Proceedings of the Workshop on Physics at Future Accelerators

Total Page:16

File Type:pdf, Size:1020Kb

Proceedings of the Workshop on Physics at Future Accelerators CERN 87-07 Vol. I 4 June 1987 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH PROCEEDINGS OF THE WORKSHOP ON PHYSICS AT FUTURE ACCELERATORS La Thuile (Italy) and Geneva (Switzerland) 7-13 January 1987 Vol. I GENEVA 1987 © Copyright CERN, Genève, 1987 Propriété littéraire et scientifique réservée pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world. This report, or any part of être reproduit ou traduit en tout ou en partie sans it, may not be reprinted or translated without l'autorisation écrite du Directeur général du written permission of the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-General of CERN. However, permission appropriés, et s'il s'agit d'utiliser le document à will be freely granted for appropriate non• des fins non commerciales, cette autorisation commercial use. sera volontiers accordée. If any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetables et dessins ou modèles to property rights in it but offers it for the free use susceptibles de dépôt qui pourraient être décrits of research institutions, manufacturers and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any attempt librement utilisés par les instituts de recherche, by a user to claim any proprietary or patent rights les industriels et autres intéressés. Cependant, le in such inventions or designs as may be des• CERN se réserve le droit de s'opposer à toute cribed in the present document. revendication qu'un usager pourrait faire de la propriété scientifique ou industrielle de toute invention et tout dessin ou modèle décrits dans le présent document. CERN—Service d'Information scientifique — RD/737 -3000-juin 1987 - III - ABSTRACT A workshop took place at La Thuile and at CERN in January 1987 to study the physics potential of three types of particle collider with energies in the TeV region, together with the feasibility of experiments with them. The machines were: a Large Hadron Collider (LHC) placed in the LEP tunnel at CERN, with a total proton-proton centre-of-mass energy of about 16 TeV; an electron-proton collider, using the LHC and LEP, with a centre-of-mass energy in the range 1.3 TeV to 1.8 TeV; and an electron-positron linear collider with centre-of-mass energy about 2 TeV. This volume of the Proceedings contains summary talks given at CERN by the conveners of the study groups. They cover the possibilities for discovery of new phenomena anticipated in the energy region up to the order of a TeV in the centre of mass of colliding partons, or of the electron and positron. Also discussed are the limits of current technology in the construction of particle-detector systems suitable for use at these energies, and especially in the high event rates provided by a proton-proton collider of luminosity 1033 cm" 2 s~1 or more. - IV - Advisory Panel on the Physics Potential and the Feasibility of Experiments at Multi-TeV Energies G. Altarelli Rome J. Ellis CERN G. Flügge Aachen M. Holder Siegen P. Jenni CERN J. Mulvey (Chairman) Oxford F. Richard Orsay J. Sacton Brussels Organizing Committee for the La Thuile Workshop J. Ellis CERN M. Greco Rome P. Jenni CERN J. Mulvey Oxford C. Petit-Jean-Genaz (Secretary) CERN - v - PREFACE Under the auspices of CERN and ECFA, a 'Workshop on Physics at Future Accelerators' was held at La Thuile, in the Val d'Aosta, Italy, from 7 to 10 January 1987. On 12 and 13 January, the conclusions reached by the study groups were summarized by their conveners before a large audience at CERN. The papers contained in this volume are based on those summary talks. A second volume will publish contributions from individual participants, giving details of the studies carried out. I should like to take this opportunity, on behalf of the Workshop Organizing Committee, to thank all those who made the Workshop possible, and especially the conveners and members of the study groups whose hard work, both in the preceding months and during the days and nights at La Thuile, guaranteed its success. The Organizing Committee is greatly indebted to the Public Education Authority of the Autonomous Region of the Val d'Aosta and to René Faval, Minister of Education for the Region*', for the most generous financial assistance granted to the Workshop. We are also indebted to Professor Bruno Baschiera who was our very effective link with the Education Authority, and to the manager, Claudio Robba, and staff of the Hotel Planibel for their warm hospitality and readiness to make arrangements which would assist the progress of the Workshop. CERN and CERN staff helped in many ways. Christine Petit-Jean-Genaz (CERN-LEP), the secretary to the Organizing Committee, worked tirelessly on the preparations for the Workshop and during it, making sure everything was done which should properly be done. At La Thuile, Michelle Mazerand (CERN-EP) cheerfully helped with the continuous flow of physicists coming to the secretariat with questions to be answered and jobs to be done. We are very grateful to them both, and to their respective groups for releasing them from their normal duties. J.H. Mulvey, Oxford Editor. *) Assesseur à l'Instruction publique de la Région autonome de la Vallée d'Aoste. - VII - CONTENTS Page Preface v Introduction, J.H. Mulvey 1 The Large Hadron Collider in the LEP tunnel, G. Brianti 6 Linear e+e" colliders, K. Johnsen 16 Status of the Superconducting Super Collider, M. Gilchriese 30 The Standard Theory Group: General overview, G. Altarelli 36 Experimental studies, D. Froidevaux 61 Beyond the Standard Model, /. Ellis and F. Pauss 80 Large-cross-section processes, Z. Kunszt 123 Detection of jets with calorimeters at future accelerators, T. Äkesson 174 Vertex detection and tracking, D.H. Saxon 205 Particle identification at the TeV scale in pp, ep and ee colliders, F. Palmonari 233 Report from the Working Group on Triggering and Data Acquisition, J.R. Hansen 21A Design and layout of pp experimental areas at the LHC, W. Kienzle 295 ep interaction regions, W. Bartel 303 The CLIC interaction region, J. Augustin 310 The nature of beamstrahlung, P. Chen 314 Physics and detectors at the Large Hadron Collider and at the CERN Linear Collider, U. Amaldi 323 List of Participants 353 INTRODUCTION J.H. Mulvey, Nuclear Physics Laboratory, University of Oxford, UK. In June 1985 the CERN Council asked Professor Carlo Rubbia to chair a committee charged with exploring options for the long-range scientific future of CERN. The Long-Range Planning Committee (LRPC) in turn set up three Advisory Panels to assist it in its tasks. One, chaired by G. Brianti, continued the design studies which had already started for a Large Hadron Collider (LHC) in the LEP tunnel. Used in conjunction with LEP, this would also make it possible to study collisions between electrons and protons. Another Panel, under K. Johnsen, was given the challenging task of investigating the technical feasibility of an electron-positron linear collider in the TeV energy range (the CERN Linear Collider, or CLIC). The third Panel was commissioned to study 'the physics potential, experimental instrumentation, and other parameters' relating to the use of these particle colliders. Following the pattern set by similar studies in the past, the Panel was to engage members of the particle physics community as participants in the studies, and to form a link between the LRPC and ECFA. Study groups, listed in Table 1 with the names of their conveners, were formed in the first half of 1986. They each met several times later in the year to prepare for the four-day Workshop to be held at La Thuile from 7 to 10 January 1987. About 150 particle physicists took part in the study groups and 93 attended the Workshop. Summary reports from the study groups were presented at open meetings held at CERN on 12 and 13 January. Table 1 Study groups and conveners Topics Conveners 1. Physics of the Standard Model G. Altarelli Rome D. Froidevaux Orsay 2. Beyond the Standard Model J. Ellis CERN F. Pauss CERN 3. Large cross-section processes Z. Kunszt ETH, Zurich W. Scott Liverpool 4. Jet detection and calorimetry T. Ákesson CERN 5. Vertex detection and tracking D.Saxon RAL 6. Particle identification F. Palmonari Bologna 7. Triggering and data-acquisition J. Renner Hansen Copenhagen 8. Intersection regions, machine backgrounds, etc.: PP W. Kienzle CERN ep W. Bartel DESY e+e" J. Augustin Orsay Instead of structuring the studies according to the machines, it was decided that comparisons would be clearer if all three types of particle collider were considered in parallel by each study group. As Table 1 indicates, three - 2 - 'physics' groups analysed the machines in terms of their potential for 'discovery' in a selection of physics areas considered to be of the greatest importance for the development of our understanding. The third of these groups had the task of assessing the many processes with relatively large cross-sections which, as well as being of intrinsic interest, might be expected to be sources of backgrounds hampering identification of certain 'discovery' signals. The task given to the detector groups was to concentrate on the technical limitations in their area of responsibility rather than to accomplish designs of complete detector systems, with all the compromises such a step entails, and to identify directions for R&D. Over the past three years, several Workshops have been held in the USA to examine the physics possibilities of, and detector designs for, experiments at a 40 TeV centre-of-mass energy proton-proton collider—the Superconducting Super Collider (SSC).
Recommended publications
  • The LHC Project and Future of CERN
    The LHC Project and Future of CERN Robert Aymar Symposium on Physics of Elementary Interactions in the LHC Era Warsaw, 21–22 April 2008 Contents about CERN: a facility for the benefit of the European Particle Physics Community the LHC project: completion of installation, start of commissioning for accelerator, experiments and computing, the CNGS: start of operations and the CLIC scheme for multi Tev e+e- Linear Collider plans for CERN in the next decade Warsaw, 21-22 April 2008 2 CERN… • Seeking answers to questions about the Universe • Advancing the frontiers of technology • Training the scientists of tomorrow • Bringing nations together through science 33 CERN in Numbers • 2415 staff* • 730 Fellows and Associates* • 9133 users* • Budget (2007) 982 MCHF (610M Euro) *5 February 2008 • Member States: Austria, Belgium, Bulgaria, the Czech Republic, Denmark, Finland, France, Germany, Greece, Hungary, Italy, Netherlands, Norway, Poland, Portugal, Slovakia, Spain, Sweden, Switzerland and the United Kingdom. • Observers to Council: India, Israel, Japan, the Russian Federation, the United States of America, Turkey, the European Warsaw, 21-22Commission April 2008 and Unesco 4 Distribution of All CERN Users by Nation of Institute on 5 February 2008 Warsaw, 21-22 April 2008 5 CERN: the World’s Most Complete Accelerator Complex (not to scale) Warsaw, 21-22 April 2008 6 TheThe LongLong--TermTerm ScientificScientific ProgrammeProgramme Legend: Approved Under Consideration 2007 2008 2009 2010 2011 LHC Experiments ALICE ATLAS CMS LHCb TOTEM LHCf Other LHC Experiments (e.g. MOEDAL) Non-LHC Experimental Programme SPS NA58 (COMPASS) P326 (NA48/3)/NA62 P327 (EM processes in strong crystalline fields) NA49-future/NA61 Neutrino / CNGS New initiatives PS PS212 (DIRAC) PS215 (CLOUD) OTHER FACILITIES AD ISOLDE n-TOF Neutron CAST P331 (optical axion search and QED test) Test Beams North Areas West Areas East Hall R&D (Detector & Accelerator) 7 Poland and the Four Strategic Missions of CERN FUNADAMENTAL RESEARCH • Polish physicists collaborate with CERN since 1959.
    [Show full text]
  • Antiprotons in the Big Machine
    Antiprotons in the big machine Right the beam line which injects 26 GeV antiprotons into the SPS. Centre, the beam fine which sends high energy protons from the SPS towards the West Experimental Area. The main ring is on the left. (Photo CERN 38.4.81) On 7 July a pulse of antiprotons was sent to the CERN Super Proton Synchrotron, accelerated to 270 GeV and (briefly) stored. Two days later the exercise was repeated with greater success and the first evi­ dence obtained for proton-antipro­ ton collisions at 540 GeV — by far the highest collision energies ever achieved. Although there is still much to be done before the scheme becomes fully operational, this achievement is a major milestone in the CERN antiproton story. The origins of the project Antiprotons, since they presuma­ bly have the same properties as protons except for the sign of their electric charge, can be accelerated and stored in the same magnet ring as protons. Thus colliding beam sys­ tems, like the familiar electron-posi­ tron machines, are, in principle, fea­ sible. However until recently it was not possible to produce antiproton tion, the antiprotons emerge with a for colliding beam physics. It in­ beams of sufficient intensity and wide range of momenta, distinctly volves using electron beams travel­ density to give sufficient collisions in unsuitable for a magnet system in a ling along with the antiproton beam a reasonable enough time for useful beam transfer line, an accelerator or at the same velocity. The electron physics to be done. a storage ring which is designed to beam, which is much easier to con­ This situation has changed with handle a well defined particle mo­ trol, has particles at precisely the the invention of 'beam cooling'.
    [Show full text]
  • FERMILAB New Neutrino Directions
    The HERA electron-proton collider now be­ ing built at the German DESY Laboratory in Hamburg will handle polarized (spin-oriented) electron beams. Here are some of the mova­ ble supports for the complicated spin rotator magnets, which will have to be moved up and down for different beam optics. Except for some minor work, all HERA civil engineering has been completed, and the bill is within one per cent of the original target figure, updated for inflation. FERMILAB New neutrino directions After two successful fixed target Tevatron runs in 1985 and 1987, the present neutrino programme at Fermilab has drawn to a close with the experiments agreeing with each other and with the faithful Standard Model. The long-standing discrepancy in the neutrino-nucleon reaction rate between studies at CERN and Fer­ milab has been resolved. Muon pairs, with each particle carrying the same electric charge, now ap­ pear at the prescribed rate, and the new 1987 data should go on to provide important new information on the quark content (structure functions) of nucleons. Thus it was an appropriate time to review the mented by additional quadrupoles magnet, transferred to the new ring data and examine possibilities for and multipoles. The 317 metre cir­ and accumulated there either in a the future in a 'New Directions in cumference DESY III, designed to single or nine equally spaced 'buck­ Neutrino Physics at Fermilab' meet­ take protons up to about 7.5 GeV, ets'. ing last fall. surrounds the new DESY II ma­ The electrons could then be The meeting got off to a good chine handling HERA electrons and taken up to 14 GeV without loss, start when Fermilab Director Leon positrons.
    [Show full text]
  • Measurements of Single Diffraction at √S = 630
    EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 9 December, 1997 Measurements of Single Diffraction at √s = 630 GeV; Evidence for a Non-Linear α(t) of the omeron P A. Brandt1, S. Erhana, A. Kuzucu2, D. Lynn3, M. Medinnis4, N. Ozdes2, P.E. Schleinb M.T. Zeyrek5, J.G. Zweizig6 University of California∗, Los Angeles, California 90095, USA. J.B. Cheze, J. Zsembery Centre d’Etudes Nucleaires-Saclay, 91191 Gif-sur-Yvette, France. (UA8 Collaboration) Abstract We report measurements of the inclusive differential cross section for the single- diffractive reactions: p +p ¯ p + X and p +p ¯ X +p ¯ at √s = 630 GeV, i → f i → f in the momentum transfer range, 0.8 < t < 2.0 GeV2 and final state Feynman- − xp > 0.90. Based on the assumption of factorization, several new features of the omeron Flux Factor are determined from simultaneous fits to our UA8 data and P lower energy data from the CHLM collaboration at the CERN-Intersecting Storage Rings. Prominent among these is that the effective omeron Regge trajectory requires ′′ P − a term quadratic in t, with coefficient, α = 0.079 0.012 GeV 4. We also show that ± the data require a omeron-proton cross section that first decreases with increasing P diffractive mass (corresponding to the term in the triple-Regge expansion) PPR and then increases at larger mass (the term), similar to real particle total arXiv:hep-ex/9710004v3 8 Apr 1998 PPP − cross sections. We measure the product, Kσ = 0.72 0.10 mb GeV 2, where K 0 ± is the normalization constant of the omeron Flux Factor in the proton and σ is P 0 the scale constant in the omeron-proton total cross section.
    [Show full text]
  • Diffractive Dissociation of Protons in 7 Tev Collisions at the ATLAS Detector
    Diffractive dissociation of protons in 7 TeV collisions at the ATLAS detector. Timothy Alexander David Martin Thesis submitted for the degree of Doctor of Philosophy CERN-THESIS-2012-354 21/11/2012 Particle Physics Group, School of Physics and Astronomy, University of Birmingham. December 21, 2012 ABSTRACT 1 A data sample with integrated luminosity 7.1 µb− of pp collisions was collected with a minimum bias trigger at ps = 7 TeV using the ATLAS detector at the Large Hadron Collider. It is analysed to identify large pseudorapidity gaps. The inelastic cross section is presented differentially in ∆ηF , the largest continuous region of pseudorapidity which extends from the edge of the detector at η = 4:9 and cut ± which contains no final state particles above a threshold pT . The measurement F cut is presented in the region 0 < ∆η < 8 for 200 < pT < 800 MeV. Diffractive topologies are isolated at large gap sizes. The distribution is interpreted using triple Regge models of diffractive scattering, and the dependence of the inelastic cross section on the kinematics of diffraction is studied and compared with other LHC measurements. i DECLARATION OF AUTHORS CONTRIBUTION The design, construction and continued successful operation of the LHC, along with the detectors which adorn it is due to the dedication of many thousand scientists, engineers and technicians over a period of many years. Having been fortunate to have the opportunity to work in the ATLAS collaboration during the beginning of this new exploration in high energy physics research, I have made contributions in different areas of the experiment which will be detailed in this thesis.
    [Show full text]
  • JET FRAGMENTATION TRANSVERSE MOMENTUM from H–H CORRELATIONS in Pp and P–Pb COLLISIONS
    DEPARTMENT OF PHYSICS UNIVERSITY OF JYVÄSKYLÄ RESEARCH REPORT No. 7/2017 JET FRAGMENTATION TRANSVERSE MOMENTUM FROM h–h CORRELATIONS IN pp AND p–Pb COLLISIONS BY JUSSI VIINIKAINEN Academic Dissertation for the Degree of Doctor of Philosophy To be presented, by permission of the Faculty of Mathematics and Science of the University of Jyväskylä, for public examination in Auditorium FYS1 of the University of Jyväskylä on December 15, 2017 at 12 o’clock noon Jyväskylä, Finland December 2017 PERSONAL CONTRIBUTION Viinikainen, Jussi Jet fragmentation transverse momentum from h–h correlations in pp and p–Pb collisions Jyväskylä: University of Jyväskylä, 2017, 114 p. Department of Physics Research Report No. 7/2017 ISSN 0075-465X; 7/2017 ISBN 978-951-39-7288-2 (paper version) ISBN 978-951-39-7289-9 (electronic version) Diss. Keywords: Jet, fragmentation, transverse momentum, ALICE, correlations, proton, lead, CERN, LHC The main contributions of the author to the research presented in this thesis are listed below. – Commissioning and maintenance of the level-0 trigger of the electromagnetic calorimeter at the ALICE experiment. (Section 2.3.6) p = – Jet fragmentationp transverse momentum (jT) analysis for s 7 TeV pp data and sNN = 5.02 TeV p–Pb data. – Implementation for the observable jT (Section 4.2). – Implementation for the background of the jT distribution (Section 4.2). – Deriving the acceptance correction for the analysis (Section 4.4). – Validating analysis assumptions using PYTHIA 8 simulation (Section 4.5). – Fitting the measured jT distributions (Section 4.6). – Deriving the final results from the fit parameters (Section 4.7). – Systematic uncertainty analysis (Chapter 5).
    [Show full text]
  • Cern Courier March/April 2019 3
    CERNMarch/April 2019 cerncourier.com COURIERReporting on international high-energy physics WELCOME CERN Courier – digital edition Welcome to the digital edition of the March/April 2019 issue of CERN Courier. THE RISE OF In March 1989, Tim Berners-Lee, while working at CERN, released his proposal for a new information-management system. Within two years, the web was born. CERN’s subsequent agreement in 1993 to place the underlying OPEN software in the public domain (reproduced in this issue) shapes the web’s character to this day. It is part of a culture of sharing and collaboration that SCIENCE was set out in the CERN Convention 40 years earlier, and which is deeply engrained in the software and particle-physics worlds. The features in this issue – from open-source software, to open-access publishing, open data and entirely open analysis procedures – show how far ahead our field is in the growing open-science movement. Our Viewpoint, meanwhile, argues that we have only begun to harness the full potential of the web to benefit humanity. On other pages of this issue – the second in the Courier’s new format – theorist Nima Arkani-Hamed explains why the world needs a new collider, physicists reflect on 40 years of fixed-target experiments at CERN’s North Area, sterile neutrinos come under increasing pressure from experiment, a survey assesses the impact of working at CERN on your career, supersymmetric lasers demonstrate advanced theoretical physics in action, and more. To sign up to the new-issue alert, please visit: http://cerncourier.com/cws/sign-up.
    [Show full text]
  • 1988 Cern School of Physics Proceedings
    CERN 914)1 10 January 1991 ORGANISATION EUROPÉENNE POUR LA RECHERCHE NUCLÉAIRE CERN EUROPEAN ORGANIZATION FOR NUCLEAR RESEARCH 1988 CERN SCHOOL OF PHYSICS Lefkada, Greece 8 September - 1 October 1988 PROCEEDINGS GENEVA 1991 \ Propriété littéraire et scientiOt]iie réservés pour Literary and scientific copyrights reserved in ail tous les pays du monde. Ce document ne peut countries of the world, This report, or any part être reproduit ou Iradin! en (oui (ju en partie of it. may- not be reprinted or translated without iaiu l'autorisation écrite du directeur gênerai du written permission or the copyright holder, the CERN, titulaire du droit d'auteur. Dans les cas Director-tîcneral or CERN, However, permis­ appropriés, cl s'il s'ap,it d'utiliser ttî document à sion will be freely granted for appropriate des fins non commerciales, ecllc autorisation non-Lommereial use, sera volontiers accordée. II' any patentable invention or registrable design Le CERN ne revendique pas la propriété des is described in the report, CERN makes no claim inventions brevetabJes et dentins on mode let to properly rights in il but offers it for the free susceptibles de dépôt qui pourraient être décrits use of research instilullons, manufacture]' and dans le présent document; ceux-ci peuvent être others. CERN, however, may oppose any librement utilisés par tes instituts de recherche, attempi by a user 10 daim any proprietary or les industriels et autres intéressés. Cependant, le patent rights m such inventions or designs as CERN se réserve le droit de s'opposer à toute may be described in (he present document.
    [Show full text]
  • Diffraction at the Tevatron and the Lhc∗
    Vol. 39 (2008) ACTA PHYSICA POLONICA B No 9 DIFFRACTION AT THE TEVATRON AND THE LHC ∗ C. Royon IRFU/Service de Physique des Particules CEA/Saclay, 91191 Gif-sur-Yvette Cedex, France (Received May 12, 2008) In this paper, we present and discuss the most recent results on inclu- sive diffraction at the Tevatron collider and give the prospects at the LHC. We also describe the search for exclusive events at the Tevatron. Of spe- cial interest is the exclusive production of Higgs boson and heavy objects (W , top, stop pairs) at the LHC which will require precise measurements and analyses of inclusive and exclusive diffraction to constrain further the gluon density in the pomeron. At the end of the paper, we describe the projects to install forward detectors at the LHC to fulfil these measure- ments. We also describe the diffractive experiments accepted or in project at the LHC: TOTEM, ALFA in ATLAS, and the AFP/FP420 projects. PACS numbers: 12.38.–t, 12.38.Qk, 13.85.–t 1. Experimental methods to select diffractive events at the Tevatron and the LHC In this section, we discuss the different experimental ways to define diffraction at the Tevatron and the LHC. The Tevatron is a pp¯ collider located close to Chicago at Fermilab, USA. It is presently the collider with the highest center-of-mass energy of about 2 TeV. Two main experiments are located around the ring, D0/ and CDF. Both collaborations have accumulated a luminosity larger than 3 fb−1 with an efficiency larger than 90%. As a starting point, we describe the methods to select diffractive events used by the H1 and ZEUS experiments at HERA, DESY, Hamburg in Ger- many since it is easier.
    [Show full text]
  • CERN Hadron Horizons
    Comparison of proton-antiproton (top) and proton-proton (bottom) total cross-sections at different collision energies (lower horizontal axis). The points on the right with large errors are the new results from the SPS proton-antiproton collider, showing that the total cross-section countinues to rise, and extrapolates well with what is seen at lower energies. The round data points, centre, come from the Intersecting Storage Rings. CERN Hadron horizons An article in the May issue (page 136) described some of the new hadron scattering results which indicate that at high energies there might be an universal underlying behaviour, inde­ pendent of the quark composition of the colliding particles. Just over ten years ago, contro­ versy raged about the general trend of hadron behaviour at higher ener­ gies. The dust only settled when the first results appeared from the CERN Intersecting Storage Rings. Today there is less controversy, but the topic has been given a new lease of life by the ability to compare proton-proton and proton-antipro­ ton behaviour under similar con­ ditions at the ISR, and by the new energy range opened up at the SPS proton-antiproton collider. Total and elastic cross-sections For elastic scattering and total related to the effective 'size' of th are important measurements of in- cross-section measurements, these colliding particles. ter-hadron affinity. The total cross- included a CERN / Naples / Pisa / For both proton-proton and pre section indicates how reactive the Stony Brook group measuring total ton-antiproton scattering, there a\ particular particles are, while the cross-sections by the observed pears to be a slight increase in th elastic cross-section describes how reaction rate, a Louvain / Northwes­ exponential falloff at smaller momei the scattered particles simply tern team using the time-honoured turn transfer.
    [Show full text]
  • The Measurement of the Real Part of the Pp Elastic Scattering Amplitude at a Cms
    INIS-mf—11411 NL89C0207 THE MEASUREMENT OF THE REAL PART OF THE PP ELASTIC SCATTERING AMPLITUDE AT A CMS. ENERGY OF 546 GEV AND THE RISE OF THE TOTAL CROSS SECTION THE MEASUREMENT OF THE REAL PART OF THE PP ELASTIC SCATTERING AMPLITUDE AT A C.M.S. ENERGY OF 546 GEV AND THE RISE OF THE TOTAL CROSS SECTION ACADEMISCH PROEFSCHRIFT TER VERKRIJGING VAN DE GRAAD VAN DOCTOR AAN DE UNIVERSITEIT VAN AMSTERDAM, OP GEZAG VAN DE RECTOR MAGNIFICUS PROF. DR. S. K. THODEN VAN VELZEN IN HET OPENBAAR TE VERDEDIGEN IN DE AULA DER UNIVERSITEIT (OUDE LUTHERSE KERK, SlNGEL 411, HOEK SPUI) OP WOENSDAG 7 DECEMBER 1988 TE 15.00 UUR. door Peter Martin Kluit geboren te Hilversum Promotors : Prof. Dr. A. N. Diddens Prof. Dr. G. Matthiae Co-promotor : Dr. J. J. M. Timmermans The work described in this thesis is part of the research pro- gramme of 'het Nationaal Instituut voor Kernfysica en Hoge- Energie Fysica (NIKHEF-H)' in Amsterdam. The author was financially supported by 'de Stichting voor Fundamenteel Onder- zoek der Materie (FOM)'. Aan mijn ouders j> Contents 1 Introduction 1 1.1 Motivation 1 1.2 Elastic scattering 3 1.3 Asymptotic theorems 7 1.4 Dispersion relations 9 2 Experimental set up 15 2.1 The SppS Collider 15 2.2 Beam optics 16 2.3 Super high beta optics 19 2.4 The detectors 22 2.4.1 Calibration of the drift planes 25 2.4.2 Calibration of the proportional planes 28 3 The measurement of the real part 35 3.1 Data taking and processing 35 3.2 Efficiencies 37 3.3 Elastic events 40 3.4 Results and checks 45 4 Dispersion relations 51 4.1 Expectations and implications 51 4.2 Dispersion relation analysis 52 4.3 Discussion 60 5 Minijets and the rise of the total cross section 63 5.1 Hypothesis 63 5.2 The rise of the inelastic cross section 64 5.3 Calculation of the jet cross section 68 5.4 Comparison and Conclusions 74 Conclusions 77 References 79 Acknowledgements 84 Summary 85 Samenvatting 87 Chapter 1 Introduction 1.1 Motivation High Energy Physics studies the fundamental particles and forces of nature in the realm of the subatomic.
    [Show full text]
  • Improving CERN's Presence on Wikipedia Project Report, Summer
    CERN Improving CERN’s Presence on Wikipedia Project Report, Summer Student Program 2017 IDA STOREHAUG University of Bergen, Norway Niels Bohr Institute, University of Copenhagen, Denmark August 25, 2017 Abstract Dissemination of information on high energy physics and related technologies is at the core of CERN’s mission, making research done at CERN available, both to the public and other researchers. Wikipedia, being the most used social media site for researchers and a popular source of science information for the public, is an obvious platform for CERN to be present on. Between 19 June and 25 August 2017, as part of the CERN Summer Student Program, a project to improve CERN’s presence on Wikipedia was carried out in the department of Scientific Information Service at CERN. In the following the use of references in the collection of CERN-related Wikipedia articles is discussed, and the topics of plagiarism and licenses are raised. Furthermore, methods to benefit from the CERN community and archives are described, followed by a summary of how to get a Wikipedia article accepted by the Wikipedia community. Lists of Wikipedia articles created or improved and of Wikipedia articles in need of improvement are given. Introduction "To inspire and nurture scientific awareness in all citizens" is one of seven goals of CERN opera- tion, listed in the newly revised communications strategy of CERN.[1] CERN scientific output is documented and made available to the scientific community through the CERN Document Server (CDS), a large-scale multimedia digital library comprising more than 1,100,000 records. In addition to this vast scientific resource, CERN is engaging in disseminating information targeted at the general public.
    [Show full text]