Insulin Detemir Versus Insulin Glargine in the Hospital: Do Hypoglycemia Rates Differ? Michelle A

Total Page:16

File Type:pdf, Size:1020Kb

Insulin Detemir Versus Insulin Glargine in the Hospital: Do Hypoglycemia Rates Differ? Michelle A Insulin Detemir Versus Insulin Glargine in the Hospital: Do Hypoglycemia Rates Differ? Michelle A. Crisher,1 Christopher A. Giuliano,1,2 and Carrie L. Hartner1 FEATURE ARTICLE FEATURE ■ IN BRIEF Several studies have compared the safety and efficacy of insulin detemir and insulin glargine; however, most have been conducted in the ambulatory care setting. This retrospective cohort study compared hypoglycemia rates between the two basal insulin analogs in hospitalized patients with diabetes. No difference was found between the two insulin cohorts in the proportion of patients who experienced hypoglycemic events. n 2015, it was estimated that ~30.3 Detemir is also derived using recom- million Americans were living binant technology and, when injected, Iwith type 1 or type 2 diabetes (1). forms a soluble depot. In addi- Common long-term complications tion, acylation and self-association of uncontrolled diabetes include properties of detemir allow for revers- end-stage renal disease, diabetic ret- ible binding to albumin, which results inopathy, amputations, and increased in its prolonged duration of action. hospitalizations (2,3). In the inpatient Detemir’s duration of action on blood setting, hyperglycemia, hypoglycemia, glucose varies from 6 to 23 hours and blood glucose variability can lead and is largely dose dependent, with to increased costs, lengths of stay, and longer duration observed as dosage mortality (4,5). Long-acting insulin increases (6,9). Glargine and detemir analogs remain one of the mainstays may be administered once or twice of therapy in the management of daily depending on medication and blood glucose in patients with diabe- patient considerations (8,9). These can tes (5). Two commonly used basal in- include basal insulin dose, prandial sulin analogs are insulin glargine and insulin use, glycemic target, patient insulin detemir. preference, and endogenous insulin Detemir and glargine exhibit reserve (10–12). similar pharmacokinetic and phar- Studies comparing the safety and macodynamic profiles, which make efficacy of detemir and glargine have them appropriate for basal therapy. been done mostly in the ambulatory 1Ascension St. John Hospital, Detroit, MI Both demonstrate a peakless time- care setting and have demonstrated action profile and a long duration of similar glycemic control when added 2Wayne State University Eugene Applebaum College of Pharmacy and Health Sciences, action, although they achieve this to mealtime insulin or oral medica- Detroit, MI through different absorption mecha- tions in patients with type 2 diabetes Corresponding author: Christopher A. nisms (6,7). Glargine is derived using (13,14). In contrast, a subgroup of Giuliano, [email protected] recombinant technology and forms the PREDICTIVE study (15) found https://doi.org/10.2337/cd18-0065 a precipitate that dissolves slowly at improvements in glycemic control and physiologic pH, thus delaying absorp- a reduction of hypoglycemic events ©2018 by the American Diabetes Association. Readers may use this article as long as the work tion. This delayed absorption allows when switching patients with type 1 is properly cited, the use is educational and not for a duration of action that ranges or type 2 diabetes from glargine to for profit, and the work is not altered. See http:// creativecommons.org/licenses/by-nc-nd/3.0 from 10 to 24 hours, reaching up detemir at routinely scheduled clinic for details. to ~30 hours in a few studies (6,8). visits (15). VOLUME 37, NUMBER 2, SPRING 2019 167 FEATURE ARTICLE Despite the breadth of comparative lary agent (from glargine to detemir) Outcomes literature surrounding basal insulin occurred during this time. Patients The primary outcome was the pro- therapy in the ambulatory care envi- were identified via active orders for portion of patients who experienced ronment, there is a paucity of evidence either detemir or glargine within the hypoglycemia within 72 hours comparing the safety and efficacy electronic medical record (EMR) sys- of initiating detemir or glargine. of glargine and detemir in hospi- tem. EMRs of adult patients with a Hypoglycemia was defined as a blood talized patients. Galindo et al. (16) diagnosis of diabetes and an order glucose value <70 mg/dL. Secondary performed a retrospective database for detemir or glargine were reviewed outcomes included the proportion analysis of glargine and detemir use in for inclusion. Patients were excluded of patients who experienced hyper- glycemic events, the total number of hospitalized patients who had either if they were pregnant, had received type 1 or type 2 diabetes. No differ- hypoglycemic events, and total in- a continuous insulin infusion, had ence in average blood glucose values sulin requirements within 72 hours received detemir or glargine for <72 was noted between the two insulin of detemir or glargine initiation. cohorts throughout the hospital stay. hours, were admitted to an intensive Hyperglycemia was defined as a blood Similarly, there were no differences in care unit (ICU), or had missing data glucose value >180 mg/dL. needed for analysis (missing both maximum blood glucose or number Data Analysis of patients with severe hyperglycemia. height and weight, having no blood Our sample size was based on an over- Interestingly, there was an increase in glucose measurements, or missing se- all rate of hypoglycemia in the detemir hypoglycemic events in the detemir rum creatinine [SCr] values) within 72 group of 33.5% compared to 29% for cohort. Patients who received detemir hours of initiation of either detemir the glargine group, with an alpha error also received higher total daily doses or glargine. Institutional review board rate of 0.05 and 80% power (16). To (TDDs) of insulin, as well as more approval was obtained before the study find this difference, a sample size of daily injections. In contrast, Zhang commenced. 1,659 patients per group was need- et al. (17) performed a prospective Data Collection ed, for a total of 3,318 patients. Data randomized crossover trial comparing were analyzed using SPSS version glargine and detemir in hospital- Data were electronically abstract- 25.0 software (IBM Corp., Armonk, ized patients with type 2 diabetes. ed from the EMR system using N.Y.). Descriptive data were expressed The authors concluded that the two Access 2016 software (Microsoft as mean ± SD, median ± interquartile insulins demonstrated similar time Corp., Redmond, Wash.) to ex- range, or frequency and percentage. to fasting blood glucose target and tract International Classification of Univariate analysis was performed us- similar TDDs. Hypoglycemic events Diseases, 9th or 10th revision, codes ing a Student t test, a Mann-Whitney occurred in three of the patients and Excel 2016 software (Microsoft U test, or a χ2 test for continuous, switched to detemir. However, this Corp., Redmond, Wash.) to extract ordinal, and categorical data, respec- analysis was limited to 42 patients, all other data. Authors M.A.C. and tively. Multivariate logistic regression thus restricting its power to detect C.A.G. organized the extracted data. was performed using hypoglycemia as safety events of statistical significance. Data collected within 72 hours of de- the dependent variable. Variables were More evidence comparing glargine temir or glargine initiation included initially considered for inclusion into and detemir in the inpatient environ- highest and lowest creatinine clear- the model if there was a difference be- ment is necessary. The purpose of this ance, all blood glucose values, short- tween the detemir and glargine groups study was to compare the efficacy and acting insulin, sliding scale type, insu- and there was an association with hy- safety profiles of glargine and detemir lin TDD, nothing-by-mouth status, poglycemia (P <0.1). by exploring the incidence of both acute kidney injury, chronic kidney Results hypoglycemia and hyperglycemia in disease, corticosteroids, beta-blockers, hospitalized patients with diabetes. Of the 5,200 patients initially total parenteral nutrition, enteral Design and Methods screened, 3,726 were identified for nutrition, and specific infections, in- inclusion. A total of 3,318 patients Sample Selection cluding urinary tract infection, pneu- (1,659 in each cohort) were random- This retrospective cohort study was monia, bacteremia, and diabetic foot ly selected for the final data analysis. conducted at a 772-bed community infection. Data collected outside of 72 The most common reason for exclu- teaching hospital in patients with a hours included baseline demograph- sion was no diagnosis of diabetes. diagnosis of type 1 or type 2 diabetes ics, length of stay, long-acting insu- Figure 1 shows an inclusion and ex- between January 2010 to November lin taken before admission, and most clusion flowchart. Baseline character- 2017. Data from the month of recent A1C. Electronically abstracted istics are summarized in Table 1 and December 2013 were not collected be- data were manually validated by ex- were mostly similar between the two cause a transition of preferred formu- amining 50 patients per cohort. cohorts. The detemir cohort includ- 168 CLINICAL.DIABETESJOURNALS.ORG CRISHER ET AL . potential confounders, multivariate regression analysis was performed (Table 2). Age, baseline SCr, high-in- tensity insulin scale, and concomitant corticosteroid use all met criteria to be included in the final model. When controlling for these factors, there was no difference in hypoglycemia occurrence with detemir or glargine. No difference was seen in the propor- tion of patients with hyperglycemic events in the glargine versus detemir group (92.7 vs. 91.1%, P = 0.086). The median number of hypoglyce- ARTICLE FEATURE mic events was 0 (range 0–0) for the glargine group versus 0 (range 0–1) in ■ FIGURE 1. Flowchart of inclusion and exclusion criteria. BG, blood glucose; DKA, the detemir group (P = 0.257). No dif- diabetic ketoacidosis; ICD, International Classification of Diseases. ference in insulin TDD was observed between the two cohorts: 34 ± 32 units for glargine versus 35 ± 33 ed more patients with a diagnosis of No difference was found in the units for detemir (P = 0.606).
Recommended publications
  • Combining a Glucagon-Like Peptide-1 Receptor Agonist with Basal Insulin: the Why and How
    Combining a Glucagon-like Peptide-1 Receptor Agonist with Basal Insulin: The Why and How Case Study Mary is a 61 year-old female diagnosed with type 2 diabetes mellitus (T2DM) 8 years ago. She was initially managed with the combination of lifestyle modification and metformin. Since that time she was treated with a sulfonylurea, but it was discontinued due to symptomatic hypoglycemia. She was also treated with pioglitazone, but significant fluid retention led to it discontinuation. A year-and-a- half ago, basal insulin was added to her lifestyle and metformin management. She now administers 52 units (0.62 units/kg) once daily at bedtime. Since starting basal insulin, she has experienced 3 episodes of mild hypoglycemia. Since her diagnosis, Mary’s HbA1c has never been <7.0%; her current HbA1c is 7.9%. Over the past month, her fasting plasma glucose (FPG) has ranged from 103 mg/dL to 136 mg/dL and her postprandial glucose (PPG) from 164 mg/dL to 213 mg/dL. She has gained 2.6 kg since starting basal insulin and her body mass index is now 31 kg/m2. Her blood pressure is 134/82 mmHg. She experiences occasional tingling in her feet. Eye examination reveals grade 1 retinopathy. Current medications are: metformin 1000mg twice daily, basal insulin 52 units once daily at bedtime, and hydrochlorothiazide 25 mg once daily. Her family physician notes that Mary’s FPG is reasonably well-controlled, yet her HbA1c and PPG remain elevated. He is also concerned about her episodes of hypoglycemia and weight gain and the evidence indicating microvascular damage.
    [Show full text]
  • Type 2 Diabetes Adult Outpatient Insulin Guidelines
    Diabetes Coalition of California TYPE 2 DIABETES ADULT OUTPATIENT INSULIN GUIDELINES GENERAL RECOMMENDATIONS Start insulin if A1C and glucose levels are above goal despite optimal use of other diabetes 6,7,8 medications. (Consider insulin as initial therapy if A1C very high, such as > 10.0%) 6,7,8 Start with BASAL INSULIN for most patients 1,6 Consider the following goals ADA A1C Goals: A1C < 7.0 for most patients A1C > 7.0 (consider 7.0-7.9) for higher risk patients 1. History of severe hypoglycemia 2. Multiple co-morbid conditions 3. Long standing diabetes 4. Limited life expectancy 5. Advanced complications or 6. Difficult to control despite use of insulin ADA Glucose Goals*: Fasting and premeal glucose < 130 Peak post-meal glucose (1-2 hours after meal) < 180 Difference between premeal and post-meal glucose < 50 *for higher risk patients individualize glucose goals in order to avoid hypoglycemia BASAL INSULIN Intermediate-acting: NPH Note: NPH insulin has elevated risk of hypoglycemia so use with extra caution6,8,15,17,25,32 Long-acting: Glargine (Lantus®) Detemir (Levemir®) 6,7,8 Basal insulin is best starting insulin choice for most patients (if fasting glucose above goal). 6,7 8 Start one of the intermediate-acting or long-acting insulins listed above. Start insulin at night. When starting basal insulin: Continue secretagogues. Continue metformin. 7,8,20,29 Note: if NPH causes nocturnal hypoglycemia, consider switching NPH to long-acting insulin. 17,25,32 STARTING DOSE: Start dose: 10 units6,7,8,11,12,13,14,16,19,20,21,22,25 Consider using a lower starting dose (such as 0.1 units/kg/day32) especially if 17,19 patient is thin or has a fasting glucose only minimally above goal.
    [Show full text]
  • Study Protocol
    CLINICAL TRIAL REPORT ZP4207-17086 (ZEA-DNK-02170) 16.1 TRIAL INFORMATION 16.1.1 PROTOCOL AND PROTOCOL AMENDMENTS This appendix includes Document Date, Version Clinical trial protocol Version 1.0, 08 June 2018 (valid in Slovenia and the USA) Version 3.0, 08 January 2019 (valid in Germany) Section 16.1.1: Protocol and Protocol Amendments Clinical Trial Protocol, final version 1.0 ZP4207-17086 (ZEA-DNK-02170) Clinical Trial Protocol A phase 3, randomized, double-blind, placebo- and active-controlled, parallel-arm trial to assess the efficacy, safety, and pharmacokinetics of dasiglucagon relative to placebo and GlucaGen® when administered as a rescue therapy for severe hypoglycemia in children with T1DM treated with insulin Sponsor code: ZP4207-17086 Synteract: ZEA-DNK-02170 EudraCT number: 2018-000892-33 Coordinating investigator: Prof. Dr. med. Thomas Danne Allgemeine Kinderheilkunde Diabetologie, Endokrinologie, Klinische Forschung Diabeteszentrum für Kinder und Jugendliche AUF DER BULT Kinder- und Jugendkrankenhaus Janusz-Korczak-Allee 12 30173 Hannover Germany Sponsor: Zealand Pharma A/S Smedeland 36 2600 Glostrup, Copenhagen Denmark Version: final version 1.0 Date: 08 June 2018 GCP statement This trial will be performed in compliance with Good Clinical Practice, the Declaration of Helsinki (with amendments) and local legal and regulatory requirements. 08 June 2018 CONFIDENTIAL Page 1/55 Zealand Pharma A/S ClinicalTrial Prolocol, final ve¡sion 1.0 zP 42A7 -1 7 A 86 (ZEA-DN K-02 1 L Slgnature¡ and agreoment wlth protocot Tltle: phase A 3, ¡andomized, double-blind, placebo- and aclivg-controlled, parallel-arm trial to assess the efficac¡ safety, and pharmacoítinetics of dasiglucagon rela¡ve to placebo and GlucaGeno when edministered as a rescue thêrapy for sevãre triposivcemia ¡n children w¡th TlDM treated with insulin we, the undersigned, agroe to conduct lhls trlal according to lhe Trlal protocol.
    [Show full text]
  • GLP-1 Agonists and Long-Acting Insulin Combination Therapy
    Disclosure GLP-1 Agonists and I have no conflicts of interest to disclose. Long-Acting Insulin Combination Therapy Jeanna Sewell, PharmD, BCACP Assistant Clinical Professor Auburn University Harrison School of Pharmacy Objectives Long-Acting Insulin Lantus ® (insulin glargine) . Lower blood glucose At the end of this presentation, the audience should be (BG) throughout the able to: day Explain the mechanism of GLP-1 agonists Levemir ® (insulin detemir) . Does not target Identify advantages and disadvantages of combination GLP-1 post-prandial BG agonists and long-acting insulin combination products (PPBG) Discuss the potential role in therapy of GLP-1 agonist and long- acting insulin combination products Toujeo ® (insulin glargine U-300) . Dosed once or twice daily Tresiba ® (insulin degludec) Glucagon-like Peptide-1 Agonists (GLP-1) GLP-1 Receptor Agonists exenatide (Byetta®, Bydureon®) Benefits: Weight loss Glucose-dependent mechanism liraglutide (Victoza®) Lower A1C 1-1.5% Side effects: Nausea, HA, diarrhea albiglutide (Tanzeum®) Pancreatitis BBW: Medullary thyroid carcinoma TM Multiple endocrine neoplasia syndrome 2 dulaglutide (Trulicity ) (MEN2) Lixisenatide (Adlyxin®) Image from http://www.gastrojournal.org/article/S0016-5085(07)00580-X/fulltext?refuid=S0002-8223(09)02093-8&refissn=0002-8223 Potential Role in Therapy Soliqua (insulin glargine and lixisenatide) ADA Standards of Care 2017 Available in retail pharmacies January 2017 Safety FDA Approved Indication: patients with Type 2 diabetes who are uncontrolled
    [Show full text]
  • Dynamic Approaches to Improve Glycemic Control and Primary Diabetes Care 1‑Or 2‑Or 3‑Or
    DYNAMIC APPROACHES TO IMPROVE GLYCEMIC CONTROL AND PRIMARY DIABETES CARE DYNAMIC APPROACHES TO IMPROVE GLYCEMIC Figure. CONTROL AND PRIMARY DIABETES CARE 1‑OR Characterizing Clinical Inertia in a Large, National Database CORI R. RATTELMAN, ANUPAMA ARORA, JOHN K. CUDDEBACK, ELIZABETH L. CIEMINS, Alexandria, VA Objective: To characterize clinical inertia in the treatment of diabetes using a large, geographically diverse clinical database. Study Design: A retrospective descriptive analysis was conducted in a clinical database containing 22 million patient records across 22 health care organizations (HCOs). Population Studied: A total of 281,000 patients aged 18-75 were included during the 5.5-year study period (1/2012-6/2017). Patients had an outpatient visit in the last 12 months of the study period, an HbA1c in the last 24-30 months (index A1c), and a diagnosis of type 2 DM on a claim or EHR prob- lem list at least 6 months prior to index A1c. A subset of 47,693 patients with an index A1c ≥8 and a prior A1c ≥8 or lack thereof, was observed for Supported By: National Institute of Diabetes and Digestive and Kidney Diseases four 6-month follow-up periods for actions including a new class of diabetes (T35DK104689); Yale University medication prescribed or an A1c <8. The absence of observable action fol- lowing index A1c suggests potential “clinical inertia.” Principal Findings: Six months following an index A1c≥8, 55% of patients 3‑OR received no observable clinical action ranging from 45-65% across HCOs Influence of Diabetes Complications on the Cost‑Effectiveness of and 18-96% across individual providers.
    [Show full text]
  • Prandial Options to Advance Basal Insulin Glargine Therapy
    1318 Diabetes Care Volume 39, August 2016 Julio Rosenstock,1 Bruno Guerci,2 Prandial Options to Advance Basal Markolf Hanefeld,3 Sandro Gentile,4 Ronnie Aronson,5 Francisco J. Tinahones,6 Insulin Glargine Therapy: Testing Christine Roy-Duval,7 Elisabeth Souhami,7 Marek Wardecki,8 Jenny Ye,9 Lixisenatide Plus Basal Insulin Riccardo Perfetti,9 and Simon Heller,10 on behalf of the GetGoal Duo-2 Trial Versus Insulin Glulisine Either as Investigators Basal-Plus or Basal-Bolus in Type 2 Diabetes: The GetGoal Duo-2 Trial Diabetes Care 2016;39:1318–1328 | DOI: 10.2337/dc16-0014 CLIN CARE/EDUCATION/NUTRITION/PSYCHOSOCIAL OBJECTIVE To provide evidence-based options on how to intensify basal insulin, we explored head-to-head prandial interventions in overweight patients with type 2 diabetes inadequately controlled on basal insulin glargine with or without 1–3 oral antidi- 1Dallas Diabetes and Endocrine Center at Medi- abetic agents (OADs). cal City, Dallas, TX 2University of Lorraine and the Department of RESEARCH DESIGN AND METHODS Diabetology, Metabolic Diseases and Nutrition, Brabois Adult Hospital, Vandœuvre-les-Nancy,` Patients were randomized to lixisenatide once daily or insulin glulisine given once France 3 or thrice daily, added to glargine, with or without metformin, if HbA1c remained GWT-TUD, Study Centre Prof. Hanefeld, Dres- ‡7to£9% (‡53 to £75 mmol/mol) after 12 weeks of glargine optimization with den Technical University, Dresden, Germany 4Department of Clinical and Experimental Med- OADs other than metformin stopped at the start
    [Show full text]
  • Clinical Study Report
    These results are supplied for informational purposes only. Prescribing decisions should be made based on the approved package insert in the country of prescription. Sponsor: Sanofi Study Identifiers: U1111-1200-1162, NCT03529123 Drug substance(s): Insulin Glargine / Lixisenatide Study code: INSLIL08556 Title of the study: A randomized, 24-week, controlled, open label, parallel arm, multicenter study comparing the efficacy and safety of the insulin glargine/lixisenatide fixed ratio combination (FRC) to insulin glargine in type 2 diabetes patients, inadequately controlled on Basal Insulin with or without Metformin (INSLIL08556) Study center(s): 13 sites across India all with at least 1 patient randomized Study period: Date first patient enrolled: 19/Jun/2018 Date last patient completed: 27/Nov/2019 Phase of development: Phase 3 Objectives: Primary objective: To demonstrate the superiority of the FRC to insulin glargine in HbA1c change from baseline to Week 24. Secondary objectives: 1. To assess the effects of the FRC in comparison with insulin glargine over 24 weeks on: a) Percentage of patients reaching HbA1c targets (<7%) b) Glycemic control in relation to a meal as evaluated by 2-hour Post-prandial Plasma Glucose (PPG) c) Body weight, d) Fasting Plasma Glucose (FPG). e) Percentage of patients reaching HbA1c targets of <7% with no body weight gain and no hypoglycemia (as defined in the evaluation criteria). f) 7-point Self-Monitoring Plasma Glucose (SMPG) profile g) Insulin glargine dose. 2. To assess the safety and tolerability in each treatment group Methodology: This study was an open-label, 1:1 randomized, active-controlled, 2-arm, 24-week treatment duration, parallel-group, multicenter study comparing the FRC to insulin glargine.
    [Show full text]
  • A Randomized Controlled Trial of Liraglutide Versus
    Therapeutics The Journal of Clinical Pharmacology A Randomized Controlled Trial of Liraglutide 2015, XX(XX) 1–8 © 2015, The American College of Clinical Pharmacology Versus Insulin Detemir Plus Sitagliptin: Effective DOI: 10.1002/jcph.483 Switch From Intensive Insulin Therapy to the Once-Daily Injection in Patients With Well-Controlled Type 2 Diabetes Yuichiro Inoue, MD1, Akinobu Nakamura, MD, PhD1,2, Yoshinobu Kondo, MD1,3, Kumiko Hamano, MD4, Shinobu Satoh, MD, PhD3, and Yasuo Terauchi, MD, PhD1 Abstract This study aimed to compare the efficacy and safety of liraglutide versus insulin detemir plus sitagliptin in Japanese patients with type 2 diabetes treated with a basal-bolus insulin regimen. In this multicenter, open-label trial, 90 patients whose diabetes had been controlled well or moderately (glycated hemoglobin [HbA1c] 7.3%) with basal-bolus insulin regimen were randomly assigned to a liraglutide group or a detemir group and were followed up for 24 weeks. The primary end point was HbA1c change from baseline to 24 weeks. Of the 90 enrolled patients, 82 completed this trial. At 24 weeks, the mean changes in HbA1c from baseline were 0.1% Æ 0.9% versus 0.3% Æ 0.8% in the liraglutide versus detemir groups, respectively (P ¼ .46). The “overall” satisfaction score for the Diabetes Treatment Satisfaction Questionnaire changed from 25.2 Æ 7.4 to 29.9 Æ 5.3 (P < .001) and from 26.4 Æ 6.1 to 28.3 Æ 6.4 (P ¼ .12) in the liraglutide and detemir groups, respectively. Although the mean change difference in HbA1c between both groups was not significant, switching from a basal-bolus insulin regimen to liraglutide once daily improved patient satisfaction levels without loss of glycemic control.
    [Show full text]
  • Randomized Comparison of Pramlintide Or Mealtime Insulin Added to Basal Insulin Treatment for Patients with Type 2 Diabetes
    Clinical Care/Education/Nutrition/Psychosocial Research ORIGINAL ARTICLE Randomized Comparison of Pramlintide or Mealtime Insulin Added to Basal Insulin Treatment for Patients With Type 2 Diabetes 1 2 MATTHEW RIDDLE, MD KAREN LUTZ, PHD limit postmeal hyperglycemia. Amylin 2 2 RICHARD PENCEK, PHD KEN WILHELM, MD deficiency accelerates gastric emptying, 2 2 SUPOAT CHARENKAVANICH, PHD LISA PORTER, MD increases glucagon secretion, and alters satiety mechanisms (10,11). Pramlintide, an injectable synthetic OBJECTIVE — To compare the efficacy and safety of adding mealtime pramlintide or rapid- analog of amylin, slows gastric emptying, acting insulin analogs (RAIAs) to basal insulin for patients with inadequately controlled type 2 attenuates postprandial glucagon secre- diabetes. tion, enhances satiety, and reduces food intake (12–14). Pramlintide is approved RESEARCH DESIGN AND METHODS — In a 24-week open-label, multicenter study, ␮ as adjunctive treatment for patients with 113 patients were randomly assigned 1:1 to addition of mealtime pramlintide (120 g) or a diabetes who use mealtime insulin with or titrated RAIA to basal insulin and prior oral antihyperglycemic drugs (OADs). At screening, patients were insulin naive or had been receiving Ͻ50 units/day basal insulin for Ͻ6 months. without oral antihyperglycemic drugs The basal insulin dosage was titrated from day 1, seeking fasting plasma glucose (FPG) Ն70– (OADs) and have not achieved desired Ͻ100 mg/dl. Pramlintide and an RAIA were initiated on day 1 and week 4, respectively. The glucose control. Recently, a 16-week, proportion of patients achieving A1C Յ7.0% without weight gain or severe hypoglycemia at double-blind, placebo-controlled study week 24 was the primary end point.
    [Show full text]
  • Levemir, INN-Insulin Detemir
    SCIENTIFIC DISCUSSION This module reflects the initial scientific discussion for the approval of Levemir. For information on changes after approval please refer to module 8. 1 Introduction Insulin detemir, the active ingredient in Levemir, is an insulin analogue with a prolonged duration of action, and is produced by recombinant DNA technology using a genetically modified strain of Saccharomyces cerevisiae. In order to obtain a long-acting insulin product, the amino acid threonine in position B30 of the human insulin molecule has been omitted and myristic fatty acid has been attached to the ε-amino group of amino acid lysine B29. The goal of insulin treatment is to mimic the physiologic pattern of insulin secretion, which under normal conditions consist of a basal secretion and meal related short peaks. The most commonly used insulin regimen is the so-called basal-bolus regimen in which basal insulin requirements are provided by one or two injections of intermediate- or long-acting insulin and mealtime requirements are provided by meal related injections of short acting soluble human insulin/insulin analogues. It is generally accepted that the basal-bolus regimen offers the best glycaemic control, reducing the risk for complications resulting from diabetes such as retinopathy, nephropathy and neuropathy. Levemir is indicated for use in patients with type 1 or type 2 diabetes mellitus, used as basal insulin in combination with pre-meal bolus injections with short-acting insulin. Levemir should be administered subcutaneously once or twice daily and should be adjusted individually, depending on patients’ needs. 2 Quality aspects Composition The finished product is a solution for subcutaneous injection containing 100 U/ml (2400 nmol) insulin detemir.
    [Show full text]
  • Hypoglycemics, Insulins
    Hypoglycemics, Insulins and Related Agents Therapeutic Class Review (TCR) January 29, 2019 No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, digital scanning, or via any information storage or retrieval system without the express written consent of Magellan Rx Management. All requests for permission should be mailed to: Magellan Rx Management Attention: Legal Department 6950 Columbia Gateway Drive Columbia, Maryland 21046 The materials contained herein represent the opinions of the collective authors and editors and should not be construed to be the official representation of any professional organization or group, any state Pharmacy and Therapeutics committee, any state Medicaid Agency, or any other clinical committee. This material is not intended to be relied upon as medical advice for specific medical cases and nothing contained herein should be relied upon by any patient, medical professional or layperson seeking information about a specific course of treatment for a specific medical condition. All readers of this material are responsible for independently obtaining medical advice and guidance from their own physician and/or other medical professional in regard to the best course of treatment for their specific medical condition. This publication, inclusive of all forms contained herein, is intended to be educational in nature and is intended to be used for informational purposes only. Send comments and suggestions to [email protected].
    [Show full text]
  • LEVEMIR - Insulin Detemir Implant Dispensing Solutions, Inc
    LEVEMIR - insulin detemir implant Dispensing Solutions, Inc. ---------- Levemir® (insulin detemir [rDNA origin] injection) DESCRIPTION LEVEMIR® (insulin detemir [rDNA origin] injection) is a sterile solution of insulin detemir for use as an injection. Insulin detemir is a long-acting basal insulin analog, with up to 24 hours duration of action, produced by a process that includes expression of recombinant DNA in Saccharomyces cerevisiae followed by chemical modification. Insulin detemir differs from human insulin in that the amino acid threonine in position B30 has been omitted, and a C14 fatty acid chain has been attached to the amino acid B29. Insulin detemir has a molecular formula of C267H402O76N64S6 and a molecular weight of 5916.9. It has the following structure: LEVEMIR is a clear, colorless, aqueous, neutral sterile solution. Each milliliter of LEVEMIR contains 100 U (14.2 mg/mL) insulin detemir, 65.4 mcg zinc, 2.06 mg m-cresol, 16.0 mg glycerol, 1.80 mg phenol, 0.89 mg disodium phosphate dihydrate, 1.17 mg sodium chloride, and water for injection. Hydrochloric acid and/or sodium hydroxide may be added to adjust pH. LEVEMIR has a pH of approximately 7.4. CLINICAL PHARMACOLOGY Mechanism of Action The primary activity of insulin detemir is the regulation of glucose metabolism. Insulins, including insulin detemir, exert their specific action through binding to insulin receptors. Receptor-bound insulin lowers blood glucose by facilitating cellular uptake of glucose into skeletal muscle and fat and by inhibiting the output of glucose from the liver. Insulin inhibits lipolysis in the adipocyte, inhibits proteolysis, and enhances protein synthesis.
    [Show full text]