Healing Properties of Mookaite Jasper
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Symposium on Agate and Cryptocrystalline Quartz
Symposium on Agate and Cryptocrystalline Quartz September 10 – 13, 2005 Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter; Colorado School of Mines Geology Museum; and U.S. Geological Survey 2 Cover Photos {top left} Fortification agate, Hinsdale County, Colorado, collection of the Geology Museum, Colorado School of Mines. Coloration of alternating concentric bands is due to infiltration of Fe with groundwater into the porous chalcedony layers, leaving the impermeable chalcedony bands uncolored (white): ground water was introduced via the symmetric fractures, evidenced by darker brown hues along the orthogonal lines. Specimen about 4 inches across; photo Dan Kile. {lower left} Photomicrograph showing, in crossed-polarized light, a rhyolite thunder egg shell (lower left) a fibrous phase of silica, opal-CTLS (appearing as a layer of tan fibers bordering the rhyolite cavity wall), and spherulitic and radiating fibrous forms of chalcedony. Field of view approximately 4.8 mm high; photo Dan Kile. {center right} Photomicrograph of the same field of view, but with a 1 λ (first-order red) waveplate inserted to illustrate the length-fast nature of the chalcedony (yellow-orange) and the length-slow character of the opal CTLS (blue). Field of view about 4.8 mm high; photo Dan Kile. Copyright of articles and photographs is retained by authors and Friends of Mineralogy, Colorado Chapter; reproduction by electronic or other means without permission is prohibited 3 Symposium on Agate and Cryptocrystalline Quartz Program and Abstracts September 10 – 13, 2005 Editors Daniel Kile Thomas Michalski Peter Modreski Held at Green Center, Colorado School of Mines Golden, Colorado Sponsored by Friends of Mineralogy, Colorado Chapter Colorado School of Mines Geology Museum U.S. -
47. Chert and Porcellanite from Deep Sea Drilling Project Site 436, Northwest Pacific
47. CHERT AND PORCELLANITE FROM DEEP SEA DRILLING PROJECT SITE 436, NORTHWEST PACIFIC K. A. Pisciotto,1 Earth Science Board, University of California, Santa Cruz, California ABSTRACT Cretaceous chert and porcellanite recovered at Site 436, east of northern Honshu, Japan, are texturally and mineralogically similar to siliceous rocks of comparable age at Sites 303, 304, and 307 in the northwest Pacific. These rocks probably were formed by impregna- tion of the associated pelagic clay with locally derived silica from biogenic and perhaps some volcanic debris. Fine horizontal lamina- tions are the only primary sedimentary structures, suggesting mini- mal reworking and transport. Collapse breccias and incipient chert nodules are diagenetic features related to silicification and compac- tion of the original sediment. Disordered opal-CT (^[101] = 4.09 Å) and microgranular quartz (crystallinity index < 1.0) are the two common silica minerals pres- ent. Some samples show quartz replacing this poorly ordered opal- CT, supporting the notion that opal-CT does not become completely ordered (i.e., d[101] = 4.04 Å) in some cases before being converted to quartz. The present temperature calculated for the depth of the shallowest chert and porcellanite at this site is 30 °C; this may repre- sent the temperature of conversion of opal-CT to quartz. High reflection coefficients (0.29-0.65) calculated for the boundary be- tween chert-porcellanite and clay-claystone support the common observation that chert is a strong seismic reflector in deep-sea sedimentary sections. INTRODUCTION This paper discusses the petrology and origin of cherts and porcellanites at Site 436. In addition, the Keene's (1975, 1976) comprehensive work on cherts temperature of formation and acoustic impedances of and porcellanites from the North Pacific clearly demon- these siliceous rocks are calculated. -
Origin of Fibrosity and Banding in Agates from Flood Basalts: American Journal of Science, V
Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Senior Integrative Exercise March 9, 2005 Submitted in partial fulfillment of the requirements for a Bachelor of Arts degree from Carleton College, Northfield, Minnesota. 2 Table of Contents AGATES: A LITERATURE REVEW………………………………………...……..3 Introduction………………....………………………………………………….4 Structural and compositional description of agates………………..………..6 Some problems concerning agate genesis………………………..…………..11 Silica Sources…………………………………………..………………11 Method of Deposition………………………………………………….13 Temperature of Formation…………………………………………….16 Age of Agates…………………………………………………………..17 LAKE SUPERIOR AGATES: AN ELECTRON BACKSCATTER DIFFRACTION (EBSD) ANALYSIS …………………………………………………………………..19 Abstract………………………………………………………………………...19 Introduction……………………………………………………………………19 Geologic setting………………………………………………………………...20 Methods……………………………………………………...…………………20 Results………………………………………………………….………………22 Discussion………………………………………………………………………26 Conclusions………………………………………………….…………………26 Acknowledgments……………………………………………………..………………28 References………………………………………………………………..……………28 3 Agates: a literature review and Electron Backscatter Diffraction study of Lake Superior agates Timothy J. Beaster Carleton College Senior Integrative Exercise March 9, 2005 Advisor: Cam Davidson 4 AGATES: A LITERATURE REVEW Introduction Agates, valued as semiprecious gemstones for their colorful, intricate banding, (Fig.1) are microcrystalline quartz nodules found in veins and cavities -
Part 629 – Glossary of Landform and Geologic Terms
Title 430 – National Soil Survey Handbook Part 629 – Glossary of Landform and Geologic Terms Subpart A – General Information 629.0 Definition and Purpose This glossary provides the NCSS soil survey program, soil scientists, and natural resource specialists with landform, geologic, and related terms and their definitions to— (1) Improve soil landscape description with a standard, single source landform and geologic glossary. (2) Enhance geomorphic content and clarity of soil map unit descriptions by use of accurate, defined terms. (3) Establish consistent geomorphic term usage in soil science and the National Cooperative Soil Survey (NCSS). (4) Provide standard geomorphic definitions for databases and soil survey technical publications. (5) Train soil scientists and related professionals in soils as landscape and geomorphic entities. 629.1 Responsibilities This glossary serves as the official NCSS reference for landform, geologic, and related terms. The staff of the National Soil Survey Center, located in Lincoln, NE, is responsible for maintaining and updating this glossary. Soil Science Division staff and NCSS participants are encouraged to propose additions and changes to the glossary for use in pedon descriptions, soil map unit descriptions, and soil survey publications. The Glossary of Geology (GG, 2005) serves as a major source for many glossary terms. The American Geologic Institute (AGI) granted the USDA Natural Resources Conservation Service (formerly the Soil Conservation Service) permission (in letters dated September 11, 1985, and September 22, 1993) to use existing definitions. Sources of, and modifications to, original definitions are explained immediately below. 629.2 Definitions A. Reference Codes Sources from which definitions were taken, whole or in part, are identified by a code (e.g., GG) following each definition. -
Mineral Collecting Sites in North Carolina by W
.'.' .., Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie RUTILE GUMMITE IN GARNET RUBY CORUNDUM GOLD TORBERNITE GARNET IN MICA ANATASE RUTILE AJTUNITE AND TORBERNITE THULITE AND PYRITE MONAZITE EMERALD CUPRITE SMOKY QUARTZ ZIRCON TORBERNITE ~/ UBRAR'l USE ONLV ,~O NOT REMOVE. fROM LIBRARY N. C. GEOLOGICAL SUHVEY Information Circular 24 Mineral Collecting Sites in North Carolina By W. F. Wilson and B. J. McKenzie Raleigh 1978 Second Printing 1980. Additional copies of this publication may be obtained from: North CarOlina Department of Natural Resources and Community Development Geological Survey Section P. O. Box 27687 ~ Raleigh. N. C. 27611 1823 --~- GEOLOGICAL SURVEY SECTION The Geological Survey Section shall, by law"...make such exami nation, survey, and mapping of the geology, mineralogy, and topo graphy of the state, including their industrial and economic utilization as it may consider necessary." In carrying out its duties under this law, the section promotes the wise conservation and use of mineral resources by industry, commerce, agriculture, and other governmental agencies for the general welfare of the citizens of North Carolina. The Section conducts a number of basic and applied research projects in environmental resource planning, mineral resource explora tion, mineral statistics, and systematic geologic mapping. Services constitute a major portion ofthe Sections's activities and include identi fying rock and mineral samples submitted by the citizens of the state and providing consulting services and specially prepared reports to other agencies that require geological information. The Geological Survey Section publishes results of research in a series of Bulletins, Economic Papers, Information Circulars, Educa tional Series, Geologic Maps, and Special Publications. -
Wire Groove-Wrapping a Stone
WIRE GROOVE-WRAPPING A STONE By Garry Mahan How to turn your cabochons into simple, yet elegant pieces of jewelry Tools and materials used in this tutorial Grooving machine is Gold-filled wire Hobby Vise shown on next page 20 GA round, half- hard 21 GA half-round, half- hard Quilter’s rotary cutting mat 1/4” wooden dowel Plastic-coated needle- Wire cutters Uncoated needle- nose pliers nose pliers This is a grooving machine. It is a Gryphon Gryphette. It was originally designed to put the grooves in glass when working stained glass. This machine was purchased from eBay. Machine, 2 grooving grind- ers, and shipping costs totaled about $100. Grooving machine This is the grooving cutter/grinder currently mounted on the Gryphon Gryphette machine shown on previous photo. Diamond coating on edge of cutter/grinder Set screw You’re ready to start making your pendant. The first thing to do is select a stone. Pick a good quality cabo- chon. The purpose of wire wrapping is to showcase the stone, not necessarily the wire. A quality stone wrap always begins with a quality stone. This stone is dendritic jasper from Burro Creek, AZ. Use a soft touch. Hold stone with flat side down and turn on grooving machine to make the groove. It is best to make 4 to 6 passes around the stone to prevent chipping and prevent diamond from “wiping” off the diamond-coated grinding wheel. Woof! Putting the groove in the cabochon Measure the distance around your cab and cut a length of round 20 GA gold- filled wire. -
Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits
Records of the Australian Museum (2001) Vol. 53: 49–56. ISSN 0067-1975 Formation of Chrysocolla and Secondary Copper Phosphates in the Highly Weathered Supergene Zones of Some Australian Deposits MARTIN J. CRANE, JAMES L. SHARPE AND PETER A. WILLIAMS School of Science, University of Western Sydney, Locked Bag 1797, Penrith South DC NSW 1797, Australia [email protected] (corresponding author) ABSTRACT. Intense weathering of copper orebodies in New South Wales and Queensland, Australia has produced an unusual suite of secondary copper minerals comprising chrysocolla, azurite, malachite and the phosphates libethenite and pseudomalachite. The phosphates persist in outcrop and show a marked zoning with libethenite confined to near-surface areas. Abundant chrysocolla is also found in these environments, but never replaces the two secondary phosphates or azurite. This leads to unusual assemblages of secondary copper minerals, that can, however, be explained by equilibrium models. Data from the literature are used to develop a comprehensive geochemical model that describes for the first time the origin and geochemical setting of this style of economically important mineralization. CRANE, MARTIN J., JAMES L. SHARPE & PETER A. WILLIAMS, 2001. Formation of chrysocolla and secondary copper phosphates in the highly weathered supergene zones of some Australian deposits. Records of the Australian Museum 53(1): 49–56. Recent exploitation of oxide copper resources in Australia these deposits are characterized by an abundance of the has enabled us to examine supergene mineral distributions secondary copper phosphates libethenite and pseudo- in several orebodies that have been subjected to intense malachite associated with smaller amounts of cornetite and weathering. -
Welcome to Billings, Montana July 30-August 2, 2009 I Would Like To
Welcome to Billings, Montana July 30-August 2, 2009 I would like to take a few minutes to welcome you to the AFMS/NFMS Show and Convention. There will be a number of special exhibits designed to make this a show you won’t forget for many years. Come join us and enjoy seeing the Moon Rock from NASA, a life sized Cave Bear, Dinosaurs, a world class Ruby Collection, a rare Yogo Sapphire Collection, a Polar Bear carving (4ft high, weighing 2000 lbs) and much more, as we are adding things everyday. We also look forward to seeing your special exhibits, so please take some time and think about what showcases you would like to enter, and also your collection or your craftsmanship that would make a great competition exhibit. Let’s show the country what the Northwest has to offer. We hope you plan your vacation around this show, and visit the many wonders that Montana has to offer: Yellowstone National Park, Glacier National Park, the Dinosaur Trail including Makoshika State Park, Little Big Horn Battle Field, where General Custer fought, Pompeys Pillar, and lots more, plus great areas for boating, fishing, camping and hiking. Plan on spending the entire week after the show taking advantage of our planned field trips collecting Montana Agate, Jasper, Petrified Wood, Bear Canyon fortification agate, a variety of fossils such ammonites, nautiloids, pine cones, stramatolites, crinoids, coral and others. There will also be a guided Geological Tour of the Pryor Mountains, a guided tour of the Stillwater mine smelter and several self guided tours for quartz crystals, opal and Montana sapphires. -
Spring 1995 Gems & Gemology
TABLE CONTENTS FEATURE ARTICLES 2 Rubies from Mong Hsu Adolf Pelsetti, I(ar7 Schmetzer, Heinz-Jiirgen Bernhardt, and Fred Mouawad " 28 The Yogo Sapphire Deposit Keith A. ~~chaluk NOTES AND NEW TECHNIQUES 42 Meerschaum from Eskisehir Province, Turkey I<adir Sariiz and Islcender Isilc REGULAR FEATURES 52 Gem Trade Lab Notes Gem News Most Valuable Article Award Gems ed Gemology Challenge Book Reviews Gemological Abstracts Guidelines for Authors ABOUT THE COVER: One of the most important ruby localities of the 1990s cov- ers a broad orea near the town of Mong Hsu, in northeastern Myann~ar(B~lrrna). The distinctive gemological features of these rubies are detailed in this issue's lead article. The suite of fine jewelry illustraled here contains 36 Mong Hsu rubies with a total weigh1 of 65.90 ct; the two rubies in the ring total 5.23 ct. jewelry courtesy of Mouawad jewellers. Photo by Opass Sultsumboon-Opass Suksuniboon Studio, Bangltolz, Thailand. Typesetting for Gerrls eS Gemology is by Graphix Express, Santa Monica, CA. Color separations are by Effective Graphics, Compton, CA. Printing is by Cadmus lournal Services, Easton, MD. 0 1995 Gemological Institute of America All rights reserved ISSN 0016-626X - Editor-in-Chief Editor Editors, Gem Trade Lab Notes Richard T. Lidtlicoat Alicc S. I<cller Robcrt C. I<ammerling 1660 Stewart St. C. W. Fryer Associate Editors Smta Mon~ca,CA 90404 William E. Boyajian Editors, Gem News (800)421-7250 ~251 Robcrt C. Kamn~erling Rohcrt C. I<ammerling e-mail: altellcrBclass.org D. Vincent Manson John I. Koivula John Sinltanltas Sr~bscriptions Enirnanuel Fritsch Jln Ll~n Editors, Book llevielvs Technical Editor (800) 421-7250 x201 Susan B. -
Diagnostic Artifacts, the Cultural/Temporal Affiliation Is Material Usable for Tool Manufacture Are Present
Bulletin of the Archaeological Society of Delaware Number Twenty. New Series Summer 1986 Bulletin of the Archaeological Society of Delaware The Archaeology of the Delaware Chalcedony Complex: A Preliminary Report by Jay F. Custer, H. Henry Ward, and Scott C. Watson Number Twenty, New Series Summer 1986 Officers of the Archaeological Society of Delaware 1985 - 1987 President Kevin Cunningham Treasurer Angeline Koveleskie Secretary Mary Jane Timmons Membership Director Keith Doms Publications Director Jay Custer Research Director Alice Guerrant Editorial Committee Tyler Bastian Ronald A. Thomas w. Fred Kinsey Robert Schuyler Daniel R. Griffith Elwood s. Wilkins, Jr. Jay F. Custer Affiliated with the Eastern States Archaeological Federation The Archaeological Society of Delaware P. o. Box 301 Wilmington, Delaware 19889 THE ARCHAEOLOGY OF THE DELAWARE CHALCEDONY COMPLEX: A PRELIMINARY REPORT Jay F. Custer, H. Henry Ward, and Scott c. Watson ABSTRACT The Delaware Chalcedony Complex consists of a series of outcrops of chalcedony, jasper, and chert in northeastern Maryland, northwestern Delaware, and southeastern Pennsylvania. Prehistoric peoples utilized these materials to manufacture tools from Paleo-Indian through Woodland II times. Five major quarry sites and more than ten associated reduction sites and camps have been identified to date. INTRODUCTION The purpose of this paper is to describe the prehistoric utilization of a series of primary cryptocrystalline outcrops in northeastern Maryland, northwestern Delaware, and southeastern Pennsylvania (Figure 1). These outcrops have been named the Delaware Chalcedony Complex by Wilkins (1976) and a description of the lithic materials has also been published (Custer and Galasso 1980:2-3). However, there has been no comprehensive description of the archaeological sites associated with the outcrops. -
Gemstones by Donald W
GEMSTONES By Donald W. olson Domestic survey data and tables were prepared by Nicholas A. Muniz, statistical assistant, and the world production table was prepared by Glenn J. Wallace, international data coordinator. In this report, the terms “gem” and “gemstone” mean any gemstones and on the cutting and polishing of large diamond mineral or organic material (such as amber, pearl, petrified wood, stones. Industry employment is estimated to range from 1,000 to and shell) used for personal adornment, display, or object of art ,500 workers (U.S. International Trade Commission, 1997, p. 1). because it possesses beauty, durability, and rarity. Of more than Most natural gemstone producers in the United states 4,000 mineral species, only about 100 possess all these attributes and are small businesses that are widely dispersed and operate are considered to be gemstones. Silicates other than quartz are the independently. the small producers probably have an average largest group of gemstones; oxides and quartz are the second largest of less than three employees, including those who only work (table 1). Gemstones are subdivided into diamond and colored part time. the number of gemstone mines operating from gemstones, which in this report designates all natural nondiamond year to year fluctuates because the uncertainty associated with gems. In addition, laboratory-created gemstones, cultured pearls, the discovery and marketing of gem-quality minerals makes and gemstone simulants are discussed but are treated separately it difficult to obtain financing for developing and sustaining from natural gemstones (table 2). Trade data in this report are economically viable deposits (U.S. -
Lithic Material Use in Late Prehistoric San Diego County
TECHNOLOGY ANO ECOLOGY IN PREHISTORIC CALIFORNJ.4 57 LITHIC MATERIAL USE IN LATE PREHISTORIC SAN DIEGO COUNTY JOHN DIETLER Previous research has suggested that lithic material preference in San Diego County was directly related to resource availability throughout all periods of prehistory. The Late Prehistoric period witnessed a dramatic increase in the use of materials not a.vailable 10calJy, such as obsidian and cryptocrystalline silicates. This study examines the frequency of lithic materials at Late Prehistoric sites throughout San Diego County. The county is divided into ten zones defined by geography and cultural affiliation. Up to ten previously tested sites are selected to represent each zone, and the percentage ofseven broad material classes present at each is quantified. It is shown that in all parts of the county, the closest usable material at hand dominates asite's assemblage. Small percentages ofmore deSirable, non-local materials were imported through direct procurement or trade. Linguistic boundaries appear to have been impediments to the movement ofsome materials, especially Piedre de Lumbre chert. ost studies in lithic technology in San Diego foothills. Ten tested sites, or as many as were County to date have looked at the available, were selected to represent each zone, and M assemblage at one or two sites, or the the percentage of seven broad material classes present distribution of one type of material over a defined at each is quantified. area. In this paper, I attempt to examine the "big picture" in San Diego County. The goal of this study In order to have as uniform a data set as possible, was to characterize lithic material distribution in the all the sites chosen for this study are Late Prehistoric Late Prehistoric period and the factors that shaped it.