Diffractive Dissociation of Protons in 7 Tev Collisions at the ATLAS Detector

Total Page:16

File Type:pdf, Size:1020Kb

Diffractive Dissociation of Protons in 7 Tev Collisions at the ATLAS Detector Diffractive dissociation of protons in 7 TeV collisions at the ATLAS detector. Timothy Alexander David Martin Thesis submitted for the degree of Doctor of Philosophy CERN-THESIS-2012-354 21/11/2012 Particle Physics Group, School of Physics and Astronomy, University of Birmingham. December 21, 2012 ABSTRACT 1 A data sample with integrated luminosity 7.1 µb− of pp collisions was collected with a minimum bias trigger at ps = 7 TeV using the ATLAS detector at the Large Hadron Collider. It is analysed to identify large pseudorapidity gaps. The inelastic cross section is presented differentially in ∆ηF , the largest continuous region of pseudorapidity which extends from the edge of the detector at η = 4:9 and cut ± which contains no final state particles above a threshold pT . The measurement F cut is presented in the region 0 < ∆η < 8 for 200 < pT < 800 MeV. Diffractive topologies are isolated at large gap sizes. The distribution is interpreted using triple Regge models of diffractive scattering, and the dependence of the inelastic cross section on the kinematics of diffraction is studied and compared with other LHC measurements. i DECLARATION OF AUTHORS CONTRIBUTION The design, construction and continued successful operation of the LHC, along with the detectors which adorn it is due to the dedication of many thousand scientists, engineers and technicians over a period of many years. Having been fortunate to have the opportunity to work in the ATLAS collaboration during the beginning of this new exploration in high energy physics research, I have made contributions in different areas of the experiment which will be detailed in this thesis. The scope of this document encompasses an overview of the whole LHC project along with ATLAS specifics. Particular focus and detail is given to areas in which I have contributed directly. These include the ATLAS trigger systems, specifically the Level 1 Calorimeter Trigger (L1Calo) and the minimum bias trigger. My official service position was maintenance and development of the Detector Con- trol Systems for L1Calo and other L1 trigger systems. An overview of technical work is separated from the main document in AppendixA. My involvement with the minimum bias trigger group came from being based at CERN and working on a min- imum bias analysis during the first data taking campaign at a 900 GeV centre of mass energy in 2009. I continued to work with this group throughout my PhD. The diffractive physics analysis presented in this thesis was for the large part per- formed jointly with colleagues from Fyzik´aln´ı ´ustav in Prague. The speed and quality of the analysis was greatly increased through collaboration and through maintaining two independent code bases. In addition to the main physics results, many cross checks and control distributions were produced. Some of these controls were produced by only one group or the other and analysis plots included in the narative of this document which was performed solely by Prague is cited to the joint internal documentation of the analysis, [1]. ii ACKNOWLEDGEMENTS I am grateful to everyone who has helped and inspired me throughout my education. I would like to thank Mari Baker both for being a fantastic maths and physics teacher during my A-levels and for introducing me to the LHC. I am thankful to the whole of the Birmingham group, to Pete and John for being such enthusiastic tutors during my undergraduate, to all my fellow post-grad students for the numerous interesting discussions we've had over the years and to Paul for guiding me through all the steps needed to make a physics measurement. At CERN, I am grateful to the level one calorimeter trigger and minimum bias communities, both for being comprised of such friendly and enthusiastic people and for being pleasures to work with. I give my thanks to my loved ones for the support given whilst preparing this document. Finally, I would like to thank the STFC for funding my studentship. Dedicated to the memory of my father. iii iv v Discere grati¯adiscend¯i vi MCViz Contents 1 NON-TECHNICAL SUMMARY 1 1.1 THE EARLY UNIVERSE .......................... 1 1.2 STUDYING THE MOMENT AFTER INCEPTION ............ 3 1.3 WHEN PROTONS INTERACT ...................... 4 2 INTRODUCTION 9 2.1 DOCUMENT STRUCTURE ........................ 11 3 THE CERN COMPLEX 13 3.1 LINEAR ACCELERATORS ........................ 14 3.2 PROTON AND SUPER PROTON SYNCHROTRONS .......... 15 3.3 LARGE HADRON COLLIDER ....................... 16 3.4 THE ALICE DETECTOR ......................... 20 3.5 THE CMS DETECTOR .......................... 21 3.6 THE LHCb DETECTOR .......................... 22 3.7 THE LHCf EXPERIMENT ......................... 23 3.8 THE TOTEM EXPERIMENT ....................... 23 3.9 THE MoEDAL EXPERIMENT ....................... 24 4 THE ATLAS DETECTOR 27 4.1 ATLAS MAGNETIC SYSTEM ....................... 27 4.2 ATLAS INNER DETECTOR ........................ 29 4.2.1 PIXEL DETECTOR AND SEMICONDUCTOR TRACKER ...... 30 4.2.2 TRANSITION RADIATION TRACKER ............... 32 4.3 ATLAS CALORIMETER SYSTEMS .................... 32 4.3.1 ELECTROMAGNETIC CALORIMETRY ............... 33 4.3.2 HADRONIC AND FORWARD CALORIMETRY ........... 34 4.3.3 CALORIMETER ENERGY RESOLOUTION ............. 35 4.3.4 ZERO DEGREE CALORIMETERS ................. 36 4.4 ATLAS MUON SPECTROMETERS .................... 37 4.5 LUCID DETECTOR ............................ 38 5 TRIGGERING AND DATA ACQUISITION 41 5.1 ATLAS TRIGGER ARCHITECTURE ................... 42 5.2 FIRST LEVEL TRIGGER ......................... 42 5.2.1 LEVEL ONE CALORIMETER TRIGGER .............. 43 5.2.1.1 CLUSTER PROCESSORS .................. 44 vii CONTENTS viii 5.2.1.2 JET/ENERGY PROCESSORS ................ 46 5.2.1.3 L1CALO OUTPUT ..................... 46 5.2.2 LEVEL ONE MUON TRIGGER ................... 48 5.2.3 LEVEL ONE MINIMUM BIAS TRIGGER .............. 49 5.2.4 CENTRAL TRIGGER PROCESSOR ................. 50 5.2.5 REGIONS OF INTEREST ...................... 52 5.2.6 DEADTIME ............................. 54 5.3 SECOND LEVEL TRIGGER & EVENT BUILDING ............ 54 5.3.1 EVENT FILTER ........................... 55 5.3.2 STREAMING ............................ 55 6 ATLAS COMPUTING 57 6.1 ATLAS SOFTWARE FRAMEWORK ................... 58 6.2 EVENT STORE .............................. 59 7 STRONG INTERACTIONS AND DIFFRACTION 63 7.1 THE STANDARD MODEL OF PARTICLE PHYSICS .......... 63 7.2 STRONG INTERACTIONS ........................ 64 7.3 REGGE SCATTERING THEORY AND THE POMERON ........ 67 7.4 THE TOTAL CROSS SECTION ...................... 69 7.5 INELASTIC DIFFRACTION ........................ 70 7.6 DISSECTION OF THE TOTAL CROSS SECTION ............ 72 7.7 THE TRIPLE REGGE MODEL ...................... 73 7.8 KINEMATICS OF DIFFRACTIVE DISSOCIATION ............ 75 7.8.1 DIFFRACTIVE MASS VERSUS RAPIDITY GAP CORRELATION .. 77 7.8.2 GENERATOR LEVEL DIFFRACTIVE MASS RECONSTRUCTION .. 78 7.8.3 ATLAS ACCEPTANCE FOR DOUBLE DIFFRACTION ....... 80 8 MONTE CARLO SIMULATION 83 8.1 THE PYTHIA MONTE CARLO MODELS ................ 83 8.1.1 PYTHIA CROSS SECTIONS .................... 83 8.1.2 DIFFRACTION IN PYTHIA ..................... 85 8.1.3 ALTERNATE POMERON FLUXES IN PYTHIA8 .......... 89 8.1.4 NON-DIFFRACTIVE EVENTS IN PYTHIA ............. 92 8.2 PHOJET MONTE CARLO ........................ 94 8.3 HERWIG++ MONTE CARLO ...................... 95 8.4 TUNING OF MONTE CARLO CROSS SECTIONS ............ 96 8.4.1 MONTE CARLO TUNES ...................... 99 8.5 MONTE CARLO STATISTICS ...................... 99 9 EVENT SELECTION AND CUTS 101 9.1 DATA SAMPLE .............................. 101 9.1.1 TRIGGERING ON MINIMUM BIAS EVENTS ............ 102 9.1.2 EFFICIENCY OF THE MBTS .................... 103 9.1.3 OFF-LINE MBTS SELECTION PROCESS .............. 105 9.1.4 TREATMENT OF BACKGROUNDS AND PILE-UP ......... 105 ix CONTENTS 9.2 DEFINITION OF RECONSTRUCTED QUANTITIES ........... 108 9.2.1 TRACKING SELECTION ...................... 108 9.2.2 CALORIMETER SELECTION .................... 110 9.2.2.1 CALORIMETER NOISE SUPPRESSION ........... 113 9.3 DEFINITION OF GENERATOR LEVEL QUANTITIES .......... 116 9.4 OVERALL PARTICLE DETECTION PROBABILITY ........... 116 9.4.1 LOW MOMENTUM B FIELD TRAPPING .............. 117 10 DIFFRACTIVE PHYSICS ANALYSIS 123 10.1 RECONSTRUCTING RAPIDITY GAPS .................. 123 10.1.1 BINNING .............................. 126 10.2 DATA/MC COMPARISON AT RECONSTRUCTED LEVEL ....... 126 10.3 DATA CORRECTION PROCEDURE ................... 131 10.3.1 TRIGGER CORRECTION ...................... 132 10.3.2 BEAM BACKGROUND SUBTRACTION .............. 134 10.3.3 UNFOLDING ............................ 135 10.3.4 UNFOLDED DISTRIBUTIONS ................... 138 10.3.5 STATISTICAL ERROR ....................... 140 10.4 QUANTIFICATION OF SYSTEMATIC UNCERTAINTY ......... 141 10.4.1 MODEL UNCERTAINTY ...................... 141 10.4.2 UNCERTAINTY ON THE DIFFRACTIVE CONTRIBUTIONS .... 143 10.4.3 ENERGY SCALE UNCERTAINTY .................. 143 10.4.4 MBTS RESPONSE UNCERTAINTY ................ 147 10.4.5 TRACKING UNCERTAINTY .................... 148 10.4.6 LUMINOSITY UNCERTAINTY ................... 149 cut 10.5 EVOLUTION OF UNCERTAINTY WITH pT .............. 149 11 RESULTS 151 cut 11.1 FORWARD GAP CROSS SECTION AT pT = 200 MeV ........ 151 cut 11.2 FORWARD GAP CROSS SECTION AT pT > 200 MeV ......... 154 11.3 CLUSTER HADRONISATION MODELS ................. 155 11.4 BEST FIT FOR POMERON INTERCEPT ................ 156 11.5 ξX DEPENDENCE ON INELASTIC CROSS SECTION .......... 161 12 CONCLUSION 167 A DETECTOR CONTROL SYSTEMS 177 A.1 LAYOUT
Recommended publications
  • The LHC Project and Future of CERN
    The LHC Project and Future of CERN Robert Aymar Symposium on Physics of Elementary Interactions in the LHC Era Warsaw, 21–22 April 2008 Contents about CERN: a facility for the benefit of the European Particle Physics Community the LHC project: completion of installation, start of commissioning for accelerator, experiments and computing, the CNGS: start of operations and the CLIC scheme for multi Tev e+e- Linear Collider plans for CERN in the next decade Warsaw, 21-22 April 2008 2 CERN… • Seeking answers to questions about the Universe • Advancing the frontiers of technology • Training the scientists of tomorrow • Bringing nations together through science 33 CERN in Numbers • 2415 staff* • 730 Fellows and Associates* • 9133 users* • Budget (2007) 982 MCHF (610M Euro) *5 February 2008 • Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. • Observers to Council: India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Warsaw, 21-22Commission April 2008 and Unesco 4 Distribution of All CERN Users by Nation of Institute on 5 February 2008 Warsaw, 21-22 April 2008 5 CERN: the World’s Most Complete Accelerator Complex (not to scale) Warsaw, 21-22 April 2008 6 TheThe LongLong--TermTerm ScientificScientific ProgrammeProgramme Legend: Approved Under Consideration 2007 2008 2009 2010 2011 LHC Experiments ALICE ATLAS CMS LHCb TOTEM LHCf Other LHC Experiments (e.g. MOEDAL) Non-LHC Experimental Programme SPS NA58 (COMPASS) P326 (NA48/3)/NA62 P327 (EM processes in strong crystalline fields) NA49-future/NA61 Neutrino / CNGS New initiatives PS PS212 (DIRAC) PS215 (CLOUD) OTHER FACILITIES AD ISOLDE n-TOF Neutron CAST P331 (optical axion search and QED test) Test Beams North Areas West Areas East Hall R&D (Detector & Accelerator) 7 Poland and the Four Strategic Missions of CERN FUNADAMENTAL RESEARCH • Polish physicists collaborate with CERN since 1959.
    [Show full text]
  • Antiprotons in the Big Machine
    Antiprotons in the big machine Right the beam line which injects 26 GeV antiprotons into the SPS. Centre, the beam fine which sends high energy protons from the SPS towards the West Experimental Area. The main ring is on the left. (Photo CERN 38.4.81) On 7 July a pulse of antiprotons was sent to the CERN Super Proton Synchrotron, accelerated to 270 GeV and (briefly) stored. Two days later the exercise was repeated with greater success and the first evi­ dence obtained for proton-antipro­ ton collisions at 540 GeV — by far the highest collision energies ever achieved. Although there is still much to be done before the scheme becomes fully operational, this achievement is a major milestone in the CERN antiproton story. The origins of the project Antiprotons, since they presuma­ bly have the same properties as protons except for the sign of their electric charge, can be accelerated and stored in the same magnet ring as protons. Thus colliding beam sys­ tems, like the familiar electron-posi­ tron machines, are, in principle, fea­ sible. However until recently it was not possible to produce antiproton tion, the antiprotons emerge with a for colliding beam physics. It in­ beams of sufficient intensity and wide range of momenta, distinctly volves using electron beams travel­ density to give sufficient collisions in unsuitable for a magnet system in a ling along with the antiproton beam a reasonable enough time for useful beam transfer line, an accelerator or at the same velocity. The electron physics to be done. a storage ring which is designed to beam, which is much easier to con­ This situation has changed with handle a well defined particle mo­ trol, has particles at precisely the the invention of 'beam cooling'.
    [Show full text]
  • FERMILAB New Neutrino Directions
    The HERA electron-proton collider now be­ ing built at the German DESY Laboratory in Hamburg will handle polarized (spin-oriented) electron beams. Here are some of the mova­ ble supports for the complicated spin rotator magnets, which will have to be moved up and down for different beam optics. Except for some minor work, all HERA civil engineering has been completed, and the bill is within one per cent of the original target figure, updated for inflation. FERMILAB New neutrino directions After two successful fixed target Tevatron runs in 1985 and 1987, the present neutrino programme at Fermilab has drawn to a close with the experiments agreeing with each other and with the faithful Standard Model. The long-standing discrepancy in the neutrino-nucleon reaction rate between studies at CERN and Fer­ milab has been resolved. Muon pairs, with each particle carrying the same electric charge, now ap­ pear at the prescribed rate, and the new 1987 data should go on to provide important new information on the quark content (structure functions) of nucleons. Thus it was an appropriate time to review the mented by additional quadrupoles magnet, transferred to the new ring data and examine possibilities for and multipoles. The 317 metre cir­ and accumulated there either in a the future in a 'New Directions in cumference DESY III, designed to single or nine equally spaced 'buck­ Neutrino Physics at Fermilab' meet­ take protons up to about 7.5 GeV, ets'. ing last fall. surrounds the new DESY II ma­ The electrons could then be The meeting got off to a good chine handling HERA electrons and taken up to 14 GeV without loss, start when Fermilab Director Leon positrons.
    [Show full text]
  • Measurements of Single Diffraction at √S = 630
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 9 December, 1997 Measurements of Single Diffraction at √s = 630 GeV; Evidence for a Non-Linear α(t) of the omeron P A. Brandt1, S. Erhana, A. Kuzucu2, D. Lynn3, M. Medinnis4, N. Ozdes2, P.E. Schleinb M.T. Zeyrek5, J.G. Zweizig6 University of California∗, Los Angeles, California 90095, USA. J.B. Cheze, J. Zsembery Centre d’Etudes Nucleaires-Saclay, 91191 Gif-sur-Yvette, France. (UA8 Collaboration) Abstract We report measurements of the inclusive differential cross section for the single- diffractive reactions: p +p ¯ p + X and p +p ¯ X +p ¯ at √s = 630 GeV, i → f i → f in the momentum transfer range, 0.8 < t < 2.0 GeV2 and final state Feynman- − xp > 0.90. Based on the assumption of factorization, several new features of the omeron Flux Factor are determined from simultaneous fits to our UA8 data and P lower energy data from the CHLM collaboration at the CERN-Intersecting Storage Rings. Prominent among these is that the effective omeron Regge trajectory requires ′′ P − a term quadratic in t, with coefficient, α = 0.079 0.012 GeV 4. We also show that ± the data require a omeron-proton cross section that first decreases with increasing P diffractive mass (corresponding to the term in the triple-Regge expansion) PPR and then increases at larger mass (the term), similar to real particle total arXiv:hep-ex/9710004v3 8 Apr 1998 PPP − cross sections. We measure the product, Kσ = 0.72 0.10 mb GeV 2, where K 0 ± is the normalization constant of the omeron Flux Factor in the proton and σ is P 0 the scale constant in the omeron-proton total cross section.
    [Show full text]
  • JET FRAGMENTATION TRANSVERSE MOMENTUM from H–H CORRELATIONS in Pp and P–Pb COLLISIONS
    DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 7/2017 JET FRAGMENTATION TRANSVERSE MOMENTUM FROM h–h CORRELATIONS IN pp AND p–Pb COLLISIONS BY JUSSI VIINIKAINEN Academic Dissertation for the Degree of Doctor of Philosophy To be presented, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, for public examination in Auditorium FYS1 of the University of Jyväskylä on December 15, 2017 at 12 o’clock noon Jyväskylä, Finland December 2017 PERSONAL CONTRIBUTION Viinikainen, Jussi Jet fragmentation transverse momentum from h–h correlations in pp and p–Pb collisions Jyväskylä: University of Jyväskylä, 2017, 114 p. Department of Physics Research Report No. 7/2017 ISSN 0075-465X; 7/2017 ISBN 978-951-39-7288-2 (paper version) ISBN 978-951-39-7289-9 (electronic version) Diss. Keywords: Jet, fragmentation, transverse momentum, ALICE, correlations, proton, lead, CERN, LHC The main contributions of the author to the research presented in this thesis are listed below. – Commissioning and maintenance of the level-0 trigger of the electromagnetic calorimeter at the ALICE experiment. (Section 2.3.6) p = – Jet fragmentationp transverse momentum (jT) analysis for s 7 TeV pp data and sNN = 5.02 TeV p–Pb data. – Implementation for the observable jT (Section 4.2). – Implementation for the background of the jT distribution (Section 4.2). – Deriving the acceptance correction for the analysis (Section 4.4). – Validating analysis assumptions using PYTHIA 8 simulation (Section 4.5). – Fitting the measured jT distributions (Section 4.6). – Deriving the final results from the fit parameters (Section 4.7). – Systematic uncertainty analysis (Chapter 5).
    [Show full text]
  • Cern Courier March/April 2019 3
    CERNMarch/April 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2019 issue of CERN Courier. THE RISE OF In March 1989, Tim Berners-Lee, while working at CERN, released his proposal for a new information-management system. Within two years, the web was born. CERN’s subsequent agreement in 1993 to place the underlying OPEN software in the public domain (reproduced in this issue) shapes the web’s character to this day. It is part of a culture of sharing and collaboration that SCIENCE was set out in the CERN Convention 40 years earlier, and which is deeply engrained in the software and particle-physics worlds. The features in this issue – from open-source software, to open-access publishing, open data and entirely open analysis procedures – show how far ahead our field is in the growing open-science movement. Our Viewpoint, meanwhile, argues that we have only begun to harness the full potential of the web to benefit humanity. On other pages of this issue – the second in the Courier’s new format – theorist Nima Arkani-Hamed explains why the world needs a new collider, physicists reflect on 40 years of fixed-target experiments at CERN’s North Area, sterile neutrinos come under increasing pressure from experiment, a survey assesses the impact of working at CERN on your career, supersymmetric lasers demonstrate advanced theoretical physics in action, and more. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up.
    [Show full text]
  • 1988 Cern School of Physics Proceedings
    CERN 914)1 10 January 1991 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 1988 CERN SCHOOL OF PHYSICS Lefkada, Greece 8 September - 1 October 1988 PROCEEDINGS GENEVA 1991 \ Propriété littéraire et scientiOt]iie réservés pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world, This report, or any part être reproduit ou Iradin! en (oui (ju en partie of it. may- not be reprinted or translated without iaiu l'autorisation écrite du directeur gênerai du written permission or the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-tîcneral or CERN, However, permis­ appropriés, cl s'il s'ap,it d'utiliser ttî document à sion will be freely granted for appropriate des fins non commerciales, ecllc autorisation non-Lommereial use, sera volontiers accordée. II' any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetabJes et dentins on mode let to properly rights in il but offers it for the free susceptibles de dépôt qui pourraient être décrits use of research instilullons, manufacture]' and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any librement utilisés par tes instituts de recherche, attempi by a user 10 daim any proprietary or les industriels et autres intéressés. Cependant, le patent rights m such inventions or designs as CERN se réserve le droit de s'opposer à toute may be described in (he present document.
    [Show full text]
  • Diffraction at the Tevatron and the Lhc∗
    Vol. 39 (2008) ACTA PHYSICA POLONICA B No 9 DIFFRACTION AT THE TEVATRON AND THE LHC ∗ C. Royon IRFU/Service de Physique des Particules CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (Received May 12, 2008) In this paper, we present and discuss the most recent results on inclu- sive diffraction at the Tevatron collider and give the prospects at the LHC. We also describe the search for exclusive events at the Tevatron. Of spe- cial interest is the exclusive production of Higgs boson and heavy objects (W , top, stop pairs) at the LHC which will require precise measurements and analyses of inclusive and exclusive diffraction to constrain further the gluon density in the pomeron. At the end of the paper, we describe the projects to install forward detectors at the LHC to fulfil these measure- ments. We also describe the diffractive experiments accepted or in project at the LHC: TOTEM, ALFA in ATLAS, and the AFP/FP420 projects. PACS numbers: 12.38.–t, 12.38.Qk, 13.85.–t 1. Experimental methods to select diffractive events at the Tevatron and the LHC In this section, we discuss the different experimental ways to define diffraction at the Tevatron and the LHC. The Tevatron is a pp¯ collider located close to Chicago at Fermilab, USA. It is presently the collider with the highest center-of-mass energy of about 2 TeV. Two main experiments are located around the ring, D0/ and CDF. Both collaborations have accumulated a luminosity larger than 3 fb−1 with an efficiency larger than 90%. As a starting point, we describe the methods to select diffractive events used by the H1 and ZEUS experiments at HERA, DESY, Hamburg in Ger- many since it is easier.
    [Show full text]
  • CERN Hadron Horizons
    Comparison of proton-antiproton (top) and proton-proton (bottom) total cross-sections at different collision energies (lower horizontal axis). The points on the right with large errors are the new results from the SPS proton-antiproton collider, showing that the total cross-section countinues to rise, and extrapolates well with what is seen at lower energies. The round data points, centre, come from the Intersecting Storage Rings. CERN Hadron horizons An article in the May issue (page 136) described some of the new hadron scattering results which indicate that at high energies there might be an universal underlying behaviour, inde­ pendent of the quark composition of the colliding particles. Just over ten years ago, contro­ versy raged about the general trend of hadron behaviour at higher ener­ gies. The dust only settled when the first results appeared from the CERN Intersecting Storage Rings. Today there is less controversy, but the topic has been given a new lease of life by the ability to compare proton-proton and proton-antipro­ ton behaviour under similar con­ ditions at the ISR, and by the new energy range opened up at the SPS proton-antiproton collider. Total and elastic cross-sections For elastic scattering and total related to the effective 'size' of th are important measurements of in- cross-section measurements, these colliding particles. ter-hadron affinity. The total cross- included a CERN / Naples / Pisa / For both proton-proton and pre section indicates how reactive the Stony Brook group measuring total ton-antiproton scattering, there a\ particular particles are, while the cross-sections by the observed pears to be a slight increase in th elastic cross-section describes how reaction rate, a Louvain / Northwes­ exponential falloff at smaller momei the scattered particles simply tern team using the time-honoured turn transfer.
    [Show full text]
  • The Measurement of the Real Part of the Pp Elastic Scattering Amplitude at a Cms
    INIS-mf—11411 NL89C0207 THE MEASUREMENT OF THE REAL PART OF THE PP ELASTIC SCATTERING AMPLITUDE AT A CMS. ENERGY OF 546 GEV AND THE RISE OF THE TOTAL CROSS SECTION THE MEASUREMENT OF THE REAL PART OF THE PP ELASTIC SCATTERING AMPLITUDE AT A C.M.S. ENERGY OF 546 GEV AND THE RISE OF THE TOTAL CROSS SECTION ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. S. K. THODEN VAN VELZEN IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (OUDE LUTHERSE KERK, SlNGEL 411, HOEK SPUI) OP WOENSDAG 7 DECEMBER 1988 TE 15.00 UUR. door Peter Martin Kluit geboren te Hilversum Promotors : Prof. Dr. A. N. Diddens Prof. Dr. G. Matthiae Co-promotor : Dr. J. J. M. Timmermans The work described in this thesis is part of the research pro- gramme of 'het Nationaal Instituut voor Kernfysica en Hoge- Energie Fysica (NIKHEF-H)' in Amsterdam. The author was financially supported by 'de Stichting voor Fundamenteel Onder- zoek der Materie (FOM)'. Aan mijn ouders j> Contents 1 Introduction 1 1.1 Motivation 1 1.2 Elastic scattering 3 1.3 Asymptotic theorems 7 1.4 Dispersion relations 9 2 Experimental set up 15 2.1 The SppS Collider 15 2.2 Beam optics 16 2.3 Super high beta optics 19 2.4 The detectors 22 2.4.1 Calibration of the drift planes 25 2.4.2 Calibration of the proportional planes 28 3 The measurement of the real part 35 3.1 Data taking and processing 35 3.2 Efficiencies 37 3.3 Elastic events 40 3.4 Results and checks 45 4 Dispersion relations 51 4.1 Expectations and implications 51 4.2 Dispersion relation analysis 52 4.3 Discussion 60 5 Minijets and the rise of the total cross section 63 5.1 Hypothesis 63 5.2 The rise of the inelastic cross section 64 5.3 Calculation of the jet cross section 68 5.4 Comparison and Conclusions 74 Conclusions 77 References 79 Acknowledgements 84 Summary 85 Samenvatting 87 Chapter 1 Introduction 1.1 Motivation High Energy Physics studies the fundamental particles and forces of nature in the realm of the subatomic.
    [Show full text]
  • Improving CERN's Presence on Wikipedia Project Report, Summer
    CERN Improving CERN’s Presence on Wikipedia Project Report, Summer Student Program 2017 IDA STOREHAUG University of Bergen, Norway Niels Bohr Institute, University of Copenhagen, Denmark August 25, 2017 Abstract Dissemination of information on high energy physics and related technologies is at the core of CERN’s mission, making research done at CERN available, both to the public and other researchers. Wikipedia, being the most used social media site for researchers and a popular source of science information for the public, is an obvious platform for CERN to be present on. Between 19 June and 25 August 2017, as part of the CERN Summer Student Program, a project to improve CERN’s presence on Wikipedia was carried out in the department of Scientific Information Service at CERN. In the following the use of references in the collection of CERN-related Wikipedia articles is discussed, and the topics of plagiarism and licenses are raised. Furthermore, methods to benefit from the CERN community and archives are described, followed by a summary of how to get a Wikipedia article accepted by the Wikipedia community. Lists of Wikipedia articles created or improved and of Wikipedia articles in need of improvement are given. Introduction "To inspire and nurture scientific awareness in all citizens" is one of seven goals of CERN opera- tion, listed in the newly revised communications strategy of CERN.[1] CERN scientific output is documented and made available to the scientific community through the CERN Document Server (CDS), a large-scale multimedia digital library comprising more than 1,100,000 records. In addition to this vast scientific resource, CERN is engaging in disseminating information targeted at the general public.
    [Show full text]
  • A Study of Hadronic Punchthrough at the RD5 Experimental Setup VERBUM
    A Study of Hadronic Punchthrough at the RD5 Experimental Setup VERBUM Lithograph, July 1942, 33.2 38.6 cm M.C. Escher's ªVerbumº c 1997 Cordon Art ± Baarn ± Holland. All rights reserved. A Study of Hadronic Punchthrough at the RD5 Experimental Setup Een wetenschappelijke proeve op het gebied van de Natuurwetenschappen. Proefschrift ter verkrijging van de graad van doctor aan de Katholieke Universiteit Nijmegen, volgens besluit van het College van Decanen in het openbaar te verdedigen op donderdag 10 april 1997, des namiddags om 3.30 uur precies, door Robert Bergman geboren op 1 april 1964 te Zwolle. Promotor: Prof. Dr. E.W. Kittel Co-promotor: Dr. A.C. KonigÈ Manuscriptcommissie: Dr. Ir. H. van der Graaf Dr. Ir. C.L.A. Pols ISBN: 90-9010437-2 Ter nagedachtenis aan Henk .... and eventually human beings arrived. The human beings were different primarily because they were the only species intensely curious about their surroundings. In time, mutations occured, and an odd subset of humans began roaming the land. They were arrogant. They were not content to enjoy the magni®cence of the universe. They asked "How?". How was the universe created? How can the "stuff" of the universe be responsible for the incredible variety in our world: stars, planets, sea otters, oceans, coral, sunlight, the human brain? The mutants had posed a question that could be answered - but only with the labor of millennia and with a dedication handed down from the master to student for a hundred of generations. The question also inspired a great number of wrong and embarrassing answers.
    [Show full text]