiCd’s life-time-energy storage capacity. Other sources [Bosch 2009a] attest Li-ion batteries to have the same life-time-energy storage capacity as NiCd batteries. Consequently the lifetime system costs of Li-ion batteries are: • 49 % higher than NiCd-system costs (when assuming as [EPTA 2009b] an average life-time of 4.3 years for the Li-ion power pack) • or only 10 % higher (when assuming as [Bosch 2009a] an average lifetime of 7 years for the Li-ion power pack). 4 Existing CPTs means CPTs manufactured and placed on the market prior to a ban of NiCd batteries for CPTs 5 New CPTs means CPTs manufactured and placed on the market after a ban of NiCd batteries for CPTs European Commission ESWI Final Report - Replacement of Cadmium Batteries in Cordless Power Tools ENV.G.4/FRA/2007/0066 vii In practice the Li-ion batteries (and to a minor extent the NiMH batteries) already have replaced the NiCd batteries in the segment of professional cordless power tools and in many DIY CPTs. Here the technical advantages of Li-ion batteries are more important than the additional costs. Particularly in the low-price DIY segment the NiCd battery still keeps a hold. Impact assessment The main policy objective of a prohibition of cadmium in batteries and accumulators intended for use in CPTs is to avoid negative environmental impacts that are related to this use. The most important objective of an assessment of the impacts related to a prohibition is to assess the impacts which will be caused by technical substitutes, i.e. by a possibly increased use of NiMH and particularly Li-ion technologies. The previous studies, mainly performed during the period from 2000 to 2004, are to a certain extent outdated due to the technological development of substitutes which took place after the elaboration of the mentioned studies.
Recommended publications
  • Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H
    University of Kentucky UKnowledge Kentucky Geological Survey Report of Kentucky Geological Survey Investigations 6-2019 Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson University of Kentucky, [email protected] Right click to open a feedback form in a new tab to let us know how this document benefits oy u. Follow this and additional works at: https://uknowledge.uky.edu/kgs_ri Part of the Geology Commons Repository Citation Anderson, Warren H., "Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District" (2019). Kentucky Geological Survey Report of Investigations. 55. https://uknowledge.uky.edu/kgs_ri/55 This Report is brought to you for free and open access by the Kentucky Geological Survey at UKnowledge. It has been accepted for inclusion in Kentucky Geological Survey Report of Investigations by an authorized administrator of UKnowledge. For more information, please contact [email protected]. Mineralogy and Chemistry of Rare Earth Elements in Alkaline Ultramafic Rocks and Fluorite in the Western Kentucky Fluorspar District Warren H. Anderson Report of Investigations 8 doi.org/10.13023/kgs.ri08.13 Series XIII, 2019 Cover Photo: Various alkaline ultramafic rocks showing porphyritic, brecciated, and aphanitic textures, in contact with host limestone and altered dike texture. From left to right: • Davidson North dike, Davidson core, YH-04, 800 ft depth. Lamprophyre with calcite veins, containing abundant rutile. • Coefield area, Billiton Minner core BMN 3. Intrusive breccia with lamprophyric (al- nöite) matrix. • Maple Lake area, core ML-1, 416 ft depth.
    [Show full text]
  • Recovery of Lithium from Spent Lithium Ion Batteries
    Recovery of Lithium from Spent Lithium Ion Batteries Gabriel Chinyama Luzendu Chemical Engineering, masters level 2016 Luleå University of Technology Department of Engineering Sciences and Mathematics MASTER’S DEGREE PROJECT IN CHEMICAL ENGINEERING WITH SPECIALIZATION IN MINERALS AND METALLURGICAL ENGINEERING X7009K RECOVERY OF LITHIUM FROM SPENT LITHIUM ION BATTERIES Author: Gabriel Chinyama Luzendu Supervisors: Fredrik Engström & Jakob Kero Examiner: Caisa Samuelsson 31/08/2016 Division of Minerals and Metallurgical Engineering Department of Civil, Environmental & Natural Resource Engineering Luleå University of Technology Luleå, Sweden Declaration By submitting this thesis, I solemnly declare that the work contained therein is my own original work and that I am the sole author thereof and that it contains no material that has been accepted for the award of any other degree or diploma in any university. I also wish to declare that to the very best of my knowledge, it contains no material published previously or inscribed by another person, except where due reference is made in the text and that publication by Luleå University of Technology will not infringe any third party rights. Gabriel Chinyama Luzendu August, 2016 © Gabriel Chinyama Luzendu 2 Acknowledgement This thesis has been carried out at Luleå University of Technology, Division of Minerals and Metallurgical Research Laboratory. Further acknowledgement goes to the Swedish Institute for the financial support through the scholarship for my studies. I also wish to acknowledge my examiner Associate Professor Fredrik Engström and Jakob Kero for the knowledge, guidance and advice they shared with me during this thesis. Special thanks go to Professor Caisa Samuelsson for the opportunity to do the thesis in the department.
    [Show full text]
  • Download the Scanned
    T Hn AMERICax M INERALoGIST JOURNAL OF THE MINERALOGICAL SOCIETY OF AMERICA Vol. 25 JUNE, 1940 No.6 DEPOSITS OF RADIOACTIVE CERITE NEAR JAMESTOWN, COLORADO* Elwnr N. Gonoann aNn Jnwnu J. Gr-ass, IL S. GeologicalSuraey, Washington, D.C. CONTENTS Abstract 381 Introduction 382 Geological occurrence 383 Mineralogy 385 Occurrence.. 385 Northern group 386 Southern group, 391 List of minerals. 393 Cerite... 393 Allanite. 397 Brown epidote 399 Tijrnebohmite 400 Fluorite 4.00 Bastniisite 401 Monazite 401 Uraninite 4Ol Sulphides 402 Comparisons with other deposits of cerite 402 Radioactivity 403 Age determination 404 Assrnecr Cerite, a rare silicate of the cerium metals, occurs in small deposits in the pre-Cambrian rocks of the Front Range near Jamestolvn, colorado. They are near the north border of a stock of Silver Plume granite, to which they are genetically related. Numerous lenticular schist masses in the granite suggest proximity to the roof. The cerite rock containing about 75 per cent of cerite occurs as irregular lenses,one- fourth of an inch to 15 inches wide, in narrow aplite-pegmatite zones along the borders of small schist areas. Narrow veinlets of black allanite border the cerite rock and minute grains of uraninite (pitchblende) and pyrite are localiy present. Microscopic examination of the cerite rock shows it to be finely intergrown with * Published by permission of the Director, Geological Survey, United States Depart- ment of the Interior, the Colorado Geological Survey Board, and the Colorado Metal Mining Fund. 381 E. N, GODDARD AND T. I. GLASS varying amounts of allanite, brown epidote, tdrnebohmite, fluorite, bastniisite, monazite, uraninite, and quartz.
    [Show full text]
  • Www .Fancycn.Cn 6FN CYRESOURCE
    FANCY RESOURCE www .fancycn.cn 6FN CYRESOURCE Company Introduction Fancy Mineral Resource Co, Ltd.(referred as “FR”) is As an energy conservation and environmental protection a manufacturing enterprise concentrated on converting enterprise, Fancy Resource, a hi-tech enterprise engaged in mineral resources into materials of industrial development and applications of mineral resources, has possessed applications, which dedicated itself to global resource mineral resources and strong Science and Technology Research & exploration & development, minerals application R&D, Development capabilities, specialized in scaled and refined production and end products sales for a long term, has a production of industrial mineral materials. After years’ continuous group of talented personnel and masters specialized high-speed development, Fancy Resource has achieved good mineral extraction technologies and R&D capabilities. results in terms of company size and operation profit. Envisioning For recent years, FR has specialized on the R&D of new the future, guided by national industrial policies and also according energy, new material , production process and the level to industry development and market demands, Fancy Resource will of industrialization development. As production bases continue to strengthen its efforts in the construction of New Energy both at home and abroad putting into operation in and New Materials Industry Chain, with mineral resources as its succession, Fancy will possess a broader extension guarantee and technological innovation
    [Show full text]
  • Graphite and Lithium
    www.oeko.de Environmental and socio-economic challenges in battery supply chains: graphite and lithium Short study prepared within the framework of the BMBF Darmstadt, joint project Fab4Lib - Research on measures to increase 29.07.2020 material and process efficiency in lithium-ion battery cell production along the entire value chain (FKZ 03XP0142E) Authors Geschäftsstelle Freiburg Postfach 17 71 79017 Freiburg Peter Dolega Hausadresse Dr. Matthias Buchert Merzhauser Straße 173 Dr. Johannes Betz 79100 Freiburg Telefon +49 761 45295-0 Oeko-Institut Büro Berlin Schicklerstraße 5-7 10179 Berlin Telefon +49 30 405085-0 Büro Darmstadt Rheinstraße 95 64295 Darmstadt Telefon +49 6151 8191-0 [email protected] www.oeko.de Fab4Lib Table of contents List of figures 4 List of abbreviations 5 1. Battery supply chains - towards sustainable cell manufacturing in the EU 7 2. Graphite 7 2.1. Natural graphite 8 2.2. Synthetic graphite 11 3. Lithium 12 3.1. Brines – Lithium triangle 13 3.2. Spodumene – Lithium from Australia 14 4. The future of battery supply chains 20 5. References 20 3 Fab4Lib List of figures Figure 2-1: Overview over the production process of natural graphite. 9 Figure 2-2: Overview over the production process of synthetic graphite. 11 Figure 3-1: Map of currently active lithium brines 13 Figure 3-2: Global lithium production from 2016 to 2018 by country 14 Figure 3-3: Map of Australian lithium mines 15 Figure 3-4: Location of Australian lithium mines in areas of critical habiat 18 Figure 3-5: Greenbushes and critical habitat in the surroundings
    [Show full text]
  • Batteries for Electric and Hybrid Heavy Duty Vehicles
    Notice This document is disseminated under the sponsorship of the U.S. Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. The United States Government does not endorse products of manufacturers. Trade or manufacturers’ names appear herein solely because they are considered essential to the objective of this report. The mention of commercial products, their use in connection with material reported herein is not to be construed as actual or implied endorsement of such products by U.S. Department of Transportation or the contractor. For questions or copies please contact: CALSTART 48 S Chester Ave. Pasadena, CA 91106 Tel: (626) 744 5600 www.calstart.org Energy Storage Compendium: Batteries for Electric and Hybrid Heavy Duty Vehicles March 2010 CALSTART Prepared for: U.S. Department of Transportation Abstract The need for energy storage solutions and technologies is growing in support of the electrification in transportation and interest in hybrid‐electric and all electric heavy‐duty vehicles in transit and the commercial vehicles. The main purpose of this document is to provide an overview of advanced battery energy storage technologies available currently or in development for heavy‐duty, bus and truck, applications. The same set of parameters, such as energy density, power density, lifecycle and weight were used in review of the specific battery technology solution. The important performance requirements for energy storage solutions from the vehicle perspective were reviewed and the basic advantages of different cell chemistries for vehicle batteries were summarized. A list of current battery technologies available for automotive applications is provided.
    [Show full text]
  • The Synthesis and Characterization of Novel Pentafluorosulfanyl-Containing Heterocycles and Pentafluorosulfanyldifluoromethane
    Clemson University TigerPrints All Dissertations Dissertations May 2019 The yS nthesis and Characterization of Novel Pentafluorosulfanyl-Containing Heterocycles and Pentafluorosulfanyldifluoromethane Steven Paul Belina Clemson University, [email protected] Follow this and additional works at: https://tigerprints.clemson.edu/all_dissertations Recommended Citation Belina, Steven Paul, "The yS nthesis and Characterization of Novel Pentafluorosulfanyl-Containing Heterocycles and Pentafluorosulfanyldifluoromethane" (2019). All Dissertations. 2373. https://tigerprints.clemson.edu/all_dissertations/2373 This Dissertation is brought to you for free and open access by the Dissertations at TigerPrints. It has been accepted for inclusion in All Dissertations by an authorized administrator of TigerPrints. For more information, please contact [email protected]. THE SYNTHESIS AND CHARACTERIZATION OF NOVEL PENTAFLUOROSULFANYL-CONTAINING HETEROCYCLES AND PENTAFLUOROSULFANYLDIFLUOROMETHANE A Dissertation Presented to the Graduate School of Clemson University In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy Chemistry by Steven Paul Belina May 2019 Accepted by Joseph S. Thrasher, Ph.D., Committee Chair Julia L. Brumaghim, Ph.D. R. Karl Dieter, Ph.D. Joseph W. Kolis, Ph.D. Title Page ABSTRACT Beginning in the early 1960s, scientists began to experiment with the pentafluorosulfanyl moiety. The unique properties of the functional group has attracted interest among fluorine chemists and more recently even organic chemists. These properties include high group electronegativity, high steric bulk, high lipophilicity, a highly electron withdrawing nature, and a square pyramidal geometry. However, the development and deployment of the pentafluorosulfanyl functional group has been significantly slowed. The main cause for the slow development is a lack of easily available reagents to synthesize pentafluorosulfanyl-containing compounds. Historically, the primary reagents used for synthesizing pentafluorosulfanyl-containing compounds were SF5Cl and SF5Br.
    [Show full text]
  • United States Patent As Fice Patiented Sept
    s 2,904,403 United States Patent As fice Patiented Sept. 15, 1959 1 2 are agitated during this period by any suitable means. The vessel is then cooled, opened and iodine penta 2,904,403 fluoride collected and purified by conventional procedures such as distillation. When alkali or alkaline earth metal PREPARATION OF BF iodates are used in the process, the iodine pentafluoride William Channing Smith, Wilmington, Del, assignor to may be isolated in the form of a solid complex compound E. H. du Pont de Nemours and Company, Wilmington, with alkali or alkaline earth metal fluorides. Dei, a corporation of Delaware in a continuous process gaseous sulfur tetrafluoride is No Drawing. Application June 7, 1957 passed through a tube containing the iodine compound, Serial No. 664,162 0 preferably heated to a temperature high enough to vola tilize the iodine pentafluoride as it is formed. The 5 Claims. (C. 23-205) iodine pentafluoride is separated from the gas effluent by cooling in traps and the unreacted sulfur tetrafluoride is recycled through the reaction tube. This invention relates to iodine fluorides and has as 5 The following examples illustrate the process of the its primary object provision of a novel method of prepar invention. ing such fluorides, iodine pentafluoride in particular. Iodine pentafluoride is a versatile and well-known Example 1 fluorinating agent which can be used to prepare fluorine (A) A bomb, lined with stainless steel and of 145 mi. bearing compounds that are not readily accessible by 20 capacity, was charged with 33.4 g. (0.10 mode) of iodine other routes.
    [Show full text]
  • United States Patent Office Patented Mar
    3,373,000 United States Patent Office Patented Mar. 2, 1968 2 3,373,000 monofluoride is also an economical reactant, since it is PROCESS FOR PREPARING TETRAFLUORDES conveniently prepared by the disproportionation of ele AND HEXAFLUOR DES mental chlorine in liquid hydrogen fluoride, thereby avoid James J. Pitts, West Haven, and Albert W. Jache, North ing the use of expensive elemental fluorine. The selective Haven, Conn., assignors to Olin Mathieson Chemical fluorination process of this invention is particularly Sur Corporation, a corporation of Virginia prising and unexpected in view of the prior art which No Drawing. Filed Nov. 1, 1966, Ser. No. 591,079 teaches that chlorine monofluoride adds to a wide variety 9 Claims. (Cl. 23-352) of compounds, thereby acting as a chloro-fluorinating agent. For instance, U.S. Patent 3,035,893 discloses the 10 preparation of sulfur chloride pentafluoride from Sulfur ABSTRACT OF THE DISCLOSURE tetrafluoride and chlorine monofluoride. The tetrafluorides and hexafluorides of sulfur, selenium According to the process of this invention, the tetra and tellurium are provided by reacting chlorine mono fluorides and hexafluorides of sulfur, selenium and tel fluoride with sulfur, selenium, tellurium, metal sulfides, lurium are provided by reacting chlorine monofluoride metal selenides or metal tellurides. The hexafluorides of 15 with a material selected from the group consisting of Sul tungsten, molybdenum and uranium are provided by the fur, selenium, tellurium, metal sulfides, metal selenides reaction of chlorine monofluoride with the metals, their and metal tellurides. The hexafluorides of tungsten, oxides, sulfides and salts containing the metallate anion. molybdenum and uranium are provided by reacting These tetrafluorides and hexafluorides are well-known chlorine monofluoride with a material selected from the compounds, useful as fluorinating agents, gaseous di 20 group consisting of tungsten; molybdenum, uranium; the electrics, sources of high purity metallic powders, etc.
    [Show full text]
  • Chemical Names and CAS Numbers Final
    Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number C3H8O 1‐propanol C4H7BrO2 2‐bromobutyric acid 80‐58‐0 GeH3COOH 2‐germaacetic acid C4H10 2‐methylpropane 75‐28‐5 C3H8O 2‐propanol 67‐63‐0 C6H10O3 4‐acetylbutyric acid 448671 C4H7BrO2 4‐bromobutyric acid 2623‐87‐2 CH3CHO acetaldehyde CH3CONH2 acetamide C8H9NO2 acetaminophen 103‐90‐2 − C2H3O2 acetate ion − CH3COO acetate ion C2H4O2 acetic acid 64‐19‐7 CH3COOH acetic acid (CH3)2CO acetone CH3COCl acetyl chloride C2H2 acetylene 74‐86‐2 HCCH acetylene C9H8O4 acetylsalicylic acid 50‐78‐2 H2C(CH)CN acrylonitrile C3H7NO2 Ala C3H7NO2 alanine 56‐41‐7 NaAlSi3O3 albite AlSb aluminium antimonide 25152‐52‐7 AlAs aluminium arsenide 22831‐42‐1 AlBO2 aluminium borate 61279‐70‐7 AlBO aluminium boron oxide 12041‐48‐4 AlBr3 aluminium bromide 7727‐15‐3 AlBr3•6H2O aluminium bromide hexahydrate 2149397 AlCl4Cs aluminium caesium tetrachloride 17992‐03‐9 AlCl3 aluminium chloride (anhydrous) 7446‐70‐0 AlCl3•6H2O aluminium chloride hexahydrate 7784‐13‐6 AlClO aluminium chloride oxide 13596‐11‐7 AlB2 aluminium diboride 12041‐50‐8 AlF2 aluminium difluoride 13569‐23‐8 AlF2O aluminium difluoride oxide 38344‐66‐0 AlB12 aluminium dodecaboride 12041‐54‐2 Al2F6 aluminium fluoride 17949‐86‐9 AlF3 aluminium fluoride 7784‐18‐1 Al(CHO2)3 aluminium formate 7360‐53‐4 1 of 75 Chemical Abstract Chemical Formula Chemical Name Service (CAS) Number Al(OH)3 aluminium hydroxide 21645‐51‐2 Al2I6 aluminium iodide 18898‐35‐6 AlI3 aluminium iodide 7784‐23‐8 AlBr aluminium monobromide 22359‐97‐3 AlCl aluminium monochloride
    [Show full text]
  • Effective Battery Energy Capacity As a Function of Temperature and Discharge Current
    Effective Battery Energy Capacity as a Function of Temperature and Discharge Current Michael Ruscito, Mingshi Yang, Tomas Pavydis, Jinghan Huang University of Illinois at Urbana-Champaign PHYS 398DLP, Professor George Gollin 1 May 2020 Abstract The goal of this project is to analyze the effects of variable environmental temperatures and discharge currents on the effective energy capacity of common batteries. AAA batteries with different chemical compositions were considered including: alkaline, nickel-metal hydride, primary lithium, and lithium ion. Additionally, lithium coin cell batteries were tested to compare the results of different form factors. In theory, the chemical reactions and electrical processes within the batteries are optimized to perform at specific temperatures and current draws. These specifications are commonly provided by the manufacturer and give information on the “ideal” conditions for use. Operating outside of these optimal specifications could demonstrate a noticeable effect on battery life expectancy, and more specifically, lower the effective energy capacity. This project’s approach to measure these effects consisted of collecting information on battery voltages under specific temperatures and discharge currents. The results demonstrated that battery behavior is altered by these conditions. I Introduction Nearly all common electronics rely on battery power in order to run and the lifespan of these devices often seems strongly correlated with the temperature around them. For example, a phone battery may appear to drain much quicker during the winter or in colder environments and electric cars seem to lose a noticeable amount of range after being left out in the cold overnight. To combat this, Tesla car batteries will even drain some of their energy in order to heat themselves preventing damage to the energy cells.
    [Show full text]
  • The Lithium-Ion Battery Value Chain
    THE LITHIUM-ION BATTERY VALUE CHAIN New Economy Opportunities for Australia Acknowledgment Austrade would like to express our appreciation to Future Smart Strategies, especially Howard Buckley, for his professional guidance, advice and assistance, with earlier versions of this report. We would also like to thank Adrian Griffin at Lithium Australia for his insights and constructive suggestions. And we would like to acknowledge the insights provided by Prabhav Sharma at McKinsey & Company. More broadly, we would like to thank the following companies and organisations for providing data and information that assisted our research: › Association of Mining and Exploration Australia (AMEC); › Geoscience Australia; › Albemarle; and › TianQi Australia. Disclaimer Copyright © Commonwealth of Australia 2018 This report has been prepared by the Commonwealth of Australia represented by the Australian Trade and Investment Commission (Austrade). The report is a general overview and is not intended to The material in this document is licensed under a Creative Commons provide exhaustive coverage of the topic. The information is made Attribution – 4.0 International licence, with the exception of: available on the understanding that the Commonwealth of Australia is • the Australian Trade and Investment Commission’s logo not providing professional advice. • any third party material While care has been taken to ensure the information in this report • any material protected by a trade mark is accurate, the Commonwealth does not accept any liability for any • any images and photographs. loss arising from reliance on the information, or from any error or More information on this CC BY licence is set out at the creative omission, in the report.
    [Show full text]