Report of a Working Group on Malus/Pyrus
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
Native Plants of East Central Illinois and Their Preferred Locations”
OCTOBER 2007 Native Plants at the University of Illinois at Urbana-Champaign Campus: A Sourcebook for Landscape Architects and Contractors James Wescoat and Florrie Wescoat with Yung-Ching Lin Champaign, IL October 2007 Based on “Native Plants of East Central Illinois and their Preferred Locations” An Inventory Prepared by Dr. John Taft, Illinois Natural History Survey, for the UIUC Sustainable Campus Landscape Subcommittee - 1- 1. Native Plants and Plantings on the UIUC Campus This sourcebook was compiled for landscape architects working on projects at the University of Illinois at Urbana-Champaign campus and the greater headwaters area of east central Illinois.1 It is written as a document that can be distributed to persons who may be unfamiliar with the local flora and vegetation, but its detailed species lists and hotlinks should be useful for seasoned Illinois campus designers as well. Landscape architects increasingly seek to incorporate native plants and plantings in campus designs, along with plantings that include adapted and acclimatized species from other regions. The term “native plants” raises a host of fascinating scientific, aesthetic, and practical questions. What plants are native to East Central Illinois? What habitats do they occupy? What communities do they form? What are their ecological relationships, aesthetic characteristics, and practical limitations? As university campuses begin to incorporate increasing numbers of native species and areas of native planting, these questions will become increasingly important. We offer preliminary answers to these questions, and a suite of electronic linkages to databases that provide a wealth of information for addressing more detailed issues. We begin with a brief introduction to the importance of native plants in the campus environment, and the challenges of using them effectively, followed by a description of the database, online resources, and references included below. -
Osher Lifelong Learning Institute
USDA-ARS National Plant Germplasm System Conservation of Fruit & Nut Genetic Resources Joseph Postman Plant Pathologist & Curator National Clonal Germplasm Repository Corvallis, Oregon May 2010 Mission: Collect – Preserve Evaluate – Enhance - Distribute World Diversity of Plant Genetic Resources for Improving the Quality and Production of Economic Crops Important to U.S. and World Agriculture Apple Accessions at Geneva Malus angustifolia ( 59 Accessions) Malus sikkimensis ( 14 Accessions) Malus baccata ( 67 Accessions) Malus sp. ( 41 Accessions) Malus bhutanica ( 117 Accessions) Malus spectabilis ( 9 Accessions) Malus brevipes ( 2 Accessions) Malus sylvestris ( 70 Accessions) Malus coronaria ( 98 Accessions) Malus toringo ( 122 Accessions) Malus domestica ( 1,389 Accessions) Malus transitoria ( 63 Accessions) Malus doumeri ( 2 Accessions) Malus trilobata ( 2 Accessions) Malus florentina ( 4 Accessions) Malus tschonoskii ( 3 Accessions) Malus floribunda ( 12 Accessions) Malus x adstringens ( 2 Accessions) Malus fusca ( 147 Accessions) Malus x arnoldiana ( 2 Accessions) Malus halliana ( 15 Accessions) Malus x asiatica ( 20 Accessions) Malus honanensis ( 4 Accessions) Malus x astracanica ( 1 Accessions) Malus hupehensis ( 185 Accessions) Malus x atrosanguinea ( 2 Accessions) Malus hybrid ( 337 Accessions) Malus x dawsoniana ( 2 Accessions) Malus ioensis ( 72 Accessions) Malus x hartwigii ( 5 Accessions) Malus kansuensis ( 45 Accessions) Malus x magdeburgensis ( 2 Accessions) Malus komarovii ( 1 Accessions) Malus x micromalus ( 25 Accessions) -
Choosing the Right Tree to Plant
Prunus / Cherry flower Choosing the right tree to plant Choosing what tree to plant can be difficult with the buildings, shading, overhanging roads and footpaths number of different species, cultivars and varieties that etc.? It may not be sensible to replace a large forest are currently available. There are a number of useful type tree in a small domestic garden with another one books and websites, but if you are still unsure it may be unless you are prepared to remove it before it outgrows useful to visit a garden or arboretum. There are some its situation. basic points that should be considered as follows. Benefits - as well as having obvious ornamental Soil - will the tree grow well in the soil in which is to be attributes, trees provide shelter, reduce temperature planted? Acidity, drainage and the type of soil will all extremes and produce oxygen. have a bearing. Some tree species are more specific than others as to their requirements. Once you have decided on your tree, the next step is to purchase it. Please bear in mind that if you have Local distinctiveness - what species grow naturally in removed a protected tree (that is one growing in a the area already? Native species are usually best for conservation area or subject to a tree preservation wildlife and ‘fit in’ with the landscape character and are order) there may either be a duty (as in the case of normally preferable to ornamental species. dead or dangerous trees) or a condition (in the case of a tree preservation order application) requiring the Available space - is the tree able to reach its full planting of a replacement tree. -
Genome-Wide Characterization of Simple Sequence Repeats in Pyrus
Xue et al. BMC Genomics (2018) 19:473 https://doi.org/10.1186/s12864-018-4822-7 RESEARCH ARTICLE Open Access Genome-wide characterization of simple sequence repeats in Pyrus bretschneideri and their application in an analysis of genetic diversity in pear Huabai Xue1,2†, Pujuan Zhang1†, Ting Shi1, Jian Yang2, Long Wang2, Suke Wang2, Yanli Su2, Huirong Zhang2, Yushan Qiao1* and Xiugen Li2* Abstract Background: Pear (Pyrus spp.) is an economically important temperate fruit tree worldwide. In the past decade, significant progress has been made in pear molecular genetics based on DNA research, but the number of molecular markers is still quite limited, which hardly satisfies the increasing needs of geneticists and breeders. Results: In this study, a total of 156,396 simple sequence repeat (SSR) loci were identified from a genome sequence of Pyrus bretschneideri ‘Dangshansuli’. A total of 101,694 pairs of SSR primers were designed from the SSR loci, and 80,415 of the SSR loci were successfully located on 17 linkage groups (LGs). A total of 534 primer pairs were synthesized and preliminarily screened in four pear cultivars, and of these, 332 primer pairs were selected as clear, stable, and polymorphic SSR markers. Eighteen polymorphic SSR markers were randomly selected from the 332 polymorphic SSR markers in order to perform a further analysis of the genetic diversity among 44 pear cultivars. The 14 European pears and their hybrid materials were clustered into one group (European pear group); 29 Asian pear cultivars were clustered into one group (Asian pear group); and the Zangli pear cultivar ‘Deqinli’ from Yunnan Province, China, was grouped in an independent group, which suggested that the cultivar ‘Deqinli’ is a distinct and valuable germplasm resource. -
Natural Fermentation of Pyrus Communis (Pear) Mesocarp by Associated Consortium Fungal Species
obiolog Adedeji and Audu, J Microbiol Pathol 2018, 2:1 icr y & M P f a o t l h a o n l o r g u y o J Journal of Microbiology and Pathology Research Article Article OpenOpen Access Access Natural Fermentation of Pyrus communis (Pear) Mesocarp by Associated Consortium Fungal Species Oluwatosin Adewusi Adedeji* and Temitope Mulikat Audu Institute of Ecology and Environmental Studies, Obafemi Awolowo University, Ife, Nigeria Abstract This study was conducted to evaluate the effect of associated consortium fungal species on the natural fermentation of the mesocarp of Pyrus communis (Pear). The combined role played by the fungi (moulds and yeasts) involve in the natural fermentation of the Pear mesocarp were also investigated. Fresh and ripe pears were washed and surface sterilized with ethanol. The mesocarp was then scraped into a bowl and covered with a net to allow the action of aerobic fermentation for 50 days. Fungi were isolated from the samples at interval of 5 days. The morphological, microscopic and biochemical characteristics as well as the fungal count were also carried out according to standard methods. The physicochemical parameters of the pear’s mesocarp such as pH, total titrable acidity (TTA), moisture contents and total reducing sugar were also determined at every 5 days according to standard methods. The results showed that there were eight strains of mould namely: Aspergillus niger, Aspergillus flavus, Aspergillus oryzae, Aspergillus fumigatus, Mucor mucedo, Penicillum frequentas, Penicillum chrysogemun and Fusarium solani; and three strains of yeasts namely Saccharomyces cerivisae, Schizoaccharomyces pombe and Saccharomyces ludwigii were identified to be involved in the fermentation process for the fifty days. -
Effect of Maturity on the Phenolic Compositions of Pear Juice and Cell Wall Effects on Procyanidins Transfer
Effect of maturity on the phenolic compositions ofpear juice and cell wall effects on procyanidins transfer Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec To cite this version: Marwa Brahem, Severin Eder, Catherine Renard, Michele Loonis, Carine Le Bourvellec. Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer. LWT - Food Science and Technology, Elsevier, 2017, 85, pp.380-384. 10.1016/j.lwt.2016.09.009. hal-02619109 HAL Id: hal-02619109 https://hal.inrae.fr/hal-02619109 Submitted on 25 May 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. Version définitive du manuscrit publiée dans / Final version of the manuscript published in : LWT – Food Science and Technology (2016), DOI: 10.1016/j.lwt.2016.09.009 Journal homepage : http://www.elsevier.com/locate/lwt ipt cr nus a m Effect of maturity on the phenolic compositions of pear juice and cell wall effects on procyanidins transfer / Author * r Marwa Brahem , Severin Eder, Catherine M.G.C. Renard, Michele Loonis, u e Carine Le Bourvellec ut UMR408 SQPOV (Securite et Qualite des Produits d'Origine Vegetale), INRA, Avignon University, F-84000 Avignon, France ’a it d cr article info abstract nus a Article history: Perry pear polyphenols were characterized in fruit, juice and pomace for two cultivars and at two M Received 28 June 2016 maturity stage. -
Noble Hardwoods Network
EUROPEAN FOREST GENETIC RESOURCES PROGRAMME (EUFORGEN) Noble Hardwoods Network Report of the second meeting 22-25 March 1997 Lourizan, Spain J. Turok, E. Collin, B. Demesure, G. Eriksson, J. Kleinschmit, M. Rusanen and R. Stephan, compilers ii NOBLE HARDWOODS NETWORK: SECOND MEETING The International Plant Genetic Resources Institute (IPGRl) is an autonomous international scientific organization, supported by the Consultative Group on International Agricultural Research (CGIAR). IPGRl's mandate is to advance the conservation and use of plant genetic resources for the benefit of present and future generations. IPGRl's headquarters is based in Rome, Italy, with offices in another 14 countries worldwide. It operates through three programmes: (1) the Plant Genetic Resources Programme, (2) the CGIAR Genetic Resources Support Programme, and (3) the International Network for the Improvement of Banana and Plantain (INIBAP). The international status of IPGRl is conferred under an Establishment Agreement which, by January 1998, had been signed and ratified by the Governments of Algeria, Australia, Belgium, Benin, Bolivia, Brazil, Burkina Faso, Cameroon, Chile, China, Congo, Costa Rica, Cote d'Ivoire, Cyprus, Czech Republic, Denmark, Ecuador, Egypt, Greece, Guinea, Hungary, India, Indonesia, Iran, Israel, Italy, Jordan, Kenya, Malaysia, Mauritania, Morocco, Pakistan, Panama, Peru, Poland, Portugal, Romania, Russia, Senegal, Slovak Republic, Sudan, Switzerland, Syria, Tunisia, Turkey, Uganda and Ukraine. Financial support for the Research Agenda of -
Apples: Organic Production Guide
A project of the National Center for Appropriate Technology 1-800-346-9140 • www.attra.ncat.org Apples: Organic Production Guide By Tammy Hinman This publication provides information on organic apple production from recent research and producer and Guy Ames, NCAT experience. Many aspects of apple production are the same whether the grower uses low-spray, organic, Agriculture Specialists or conventional management. Accordingly, this publication focuses on the aspects that differ from Published nonorganic practices—primarily pest and disease control, marketing, and economics. (Information on March 2011 organic weed control and fertility management in orchards is presented in a separate ATTRA publica- © NCAT tion, Tree Fruits: Organic Production Overview.) This publication introduces the major apple insect pests IP020 and diseases and the most effective organic management methods. It also includes farmer profiles of working orchards and a section dealing with economic and marketing considerations. There is an exten- sive list of resources for information and supplies and an appendix on disease-resistant apple varieties. Contents Introduction ......................1 Geographical Factors Affecting Disease and Pest Management ...........3 Insect and Mite Pests .....3 Insect IPM in Apples - Kaolin Clay ........6 Diseases ........................... 14 Mammal and Bird Pests .........................20 Thinning ..........................20 Weed and Orchard Floor Management ......20 Economics and Marketing ........................22 Conclusion -
Survey of Apple Clones in the United States
Historic, archived document Do not assume content reflects current scientific knowledge, policies, or practices. 5 ARS 34-37-1 May 1963 A Survey of Apple Clones in the United States u. S. DFPT. OF AGRffini r U>2 4 L964 Agricultural Research Service U.S. DEPARTMENT OF AGRICULTURE PREFACE This publication reports on surveys of the deciduous fruit and nut clones being maintained at the Federal and State experiment stations in the United States. It will b- published in three c parts: I. Apples, II. Stone Fruit. , UI, Pears, Nuts, and Other Fruits. This survey was conducted at the request of the National Coor- dinating Committee on New Crops. Its purpose is to obtain an indication of the volume of material that would be involved in establishing clonal germ plasm repositories for the use of fruit breeders throughout the country. ACKNOWLEDGMENT Gratitude is expressed for the assistance of H. F. Winters of the New Crops Research Branch, Crops Research Division, Agricultural Research Service, under whose direction the questionnaire was designed and initial distribution made. The author also acknowledges the work of D. D. Dolan, W. R. Langford, W. H. Skrdla, and L. A. Mullen, coordinators of the New Crops Regional Cooperative Program, through whom the data used in this survey were obtained from the State experiment stations. Finally, it is recognized that much extracurricular work was expended by the various experiment stations in completing the questionnaires. : CONTENTS Introduction 1 Germany 298 Key to reporting stations. „ . 4 Soviet Union . 302 Abbreviations used in descriptions .... 6 Sweden . 303 Sports United States selections 304 Baldwin. -
Treeid Variety Run 2 DNA Milb005 American Summer Pearmain
TreeID Variety Run 2 DNA Run 1 DNA DNA Sa… Sourc… Field Notes milb005 American Summer Pearmain/ "Sara's Polka American Summer Pearmain we2g016 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain we2f017 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain we2f018 AmericanDot" Summer Pearmain/ "Sara's Polka American Summer Pearmain eckh001 BaldwinDot" Baldwin-SSE6 eckh008 Baldwin Baldwin-SSE6 2lwt007 Baldwin Baldwin-SSE6 2lwt011 Baldwin Baldwin-SSE6 schd019 Ben Davis Ben Davis mild006 Ben Davis Ben Davis wayb004 Ben Davis Ben Davis andt019 Ben Davis Ben Davis ostt014 Ben Davis Ben Davis watt008 Ben Davis Ben Davis wida036 Ben Davis Ben Davis eckg002 Ben Davis Ben Davis frea009 Ben Davis Ben Davis frei009 Ben Davis Ben Davis frem009 Ben Davis Ben Davis fres009 Ben Davis Ben Davis wedg004 Ben Davis Ben Davis frai006 Ben Davis Ben Davis frag004 Ben Davis Ben Davis frai004 Ben Davis Ben Davis fram006 Ben Davis Ben Davis spor004 Ben Davis Ben Davis coue002 Ben Davis Ben Davis couf001 Ben Davis Ben Davis coug008 Ben Davis Ben Davis, error on DNA sample list, listed as we2a023 Ben Davis Bencoug006 Davis cria001 Ben Davis Ben Davis cria008 Ben Davis Ben Davis we2v002 Ben Davis Ben Davis we2z007 Ben Davis Ben Davis rilcolo Ben Davis Ben Davis koct004 Ben Davis Ben Davis koct005 Ben Davis Ben Davis mush002 Ben Davis Ben Davis sc3b005-gan Ben Davis Ben Davis sche019 Ben Davis, poss Black Ben Ben Davis sche020 Ben Davis, poss Gano Ben Davis schi020 Ben Davis, poss Gano Ben Davis ca2e001 Bietigheimer Bietigheimer/Sweet -
Fruit Quarterly SPRING 2013 Leadership and Accountability
NEW YORK Editorial Fruit Quarterly SPRING 2013 Leadership and Accountability here are those who spend their hours discussing how to invest would not really harm their current operations but difficult and unfair the current times are. There are those would insure successful future ones. Twho reflect longingly about how wonderful and simple life used to be. There are also those who simply fail to see anything Today is always here and the future is always slightly out of positive until it is taken away from them. Then there are those your reach. The true mark of a leader is that they can function that we call “leaders” who are too busy looking forward to be within both. Like in years past we will and forever need to dragged down by all of this meaningless discussion. be investing in innovative research programs to improve our industry. There are those who may wish to have this I travel from west to east across New York and have done so accomplished entirely public funding. When you leave your all of my six decades. I am humbled by what I recall and what I future entirely to the fickle whims of the political world you currently see. The fruit industry has made enormous up- grades are not being “accountable” for the research programs you to its commercial farming practices in a very short period of desperately require for success in the years ahead. A shared time. Orchard acreage in New York State is down but our financial cash flow would be ideal. productivity and quality have never been at this high level. -
Pyrus Communis (L.)
CPVO-TP/015/1 Final Date: 27/03/2003 EUROPEAN UNION COMMUNITY PLANT VARIETY OFFICE PROTOCOL FOR DISTINCTNESS, UNIFORMITY AND STABILITY TESTS Pyrus communis (L.) PEAR UPOV Species Code: PYRUS_COM Adopted on 27/03/2003 CPVO-TP/015/1 Final Date: 27/03/2003 I SUBJECT OF THE PROTOCOL The protocol describes the technical procedures to be followed in order to meet the Council Regulation 2100/94 on Community Plant Variety Rights. The technical procedures have been agreed by the Administrative Council and are based on general UPOV Document TG/1/3 and UPOV Guideline TG/15/3 dated 04/05/2000 for the conduct of tests for Distinctness, Uniformity and Stability. This protocol applies to fruit varieties of Pyrus communis L. II SUBMISSION OF PLANT MATERIAL 1. The Community Plant Variety Office (CPVO) is responsible for informing the applicant of • the closing date for the receipt of plant material; • the minimum amount and quality of plant material required; • the examination office to which material is to be sent. A sub-sample of the material submitted for test will be held in the variety collection as the definitive sample of the candidate variety. The applicant is responsible for ensuring compliance with any customs and plant health requirements. 2. Final dates for receipt of documentation and material by the Examination Office The final dates for receipt of requests, technical questionnaires and the final date or submission period for plant material will be decided by the CPVO and each Examination Office chosen. The Examination Office is responsible for immediately acknowledging the receipt of requests for testing, and technical questionnaires.