Seasonal Shifts in Macronutrient Preferences in Supercolonies of The

Total Page:16

File Type:pdf, Size:1020Kb

Seasonal Shifts in Macronutrient Preferences in Supercolonies of The bs_bs_banner Austral Entomology (2014) 53, 337–346 Seasonal shifts in macronutrient preferences in supercolonies of the invasive Yellow Crazy Ant Anoplolepis gracilipes (Smith, 1857) (Hymenoptera: Formicidae) on Christmas Island, Indian Ocean Kirsti L Abbott,1*† Peter T Green2 and Dennis J O’Dowd1 1School of Biological Sciences, Monash University, Clayton, Vic. 3800, Australia. 2Department of Botany, La Trobe University, Bundoora, Vic. 3086, Australia. Abstract The timing and duration of sexual brood production in ants can affect their rate of spread and colony growth. Because protein is key to larval growth, queen survival and fecundity, macronutrient collection by foraging workers is expected to favour protein prior to and throughout gyne production. However, food preference driven by the production of gynes may be overridden by a preference associated with worker production, especially if investment in workers vastly outweighs that of sexual brood and workers are produced on different schedules. Food preferences alone may not indicate the availability of that food type in the environ- ment. On Christmas Island, Indian Ocean, sexual brood of the invasive Yellow Crazy Ant, Anoplolepis gracilipes (Smith, 1857), was produced annually during a single period associated with the onset of the wet season. However, workers were produced continuously throughout the year and colony investment to worker production measured by the standing biomass of eggs, larvae and pupae, typically exceeded 98%. High, aseasonal investment in worker production, together with aseasonal worker activity, would suggest that there should be no seasonal preference shown by workers at food stations containing both protein and carbohydrate. However, workers showed a preference for one food type over another on 46 of 61 occasions at one site and on 31 of 41 occasions at another. When a preference was shown, it was predominantly for protein-rich food during the dry season and almost always for carbohydrate at the onset and during the wet season. We suggest that these preferences reflect seasonal shortages in key resources when invertebrates (protein-rich) are scarce during the dry season and honeydew from scale insects (carbohydrate) is depleted by rain during the wet season. On Christmas Island, timing and duration of the dry season preference for protein has been exploited by the control program for A. gracilipes supercolonies, which deploys a toxin in a proteinaceous bait matrix during dry periods. Key words control program, invasive ant, life history, mutualism, seasonality. INTRODUCTION colony growth and reproduction at this time (Tobin 1995; Davidson 1997; Nation 2001) and that it is larvae present in the Life histories and mating patterns of ants can provide insight colony that increases the proportion of protein in their diet into their phenomenal ecological success (Hölldobler & (Dussutour & Simpson 2009). However, there is increasing Wilson 1990; Peeters & Molet 2010). The timing and duration evidence that carbohydrate-rich honeydew from hemipteran of sexual brood production can have significant implications mutualists can have greater benefits in terms of colony growth for colony growth, dispersal of queens, colony-founding strat- than proteinaceous insect prey (Shik & Silverman 2013). egies and rate of colony spread (Hölldobler & Wilson 1990). The food choices made by worker ants are driven by their Founding queen ants typically require large metabolic reserves individual nutritional needs, and information given to them by to sustain ovary development, egg production and larval colony members about the requirements of conspecifics in the growth at their new nest site (Brian 1973; Hölldobler & Wilson nest (Cook et al. 2010) and reproductive status of the colony 1990; Nation 2001) and are dependent upon workers to (Stein et al. 1990). Workers choose carbohydrates to fuel their retrieve these food items. It is generally nitrogen in the form of own activity and collect proteinaceous foods to either pass amino acids and proteins that is the limiting resource for onto developing larvae, the queen, other workers or to hoard for extraction when necessary (Cook et al. 2010). Recruitment to food sources depends not only on the rate of information *[email protected] transfer between workers and on recruitment strategy (Cassill †Present address: School of Environmental and Rural Science, Univer- 2003) but also on the quality, stability and perceived quantity sity of New England, Armidale, NSW 2350, Australia. of the resource (Sundstrom 1993; Kay 2002). Interpreting © 2014 Australian Entomological Society doi:10.1111/aen.12081 338 K L Abbott et al. patterns of recruitment to different food choices is complicated can provide the ants with a pulse of protein-rich food at the by other factors such as division of labour, overlapping gen- onset of the wet season if the crabs migrate through erations and foraging costs (Cook et al. 2010). The relative supercolonies that lie in their path (O’Dowd et al. 2003; Green availability of complementary resources in the environment & O’Dowd 2009; Green et al. 2011). can also affect the feeding preferences of workers (Kay 2003), An understanding of the reproductive phenology and food perhaps more so than nutritional needs of the colony. There preference of A. gracilipes may help predict population esca- can also be temporal variation in the resource requirements of lation and supercolony spread. Moreover, in areas where ant colonies; both temperate and tropical ant species have A. gracilipes has become a serious invader (Lewis et al. 1976; cyclical patterns of brood production (Stein et al. 1990; Lester & Tavite 2004; Abbott et al. 2007; Green & O’Dowd Noordijk et al. 2008; Hart & Tschinkel 2012), and the onset of 2009; Hoffmann & Saul 2010; Savage et al. 2011), life history a wet or dry season can provide strong environmental cues for knowledge can benefit conservation management by highlight- patterns of food collection and recruitment. However, little is ing when ant colonies prefer, or at least recruit, to and collect known about how the interaction between seasonality and a specific food type. The timing of a particular food preference brood production affects food choices by ants. by foraging A. gracilipes can help managers time the applica- Traditionally, the study of ant reproductive phenology has tion of a corresponding bait matrix for maximum uptake by emphasised periods during which sexuals are produced and the workers and prevent the production of sexual brood. resource demands that places on the colony as a whole and the Here, we first describe the reproductive phenology of foraging preferences of individual workers. There are older A. gracilipes in high-density supercolonies on Christmas studies that have linked periods during which brood (including Island, with particular emphasis on the timing and duration of sexuals) are produced to a notable preference for protein sexual vs. worker brood production. Second, we quantify over among foraging workers (e.g. Sorensen et al. 1983; Stein et al. time the relative investment of colony resources in the produc- 1990). However, these studies have not focused on the timing tion of workers compared with reproductive brood to determine of the production of gynes alone and linked any shift in sea- which is more likely to drive temporal variation in feeding sonal food preference with temperature rather than with any preferences by the workers of this species. Third, we document biotic variables. Food preference of S. invicta has also been forager recruitment to carbohydrate and protein-rich foods, and labelled ‘idiosyncratic’ (Glunn et al. 1981). In ant species that evaluate these patterns as a potential indicator of colony macro- form high-density supercolonies where the ratio of gynes to nutrient requirements vs. environmental availability. workers is generally low, colony food preference may be driven more by the nutritional requirements of the workers and their production schedules than by queens. In these species, METHODS AND MATERIALS the workers’ need for energy may drive recruitment to, and collection of, food types high in sugars. Carbohydrates in the Study sites form of excretory honeydew from scale insects are an impor- tant dietary component for species of invasive ants that typi- Christmas Island is an elevated oceanic limestone island that cally have high ratios of workers to gynes (Heller 2004; lies 360 km south of Java in the north-eastern Indian Ocean Abbott 2005; Helms 2013). Indeed, the five species of invasive (105°40′E, 10°30′S). This elevated (to 364 m) small island ants whose impacts are considered the most damaging have (135 km2) experiences a monsoonal climate in which most of disproportionately high numbers of workers; these species are the 2000 mm mean annual rainfall occurs between December also associated with honeydew-producing insects in their and May (Falkland 1986). Approximately 74% of the island is introduced range (Helms 2013). still covered with floristically simple rainforest; tall evergreen The invasive yellow crazy ant, Anoplolepis gracilipes, has rainforest occurs on deep soils in the higher regions of the become a widespread pest in tropical and subtropical locations island, while shorter, more deciduous forest occurs on shal- worldwide (Wetterer 2005). On Christmas Island (Indian lower soil on fringing terraces. Common tree species include Ocean), this species forms a mosaic of high- and low-density Barringtonia racemosa, Celtis timorensis,
Recommended publications
  • Scale, Pattern and Process in Biological Invasions
    SCALE, PATTERN, AND PROCESS IN BIOLOGICAL INVASIONS By CRAIG R. ALLEN A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY UNIVERSITY OF FLORIDA 1997 Copyright 1997 by Craig R. Allen ACKNOWLEDGEMENTS The work presented in this dissertation would not have been possible without the cooperation and encouragement of many. Foremost is the understanding of my immediate family, that is my wife Patty and now three-year-old son, Reece. Reece, while generally confused about what I was doing, nonetheless supported my effort to "write a book" in order to become a "doctor." Conflicts arose only when he needed my computer for dinosaur games. My co-advisors, W. M. Kitchens and C. S. Holling, encouraged my investigations and provided me with intellectual support and opportunity. For the same reasons, I extend my appreciation to my committee members, S. Humphrey, M. Moulton and D. Wojcik. Numerous friends and colleagues provided me with intellectual support and acted as a sounding board for ideas. Foremost are E. A. Forys, G. Peterson M. P. Moulton and J. Sendzemir as well as the entire "gang" of the Arthur Marshal Ecology Laboratory. I wish to thank all for their support and friendship. II! TABLE OF CONTENTS page ACKNOWLEDGEMENTS iii ABSTRACT viii INTRODUCTION 1 CHAPTERS 1. TRADITIONAL HYPOTHESES: INVASIONS AND EXTINCTIONS IN THE EVERGLADES ECOREGION 5 Introduction 5 Body-mass difference hypothesis 6 Diet difference hypothesis 7 Species replacement hypothesis 7 Phylogenetic hypothesis 8 Methods 8 Results 11 Discussion 14 2. LUMPY PATTERNS OF BODY MASS PREDICT INVASIONS AND EXTINCTIONS IN TRANSFORMING LANDSCAPES 18 Introduction 18 Methods and analysis 21 Species lists 21 Analysis 22 Results 26 Discussion 31 3.
    [Show full text]
  • 56 AVAILABLE FOOD and ANTS' RESPONSE.Pdf
    [Naskar, 4(4): April, 2015] ISSN: 2277-9655 Scientific Journal Impact Factor: 3.449 (ISRA), Impact Factor: 2.114 IJESRT INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH TECHNOLOGY AVAILABLE FOOD AND ANTS’ RESPONSE Khokan Naskar*, Srimanta K. Raut * Ecology and Ethology Laboratory , Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, India Ecology and Ethology Laboratory , Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, India ABSTRACT Ants are habituated to search food here and there in their foraging ground. To note their response in respect to available foods various types of foods in different sizes and numbers were offered at certain sites of their foraging ground in Garia, Kolkata, India. It is observed that both the ant species Pheidole roberti and Paratrechina longicornis started carrying the food particles instantly to the nest when they came across the sugar cubes 10 in number, offered at the site. But, in cases of availability of sugar cubes or biscuit fragments or dry fish fragments or nut particles or freshly dead mosquitoes or rice grains or papad fragments either separately or together more than 10 in number they were seen to examine the food particles at the offered sites and then moved quickly to the nest to invite the nest-mates with a view to procure these food particles. KEYWORDS: ants, foods, response, foraging INTRODUCTION It is known that ants’ move here and there in the ground. The behavioural responses noted by as are foraging ground in search of food ( Orians and worth reporting. Pearson, 1979 ; Goss et al.
    [Show full text]
  • Biological Control of Gonipterus Platensis
    BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS 2018 BIOLOGICAL CONTROL OF GONIPTERUS PLATENSIS: CURRENT STATUS AND NEW POSSIBILITIES CARLOS MANUEL FERREIRA VALENTE ORIENTADORA: Doutora Manuela Rodrigues Branco Simões TESE ELABORADA PARA OBTENÇÃO DO GRAU DE DOUTOR EM ENGENHARIA FLORESTAL E DOS RECURSOS NATURAIS JÚRI: Presidente: Doutora Maria Teresa Marques Ferreira Professora Catedrática Instituto Superior de Agronomia Universidade de Lisboa Vogais: Doutora Maria Rosa Santos de Paiva Professora Catedrática Faculdade de Ciências e Tecnologia Universidade Nova de Lisboa; Doutora Manuela Rodrigues Branco Simões Professora Auxiliar com Agregação Instituto Superior de Agronomia Universidade de Lisboa; Doutor José Carlos Franco Santos Silva Professor Auxiliar Instituto Superior de Agronomia Universidade de Lisboa; Doutor Edmundo Manuel Rodrigues de Sousa Investigador Auxiliar Instituto Nacional de Investigação Agrária e Veterinária. 2018 À Susana e à Leonor i Em memória da minha Avó, Maria dos Anjos Valente (1927-2017) ii Agradecimentos Agradeço, em primeiro lugar, à Professora Manuela Branco, pelo apoio incansável na orientação desta tese, a total disponibilidade e os inúmeros ensinamentos. Ao RAIZ, pelo financiamento do doutoramento, e à sua Direção, em particular ao Engenheiro Serafim Tavares, ao Engenheiro José Nordeste, ao Professor Carlos Pascoal Neto, à Engenheira Leonor Guedes, ao Gabriel Dehon e ao Nuno Borralho, pelo voto de confiança e incentivo que sempre me transmitiram. Deixo um especial agradecimento à Catarina Gonçalves e à Catarina Afonso, pela amizade, por terem ajudado a manter os projetos do RAIZ e a biofábrica a funcionar, pelas horas infindáveis passadas no laboratório e pelos excelentes contributos científicos que muito melhoraram a qualidade desta tese.
    [Show full text]
  • Of Sri Lanka: a Taxonomic Research Summary and Updated Checklist
    ZooKeys 967: 1–142 (2020) A peer-reviewed open-access journal doi: 10.3897/zookeys.967.54432 CHECKLIST https://zookeys.pensoft.net Launched to accelerate biodiversity research The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist Ratnayake Kaluarachchige Sriyani Dias1, Benoit Guénard2, Shahid Ali Akbar3, Evan P. Economo4, Warnakulasuriyage Sudesh Udayakantha1, Aijaz Ahmad Wachkoo5 1 Department of Zoology and Environmental Management, University of Kelaniya, Sri Lanka 2 School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China3 Central Institute of Temperate Horticulture, Srinagar, Jammu and Kashmir, 191132, India 4 Biodiversity and Biocomplexity Unit, Okinawa Institute of Science and Technology Graduate University, Onna, Okinawa, Japan 5 Department of Zoology, Government Degree College, Shopian, Jammu and Kashmir, 190006, India Corresponding author: Aijaz Ahmad Wachkoo ([email protected]) Academic editor: Marek Borowiec | Received 18 May 2020 | Accepted 16 July 2020 | Published 14 September 2020 http://zoobank.org/61FBCC3D-10F3-496E-B26E-2483F5A508CD Citation: Dias RKS, Guénard B, Akbar SA, Economo EP, Udayakantha WS, Wachkoo AA (2020) The Ants (Hymenoptera, Formicidae) of Sri Lanka: a taxonomic research summary and updated checklist. ZooKeys 967: 1–142. https://doi.org/10.3897/zookeys.967.54432 Abstract An updated checklist of the ants (Hymenoptera: Formicidae) of Sri Lanka is presented. These include representatives of eleven of the 17 known extant subfamilies with 341 valid ant species in 79 genera. Lio- ponera longitarsus Mayr, 1879 is reported as a new species country record for Sri Lanka. Notes about type localities, depositories, and relevant references to each species record are given.
    [Show full text]
  • An Updated Checklist of the Ants of India with Their Specific Distributions in Indian States (Hymenoptera, Formicidae)
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/290001866 An updated checklist of the ants of India with their specific distributions in Indian states (Hymenoptera, Formicidae) ARTICLE in ZOOKEYS · JANUARY 2016 Impact Factor: 0.93 · DOI: 10.3897/zookeys.551.6767 READS 97 4 AUTHORS, INCLUDING: Benoit Guénard The University of Hong Kong 44 PUBLICATIONS 420 CITATIONS SEE PROFILE Meenakshi Bharti Punjabi University, Patiala 23 PUBLICATIONS 122 CITATIONS SEE PROFILE Available from: Benoit Guénard Retrieved on: 26 March 2016 A peer-reviewed open-access journal ZooKeys 551: 1–83 (2016) State wise distribution of Indian ants 1 doi: 10.3897/zookeys.551.6767 CHECKLIST http://zookeys.pensoft.net Launched to accelerate biodiversity research An updated checklist of the ants of India with their specific distributions in Indian states (Hymenoptera, Formicidae) Himender Bharti1, Benoit Guénard2, Meenakshi Bharti1, Evan P. Economo3 1 Department of Zoology and Environmental Sciences, Punjabi University, Patiala, Punjab, India 2 School of Biological Sciences, Kadoorie Biological Sciences Building, The University of Hong Kong, Pok Fu Lam Road, Hong Kong SAR, China 3 Okinawa Institute of Science and Technology Graduate University, Onna, Okina- wa, Japan 904-0495 Corresponding author: Himender Bharti ([email protected]) Academic editor: B. Fisher | Received 6 October 2015 | Accepted 18 November 2015 | Published 11 January 2016 http://zoobank.org/9F406589-BFE0-4670-A810-8A00C533CDA7 Citation: Bharti H, Guénard B, Bharti M, Economo EP (2016) An updated checklist of the ants of India with their specific distributions in Indian states (Hymenoptera, Formicidae). ZooKeys 551: 1–83.doi: 10.3897/zookeys.551.6767 Abstract As one of the 17 megadiverse countries of the world and with four biodiversity hotspots represented in its borders, India is home to an impressive diversity of life forms.
    [Show full text]
  • Synonymic List of Neotropical Ants (Hymenoptera: Formicidae)
    BIOTA COLOMBIANA Special Issue: List of Neotropical Ants Número monográfico: Lista de las hormigas neotropicales Fernando Fernández Sebastián Sendoya Volumen 5 - Número 1 (monográfico), Junio de 2004 Instituto de Ciencias Naturales Biota Colombiana 5 (1) 3 -105, 2004 Synonymic list of Neotropical ants (Hymenoptera: Formicidae) Fernando Fernández1 and Sebastián Sendoya2 1Profesor Asociado, Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, AA 7495, Bogotá D.C, Colombia. [email protected] 2 Programa de Becas ABC, Sistema de Información en Biodiversidad y Proyecto Atlas de la Biodiversidad de Colombia, Instituto Alexander von Humboldt. [email protected] Key words: Formicidae, Ants, Taxa list, Neotropical Region, Synopsis Introduction Ant Phylogeny Ants are conspicuous and dominant all over the All ants belong to the family Formicidae, in the superfamily globe. Their diversity and abundance both peak in the tro- Vespoidea, within the order Hymenoptera. The most widely pical regions of the world and gradually decline towards accepted phylogentic schemes for the superfamily temperate latitudes. Nonetheless, certain species such as Vespoidea place the ants as a sister group to Vespidae + Formica can be locally abundant in some temperate Scoliidae (Brother & Carpenter 1993; Brothers 1999). countries. In the tropical and subtropical regions numerous Numerous studies have demonstrated the monophyletic species have been described, but many more remain to be nature of ants (Bolton 1994, 2003; Fernández 2003). Among discovered. Multiple studies have shown that ants represent the most widely accepted characters used to define ants as a high percentage of the biomass and individual count in a group are the presence of a metapleural gland in females canopy forests.
    [Show full text]
  • Foraging Interactions Between the Reddish Brown Ants Pheidole Roberti and the Black Ants Paratrechina Longicornis
    International Journal of Research Studies in Biosciences (IJRSB) Volume 3, Issue 3, March 2015, PP 183-189 ISSN 2349-0357 (Print) & ISSN 2349-0365 (Online) www.arcjournals.org Foraging Interactions between the Reddish Brown Ants Pheidole Roberti and the Black Ants Paratrechina Longicornis Khokan Naskar1*, Srimanta K. Raut2 Ecology and Ethology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, India 1*[email protected], [email protected] Abstract: The reddish brown ants Pheidole roberti Forel and the black ants Paratrechina longicornis (Latreille) forage in the same area in Garia, Kolkata, West Bengal, India. The food habit is almost same in both the ant species. Therefore, to study the foraging interactions between these two species we offered sugar cubes to these insects at different locations in their foraging area, in the premises of a domestic house. It is revealed that Paratrechina longicornis is much aggressive and furious than Pheidole roberti. In course of competition Paratrechina longicornis attacked and killed some Pheidole roberti foragers to procure the supplied sugar cubes from the sites. It is noted that ,of the 900 supplied sugar cubes Paratrechina longicornis procured 769 ( 85.44 % ) while Pheidole roberti was somehow able to manage 131(14.56 %) of course, at the cost of injury and life of some foragers. Perhaps to avoid such risk Pheidole roberti have developed individual foraging strategy in a more befitting manner. Keywords: Ants, Pheidole roberti, Paratrechina
    [Show full text]
  • (Lepidoptera: Noctuidae) Feeding on Pasture Grasses in Central Florida
    Meagher et al.: Caterpillar Feeding on Pasture Grasses 295 CATERPILLAR (LEPIDOPTERA: NOCTUIDAE) FEEDING ON PASTURE GRASSES IN CENTRAL FLORIDA ROBERT L. MEAGHER1, PAUL MISLEVY2 AND RODNEY N. NAGOSHI1 1Center for Medical, Agricultural and Veterinary Entomology, Agricultural Research Service U.S. Department of Agriculture, 1700 SW 23rd Drive, Gainesville, FL 32608 2University of Florida, Range Cattle Research and Education Center, Ona, FL ABSTRACT Stargrasses (Cynodon nlemfuensis Vanderyst var. nlemfuensis) and bermudagrasses (C. dac- tylon (L.) Persoon) are important warm-season forage grasses, with several cultivars devel- oped for conditions found in central and southern Florida. Major insect pests of these grasses include grass loopers (Mocis spp.) and fall armyworm (Spodoptera frugiperda (J. E. Smith)), which annually may impose economic losses for beef cattle and hay producers. Population studies conducted during a 3-year period showed that both species had similar profiles with respect to larval population seasonality but not abundance. Plot studies with 4 stargrass and 4 bermudagrass lines showed that higher grass looper populations were found in star- grasses than bermudagrasses. Laboratory studies found grass loopers and fall armyworm larvae generally developed faster with larger weights on lines of stargrass than lines of ber- mudagrass. The two fall armyworm host strains also can differ substantially in their larval weight, developmental time, and survivability when grown on different lines of grasses. These results indicate that the selection of pasture grasses made by growers can signifi- cantly and differentially affect the population densities of these grass defoliators. Key Words: Mocis latipes, Mocis disseverans, Mocis marcida, Spodoptera frugiperda, larval densities RESUMEN Los pastos, Cynodon nlemfuensis Vanderyst var.
    [Show full text]
  • PDF Fulltext
    International Journal of Innovation Sciences and Research Vol.4, No, 2, pp. 064-067, February- 2015 Available online at http://www.ijisr.com RESEARCH ARTICLE ANTS’ FORAGING, A MYSTERY *Khokan Naskar and Srimanta K. Raut Department of Zoology,Accepted University25 th ofJanuary Calcutta,, 201 35,5; Published Ballygunge Online Circular28th February Road, Kolkata, 2015 - 700019, India ABSTRACT The ants Pheidole roberti were offered food at different locations in their natural foraging area on 108 days, both in day and night time at Garia, Kolkata, India to note the first contact time with the said food by them following supply of the food. It is revealed that the ants are equally apt to locate the food both in day and night times and the first contact time varied from 1 to 60 minutes, on average 7.56 ± 0.94 SE (n = 108) minutes. Statistical analysis of the data clearly revealed that there exists no significant difference in contact time in respect to locations of the food (F = 0.38, df = 9, 98, n = 107). This sort of foraging behaviour thus, uncovering the mystery of ants’ foraging strategy under natural conditions. Key Words: Ants Pheidole roberti, Food, Foraging, First contact, Mystery INTRODUCTION MATERIALS AND METHODS Ants’ foraging have been the subject of study by a good number of workers (Wallis, 1964 ; Traniello, 1989; Beckers During 2010 and 2011 we offered sugar cubes, small et al., 1990; Hölldobler and Wilson, 1990; Vasconcellos, pieces of dry fish and fragments of biscuits separately at 1990; Nelson et al., 1991; Beckers et al., 1993; Dussutour any of the 10 different spots selected at random in the et al., 2004; Jackson et al., 2004; Yamamoto and Del- premises of a house locating at Garia, Kolkata, West Claro, 2008; Hashimoto et al., 2010; Sengupta et al., 2010; Bengal, India.
    [Show full text]
  • The Fauna of Sri Lanka: Status of Taxonomy, Research and Conservation
    The Fauna of Sri Lanka: Status of Taxonomy, Research and Conservation Edited by Channa. N. B. Bambaradeniya This publication has been prepared by the World Conservation Union in Sri Lanka with financial assistance from the Royal Netherlands Government. Printing of this publication has been made possible by the Royal Netherlands Government and the Protected Area Management and Wildlife Conservation (PAM & WC) Project i Dias: Current Taxonomic Status of Ants (Hymenoptera: THE FAUNA Formicidae) OF SRI LANKA (2006): inSri Lanka 43-52 © IUCN - The World Conservation Union Current Taxonomic Status of Ants (Hymenoptera: Formicidae) in Sri Lanka R. K. Sriyani Dias* *Department of Zoology, University of Kelaniya, Kelaniya. Abstract The paper highlights the status of research on ants of Sri Lanka, based on published information and ongoing research of the author. A total of 181 ant species in 61 genera have been recorded from Sri Lanka, which includes the endemic and relict monotypic genus Aneuretus. Majority of the ant species recorded from Sri Lanka belong to the subfamily Myrmicinae. The Genus Camponotus (Formicinae) includes the highest number of ant species recorded so far in the island. Key words: Ants, Species, Distribution, Research An overview of past research on ants of Sri Lanka Ants are a very common group of insects in most terrestrial habitats in Sri Lanka. Their habitats vary from highly disturbed urbanized areas to undisturbed forests. They inhabit buildings and outdoors, their microhabitats extend into soil (even up to a depth of 20 cm) decaying wood, plants, trees, litter, termite nests etc. Bingham (1903) was one of the very first to publish a list and descriptions of ant species recorded from Sri Lanka.
    [Show full text]
  • Diversity and Distribution of Ant Fauna in Hejamadi Kodi Sandspit, Udupi District, Karnataka, India
    HALTERES, Volume 4, 33-47, 2013 ISSN 0973-1555 © PRADEEP D’CUNHA AND VIJAY MALA GROVER NAIR Diversity and Distribution of Ant Fauna in Hejamadi Kodi Sandspit, Udupi District, Karnataka, India Pradeep D’Cunha1 and Vijay Mala Grover Nair*2 Department of Applied Zoology, Mangalore University, Mangalore, Karnataka, India (e-mail: [email protected]; *[email protected]) Abstract Ants are highly diverse and successful in varied habitats. The present study records diversity and distribution of ant fauna in Hejamadi Kodi sandspit (13o 04' to 13o 05' N latitude and 74o 46' E longitude) located in Udupi district, west coast of Karnataka during November and December, 2011. The spit is 1.2 km long with an area of 0.332 km2. The river Shambavi flows along the east side of the spit parallel to the Arabian sea and joins the sea on the southern end of the spit. The temperature and humidity ranges from 22o to 33oC and 86 to 90 % respectively. The ant samples were collected using random transects following all out search, bait and pit-fall methods from each demarcated area categorized on the basis of nature of vegetation complex as zone (I) - sandy beach; (II-A) - thick creepy vegetation with scanty shrubs and (II-B) - thin creepy vegetation with moderate number of shrubs; (III) - mixed vegetation with wild and planted flora; (IV) - mangroves and (V) - coconut plantation. A total of 31 species belonging to 17 genera have been placed under five subfamilies (Formicinae, Myrmicinae, Ponerinae, Dolichoderinae and Pseudomyrmecinae). The data on distribution of ants records the highest number of species in zone IIIrd, followed by Vth, IIA, IIB, and IVth.
    [Show full text]
  • Food Carrying Strategy of the Ants Pheidole Roberti
    International Journal of Technical Research and Applications e-ISSN: 2320-8163, www.ijtra.com Volume 3, Issue 3 (May-June 2015), PP. 55-58 FOOD–CARRYING STRATEGY OF THE ANTS PHEIDOLE ROBERTI K. Naskar1, S. K. Raut2 Ecology and Ethology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata - 700019, India [email protected], [email protected] ABSTRACT- The ants Pheidole roberti were offered eight the strategy the ants applied to carry the concerned food particles to different types of foods having different weights and sizes, in their the nest. foraging area to note their food-carrying strategy. It is revealed that the ants P. roberti are habituated to apply any of the four food- III. Results carrying strategies viz. lifting strategy, pulling strategy, pushing The ants P. roberti carried all the 3883 food particles strategy, and group strategy through the application of pushing and irrespective of types, to the nest. They applied four strategies viz. pulling strategy in a coordinated way. It is also well evident that the lifting strategy (to hold up food particle by the help of jaws), pulling application of food-carrying technique is very much dependent on strategy (to carry the food particle by the help of a strong bite, on the weight and/or size of food particles to be transported to the nest. way of rubbing with the ground), pushing strategy (on way of Depending upon the weight/size of the food article P. roberti are forcing the food material forward through a strong bite, touching the accustomed to modify the food-carrying technique accordingly, to ensure food-transportation success.
    [Show full text]