Dissertation Ist in Der Hauptbibliothek Der Technischen Universität Wien Aufgestellt Und Zugänglich

Total Page:16

File Type:pdf, Size:1020Kb

Dissertation Ist in Der Hauptbibliothek Der Technischen Universität Wien Aufgestellt Und Zugänglich Die approbierte Originalversion dieser Dissertation ist in der Hauptbibliothek der Technischen Universität Wien aufgestellt und zugänglich. http://www.ub.tuwien.ac.at The approved original version of this thesis is available at the main library of the Vienna University of Technology. http://www.ub.tuwien.ac.at/eng DISSERTATION Liquid Fuel Production from Biomass Gasification Product Gas of the Biomass Gasifier at Güssing/Austria – Catalyst Characterisation, Desing, Construction and Operation of a Fischer Tropsch Pilot Plant ausgeführt zum Zwecke der Erlangung des akademischen Grades eines Doktors der technischen Wissenschaften unter der Leitung von Univ. Prof. Dipl.-Ing. Dr. techn. Hermann Hofbauer am Institut für Verfahrenstechnik, Umwelttechnik und Techn. Biowissenschaften (E 166) eingereicht an der Technischen Universität Wien Fakultät für Maschinenwesen und Betriebswissenschaften von Dipl.-Ing. Karl Ripfel-Nitsche Matrikelnummer 9426408 Obere Hauptstrasse 15 2305 Eckartsau Wien, im April 2017 ................................. Karl Ripfel-Nitsche Vorwort und Danksagung ______________________________________________________________________ Vorwort und Danksagung Die vorliegende Arbeit ist im Zuge meiner Tätigkeit als Forschungsassistent am Institut für Verfahrenstechnik, Umwelttechnik und Technische Biowissenschaften der Technischen Universität Wien entstanden. In dieser Arbeit werden die bisherigen Entwicklungen für erneuerbare flüssige Kraftstoffe dargestellt. Mit Hilfe der durchgeführten Arbeiten soll ein möglicher neuer Weg zur Erlangung von flüssigen Kraftstoffen aus Biomasse gezeigt werden. Der zweite Teil der Arbeit, welcher in den Jahren 2004-2007 entstand, zeigt die praktische Umsetzung dieses Vorhabens. Im dritten Teil werden die Erkenntnisse zusammengefasst und soll die möglichen Potentiale der Fischer Tropsch Synthese in Kombination mit einer Biomassedampfvergasung aufzeigen. Ich möchte allen danken, die am Entstehen dieser Arbeit mitgewirkt haben. Besonders danke ich: Hermann Hofbauer für die Aufnahme und Anstellung als Forschungsassistenten und der gegebenen Möglichkeit, meine Dissertation unter seiner Anleitung durchzuführen. Ich danke ihm für die zahlreichen fachlichen Diskussionen und die mir zugestandene Freiheit bei der Gestaltung der Arbeit. Herrn Reinhard Rauch möchte ich für die intensive Betreuung bei der Umsetzung der Arbeit am Institut in Wien sowie in Güssing und den vielen konstruktiven Diskussionen bedanken. Herrn Alain Kienneman und seinem Team auf der „Université de Strasbourg“ für die herzliche Aufnahme und Betreuung für den Zeitraum der Arbeiten zur Charakterisierung der Fischer Tropsch Katalysatoren in Frankreich. Herren Tobias Pröll für die vielen Anregungen und Hinweise im Hinblick auf das Verfassen der wissenschaftlichen Arbeit. Den Diplomanden Herren Niall O Brien und Markus Goritschnig die durch Ihren engagierten Einsatz am Entstehen dieser Arbeit mitgewirkt haben. Besonderen Dank gilt Herren Reinhard Koch und seinem Team des Biomassekraftwerkes in Güssing die durch Ihre Kooperation wesentlich am Entstehen dieser Arbeit teilhaben. Meinen Kollegen am Institut für die vielen geistreichen, unterhaltsamen und motivierenden Stunden während und nach der Arbeit. Danken möchte ich an dieser Stelle auch meinen Eltern die mir meine Ausbildung ermöglicht haben. Nicht zuletzt möchte ich mich bei meiner Frau Laura für die Korrektur in englischer Sprache und der moralischen Unterstützung während der Zeit des Verfassens der Arbeit bedanken. Kurzfassung Kurzfassung Ziel der Arbeit ist es, aus erneuerbarer Biomasse flüssige Kraftstoffe herzustellen. Um keine Konkurrenz zu konventionellen Agrarflächen darzustellen soll als Ausgangsstoff Holz dienen. Weiteres soll die Technologie in regionale Biomasse- kraftwerke integrierbar sein. Eine Fischer Tropsch Versuchsanlage wurde geplant, errichtet und betrieben in Güssing (Österreich). Es wurden Langzeitversuche mit dem Produktgas des Biomassedampfvergasers durchgeführt. Verschiedene Katalysatoren für die Fischer Tropsch Synthese wurden charakterisiert und getestet. Die hergestellten Fischer Tropsch Produkte wurden analysiert, unter anderem auf den Einsatz in Verbrennungs- kraftmotoren. Begleitend zu der Versuchsanlage in Güssing wurde ein Kaltmodell zum 3-Phasen-Strömungsreactor (Slurry-Reactor) errichtet. Eine Analysenmethode wurde entwickelt um die Katalysatorverteilung im Slurryreaktor zu beurteilen. Die Analysenergebnisse von den Fischer Tropsch Produkten, hergestellt von Kobalt basierenden Katalysatoren, ergeben einen qualitativ hochwertigen Kraftstoff. Die Eigenschaften des Kraftstoffes bei niedriger Temperatur müssen jedoch noch durch weitere Verfahrensschritte verändert werden um alle Anforderungen für Dieselkraft- stoffe zu erfüllen. Eine weitere entscheidende Erkenntnis ist der Bedeutung von einer Produktgasreinigung um den Katalysator vor Vergiftung zu schützen. Es wurde erkannt dass die Konzentration an Schwefelverbindungen im Synthesegas unter 10 ppbv zu liegen hat um dauerhaft die Synthese zu betreiben. Es konnte gezeigt werden, dass die Produktion von hoch qualitativen Kraftstoffen mit der Hilfe der Fischer Tropsch Synthese ausgehend von holzbasierender Biomasse möglich ist. Weiteres wurde erkannt, dass es der Kombination von verschiedenen Reinigungsschritten bedarf, um den Katalysator vor Inaktivierung bzw. Vergiftung zu schützen. Die Entfernung von Schwefelverbindungen wird nach wie vor eine entscheidende Rolle im Bereich der Fischer Tropsch Synthese mit Produktgas einer Biomassedampfvergasung spielen. Abstract __________________________________________________________________________ Abstract Aim of this work is to synthesise renewable liquid fuel of high quality. The basic material should be woody biomass so that no competition to agricultural space arises. Further, the technology should be integrated into local biomass power plant. A pilot plant for production of Fischer Tropsch fuel was designed, erected and continuously operated along the biomass stem gasification plant located at Güssing Austria. Different Fischer Tropsch catalysts have been characterised and tested in the pilot plant. The Fischer Tropsch products have been analysed, also with the focus on the applicability as automotive diesel fuel. Accompanying the pilot plant design phase, a cold model of the three phase slurry Fischer Tropsch reactor has been built. A method has been developed to measure catalyst distribution in the slurry phase. The results are showing that the obtained Fischer Tropsch fuel from cobalt catalysts is of high quality and fulfils nearly all demands of diesel fuel. Some refining steps would be necessary to fulfil all demands like the low temperature parameters of the fuel. However the Fischer Tropsch fuel from the iron based catalyst would need more refining steps to fulfil all parameters. A further learning from the operation of the pilot plant is that the gas cleaning of the synthesis gas upstream of the Fischer Tropsch reactor is of crucial importance. Above all the separation of sulphur compounds from the syngas is necessary. The concentration of sulphur compounds should be less then 10 ppbv in the Fischer Tropsch feed stream. It could be demonstrated that high quality fuel can be produced via Fischer Tropsch synthesis from the product gas of a biomass gasifier. The protection of the catalyst from poisoning is possible applying a combination of different gas cleaning steps. Sulphur removal will continue to be a challenge in Fischer Tropsch synthesis operated with product gas of a biomass gasification plant. Content __________________________________________________________________________________ Content 1 Introduction .................................................................................................... 5 1.1 Motivation .................................................................................................................... 5 1.2 Objectives ..................................................................................................................... 6 1.3 Formulation of the problem .......................................................................................... 6 1.4 Structure of the work .................................................................................................... 7 2 Literature review ............................................................................................ 7 2.1 Biofuels ........................................................................................................................ 7 2.1.1 Background ....................................................................................................................... 7 2.1.2 First generation ................................................................................................................. 9 2.1.3 Second generation .......................................................................................................... 10 2.2 Economic considerations ............................................................................................ 12 2.3 The history of Fischer Tropsch .................................................................................. 13 2.4 Previous Fischer Tropsch developments .................................................................... 13 2.5 2nd generation of biomass to liquid plants .................................................................. 14 2.5.1 CHOREN (Freiberg, Germany) .....................................................................................
Recommended publications
  • Finland – 2018 Update
    Finland – 2018 update Bioenergy policies and status of implementation Country Reports IEA Bioenergy: 09 2018 This report was prepared from the 2018 OECD/IEA World Energy Balances, combined with data and information provided by the IEA Bioenergy Executive Committee and Task members. Reference is also made to Eurostat. All individual country reports were reviewed by the national delegates to the IEA Bioenergy Executive Committee, who have approved the content. General background on the approach and definitions can be found in the central introductory report1 for all country reports. Edited by: Luc Pelkmans, Technical Coordinator IEA Bioenergy Contributors: Lauri Kujanpää, Antti Arasto, VTT; Tapio Ranta, LUT NATIONAL POLICY FRAMEWORK IN FINLAND Finland has committed itself to a target of 38% share of renewable energy in gross final energy consumption in 2020, with a split in sectors as displayed in the table below. Table 1: Finland´s 2020 renewable energy targets Sector Share in gross final consumption per sector Overall target 38 % Heating and cooling 47 % Electricity 33 % Transport 20 % Source: National Renewable Energy Action Plan of Austria (2010)2 Feed-in premiums for electricity from wind, biogas and forest residues (chips or hog fuel from tops, branches, thinning wood and stumps) are an important instrument to reach the above mentioned targets. In order to avoid distortion of wood availability for industrial use, the feed-in premium is restricted to 60% if wood chips are made from larger stemwood (breast diameter > 16 cm). Investment support enhance new RES technology innovations. A special support is granted for investments with high risks and high cost (>EUR 5 million) e.g.
    [Show full text]
  • Technology Status and Reliability of the Value Chains”
    Sub Group on Advanced Biofuels “Technology status and reliability of the value chains” Compiled by: Ingvar Landälv Division of Energy Sciences, Luleå University of Technology Assisted by: Co-edited by: Freya Burton of Lanzatech Kyriakos Maniatis of DG ENER Francisco Girio of LNEG Lars Waldheim, Independent Consultant Susanna Pflüger of EBA Eric van den Heuvel, studio Gear Up Ilmari Lastikka of NESTE Stamatis Kalligeros, Assistant Professor, Eelco Dekker of Methanol institute Hellenic Naval Academy Date: 14 February 2017 Disclaimer This report has been prepared for the Sub Group Advanced Biofuels (SGAB) based on the information received from its members as background material and as such has been accepted and used as working material by the Editorial Team to give the status of existing technologies without the ambition of describing all developments in the area in detail. However, the view and opinions in this report are of the SGAB and do not necessarily state or reflect those of the Commission or the organization that are members of, or observers to the SGAB group. References to products, processes, or services by trade name, trademark, manufacturer or the like does not constitute or imply an endorsement or recommendation of these by the Commission or the Organizations represented by the SGAB Members' and Observers Neither the Commission nor any person acting on the Commission’s, or, the Organizations represented by the SGAB Members' and Observers' behalf make any warranty, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information contained herein. Technology status and reliability of value chains | SGAB | Final Table of Contents Disclaimer ................................................................................................................................
    [Show full text]
  • Production of Liquid Advanced Biofuels - Global Status
    LIQUID BIOFUEL 2019-01-11 Production of liquid advanced biofuels - global status Ingrid Nyström Pontus Bokinge Per-Åke Franck LIQUID BIOFUEL Production of liquid advanced biofuel - global status Ingrid Nyström, Pontus Bokinge, Per-Åke Franck CIT Industriell Energi AB 2019-01-11 Granskad av: Stefan Heyne i LIQUID BIOFUEL EXECUTIVE SUMMARY This study provides an overview of current and future global production of liquid biofuels for use in the transportation sector – with a special focus on advanced liquid biofuels. The study is made by CIT Industriell Energi on assignment of the Norwegian environment agency. The overview is based partly on statistics of historical and current global biofuel production in general, partly on a thorough mapping of existing and planned production plants that may be able to contribute to advanced liquid biofuel production in the period from now until the year 2030. Based on data from REN21 Renewables 2018 (below), total global biofuel production amounted in 2017 to about 970 TWh, of which 623 ethanol, 284 conventional biodiesel and 61 TWh HVO (about 105, 31 and 6.5 Mm3, respectively). Ethanol production is dominated by the US and Brazil, while biodiesel production is more spread between regions and countries. In statistics for biofuel production, the amount of advanced biofuels are in general not specified separately. In this report focus is on the production of advanced biofuels. The definition used is the one used e.g. by the EIA, namely that advanced biofuels are biofuels produced from lignocellulosic feedstocks (i.e. agricultural and forestry residues), non-food crops (i.e. grasses, miscanthus, algae) or industrial waste and residue streams, which also are associated with high GHG reductions and that are assumed to be able to reach zero or low iLUC impact.
    [Show full text]
  • The Role of Tall Oil in Finnish Bio-Economy Policy and Changing Value Network
    The Role of Tall Oil in Finnish Bio-Economy Policy and Changing Value Network MASTER’S THESIS University of Helsinki Department of Forest Sciences Tania Afrin September 2018 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Faculty of Agriculture and Forestry Department of Forest Sciences Tekijä Författare Author Tania Afrin Työn nimi Arbetets titel Title The Role of Tall Oil in Finnish Bio-Economy Oppiaine Läroämne Subject Forest Economics and Marketing Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of MSc in Agriculture and Forestry September, 2018 pages 66 Tiivistelmä Referat Abstract For 80 years, Pine Chemical Industries have used Crude Tall Oil (CTO) for a wide range of products. To fulfil the climate goal, the European Union (EU) has changed its policy by subsidizing renewable sources, which in turn has promoted CTO as a resource for biofuels. Also, Finland has followed the EU by setting the target for 2020. This research aims to analyze the role of CTO in Finnish bio-economy by focusing on the market dynamics and value network between biofuel and pine chemical industry after the new EU regulation. In addition, it forecast the optimal future end use market. The empirical study is based on qualitative data from five interviewees representing a forest company, two biochemical companies, a research institute and a consulting firm. This study showed that the double carbon benefit supported the increase in demand of CTO. The import also increased to produce biodiesel. In addition, biofuel companies have more purchasing power.
    [Show full text]
  • Building up the Future Technology Status and Reliability of the Value Chains
    Building Up the Future Technology status and reliability of the value chains Sub Group on Advanced Biofuels Sustainable Transport Forum Edited by: Kyriakos Maniatis Ingvar Landälv Lars Waldheim Eric van den Heuvel Stamatis Kalligeros March – 2017 Disclaimer: The SGAB report has been approved by the Members of the Sustainable Transport Forum. However, a Member has expressed its concern regarding the proposed recommendations on food-based biofuels. This Member also considered that the report should give deeper consideration to the sustainable availability of lipid-based advanced biofuels. EUROPEAN COMMISSION Directorate-General for Transport Unit MOVE.DDG1.B.4 - Sustainable & Intelligent Transport Directorate B - Investment, Innovative & Sustainable Transport Contact: Antonio Tricas-Aizpun, E-mail: [email protected] European Commission B-1049 Brussels iii Europe Direct is a service to help you find answers to your questions about the European Union. Freephone number (*): 00 800 6 7 8 9 10 11 (*) The information given is free, as are most calls (though some operators, phone boxes or hotels may charge you). LEGAL NOTICE This document has been prepared for the European Commission however it reflects the views only of the authors, and the Commission cannot be held responsible for any use which may be made of the information contained therein. More information on the European Union is available on the Internet (http://www.europa.eu). Luxembourg: Publications Office of the European Union, 2018 ISBN 978-92-79-73177-8 doi: 10.2832/796846
    [Show full text]
  • Advanced Liquid Biofuels Synthesis
    Advanced liquid biofuels synthesis Adding value to biomass gasification ECN-E--17-057 - February 2018 www.ecn.nl Advanced liquid biofuels synthesis Author(s) Disclaimer E.H. Boymans, E.T. Liakakou Although the information contained in this document is derived from reliable sources and reasonable care has been taken in the compiling of this document, ECN cannot be held responsible by the user for any errors, inaccuracies and/or omissions contained therein, regardless of the cause, nor can ECN be held responsible for any damages that may result therefrom. Any use that is made of the information contained in this document and decisions made by the user on the basis of this information are for the account and risk of the user. In no event shall ECN, its managers, directors and/or employees have any liability for indirect, non- material or consequential damages, including loss of profit or revenue and loss of contracts or orders. Page 2 of 90 ECN-E--17-057 Acknowledgement We greatly acknowledge the “Ministerie van Economische Zaken” of the Dutch government, who funded this work as part of the project ‘Biobrandstof en Groen Gas’ (ECN project number 5.4701). Then we would also like to thank the project team members within the bioenergy group of ECN who contributed to this work via fruitful discussions and revisions of this work. ECN-E--17-057 Page 3 of 90 Abstract Transportion accounts for about a third of the world’s energy use, half of the global oil consumption and a fifth of total GHG emissions. Increasing concerns over global climate change, depletion of fossil fuel resources and demand for transportation fuels have strongly influenced research efforts and funding programs in development and deployment of advanced biofuels.
    [Show full text]
  • Beatson Group Summary
    THE POTENTIAL AND CHALLENGES OF ‘DROP-IN’ BIOFUELS: The key role that co-processing will play in its production Susan van Dyk, Jianping Su, James McMillan and Jack Saddler Forest Products Biotechnology/Bioenergy Group International Energy Agency Bioenergy Task 39 (Liquid biofuels) Forest Products Biotechnology/Bioenergy (FPB/B) Commissioned report published by IEA Bioenergy Task 39 (2014) www.Task39.org Forest Products Biotechnology/Bioenergy at UBC . All the conclusions from the original report is still valid . The 2014 report provided an excellent and in-depth overview of the technologies and companies in the space . The 2019 update builds on this, looking at recent developments and trends but with a significant focus on co-processing Forest Products Biotechnology/Bioenergy at UBC ‘DROP-IN’ BIOFUELS: The key role that co-processing will play in its production Executive Summary available from the Task 39 website Forest Products Biotechnology/Bioenergy at UBC 4 ‘DROP-IN’ BIOFUELS: The key role that co- processing will play in its production ▪Full report embargoed until the end of June 2019 ▪Available to members only on the Task 39 website Forest Products Biotechnology/Bioenergy at UBC 5 Definition of “drop-in” biofuels . Drop-in biofuels: are “liquid bio-hydrocarbons that are: . functionally equivalent to petroleum fuels and . fully compatible with existing petroleum infrastructure” . Definition still applicable – but does not mean that the drop- in biofuel on its own will meet all the specifications for a specific fuel product. Sometimes blending will be required Forest Products Biotechnology/Bioenergy at UBC Technologies for drop-in biofuel production . Latest technology and commercialisation developments and trends Green diesel HEFA-SPK Oils and fats Oleochemical Light gases Naphtha Jet FT-SPK/SKA Lignocellulose Diesel Thermochemical HDCJ, HTL-jet Single product SIP-SPK Sugar & starch Biochemical e.g.
    [Show full text]
  • Finland ______Report for European Commission 070201/2016/741491/SFRA/ENV.C.4
    Industrial emissions policy country profile – Finland ___________________________________________________ Report for European Commission 070201/2016/741491/SFRA/ENV.C.4 ED 62698 | Issue Number 3 | Date 26/02/2018 Ricardo Energy & Environment Industrial emissions policy country profile – Finland | i Customer: Contact: European Commission – DG Environment Tim Scarbrough Ricardo Energy & Environment Customer reference: 30 Eastbourne Terrace, London, W2 6LA, United Kingdom 070201/2016/741491/SFRA/ENV.C.4 t: +44 (0) 1235 75 3159 Confidentiality, copyright & reproduction: e: [email protected] This report is the Copyright of the European Commission. It has been prepared by Ricardo Ricardo-AEA Ltd is certificated to ISO9001 and Energy & Environment, a trading name of ISO14001 Ricardo-AEA Ltd, under contract to the European Commission dated 17/11/2016. The contents of Author: this report may not be reproduced in whole or in part, nor passed to any organisation or person Sanja Ursanic (BiPRO), Elisabeth Zettl without the specific prior written permission of the (BiPRO), James Sykes (Ricardo), Hetty European Commission. Ricardo Energy & Menadue (Ricardo) Environment accepts no liability whatsoever to any third party for any loss or damage arising Approved By: from any interpretation or use of the information contained in this report, or reliance on any views Tim Scarbrough expressed therein. Date: 26 February 2018 Ricardo Energy & Environment reference: Ref: ED62698- Issue Number 3 Ref: Ricardo/ED62698/Issue Number 3 Ricardo Energy & Environment Industrial emissions policy country profile – Finland | ii Table of contents Summary of industrial statistics for Finland ..................................................................... 1 1 Introduction and summary of methodology ............................................................ 2 1.1 The industrial emissions policy country profiles ...............................................................
    [Show full text]
  • Beatson Group Summary
    The potential and challenges of drop-in biofuels production 2018 update Susan van Dyk, Jianping Su, James McMillan and Jack Saddler Forest Products Biotechnology/Bioenergy Group International Energy Agency Bioenergy Task 39 (Liquid biofuels) Forest Products Biotechnology/Bioenergy (FPB/B) Commissioned report published by IEA Bioenergy Task 39 (2014) Commercializing Conventional and Advanced Liquid Biofuels from Biomass www.task39.org Forest Products Biotechnology/Bioenergy at UBC 2 Definition of “drop-in” biofuels . Drop-in biofuels: are “liquid bio-hydrocarbons that are: . functionally equivalent to petroleum fuels and . fully compatible with existing petroleum infrastructure” . Definition still applicable – does not mean that the drop-in biofuel on its own will meet all the specifications for a specific fuel product. Sometimes blending required Forest Products Biotechnology/Bioenergy at UBC Technologies for drop-in biofuel production 4 main categories Green diesel Oils and fats Oleochemical Light gases HEFA-SPK Naphtha Jet FT-SPK/SKA Lignocellulose Diesel Thermochemical HDCJ, HTL-jet Single product SIP-SPK Sugar & starch Biochemical e.g. farnesene, ethanol, butanol CO2, CO Hybrid ATJ-SPK APR-SPK Forest Products Biotechnology/Bioenergy at UBC Oleochemical drop-in biofuel platform . Main source of commercial drop-in biofuels (~5 BL) . Renewable diesel . HEFA biojet fuel (AltAir) . Key trends . Conversion of existing refineries into HEFA biorefineries . AltAir (USA), ENI (Italy), Total (France), Andeavour (USA) . Move towards more sustainable feedstocks (waste & other) – increase in trade of UCO & tallow . Co-processing of lipids (ASTM approved for biojet) . Key drivers & challenges . Policy e.g. low carbon fuel standards (California, BC) . Demand from aviation industry for biojet . Feedstock cost and availability Forest Products Biotechnology/Bioenergy at UBC 5 Thermochemical technologies .
    [Show full text]
  • Lappeenranta-Lahti University of Technology LUT School of Business and Management Degree Program in Strategic Finance and Business Analytics
    Lappeenranta-Lahti University of Technology LUT School of Business and Management Degree program in Strategic Finance and Business Analytics Inka Ruponen PROFITABILITY ANALYSIS OF BIOFUELS AND THE IMPACT OF BIOFUEL POLICIES IN FINLAND Master’s Thesis 2021 Supervisors: Mikael Collan Mariia Kozlova ABSTRACT Author: Inka Ruponen Title: Profitability analysis of biofuels and the impact of biofuel policies in Finland Faculty: LUT School of Business and Management Master’s program: Strategic Finance and Business Analytics Year: 2021 Master’s Thesis: 67 pages, 7 tables, 11 figures Examiners: Professor Mikael Collan Postdoctoral researcher Mariia Kozlova Keywords: Biofuels, Profitability analysis, Renewable diesel, Biofuel Policy This study analyses the effects of policy support on the profitability of biofuel production. The focus is on the investment profitability of biofuels and how the penalties, fuel taxes and the possible financial subsidy affect the investment profitability. The theory section consists of literature on biofuel policies and profitability of biofuels. Additionally, the theory examines the biofuel production and policy support in Finland. The empirical section analyses the biofuel policy effects on net present value of renewable diesel and fossil diesel blend. The fuel components of the blend are analysed separately to obtain more information about the influence of policy support to the net present values. The methods used in this study are net present value, internal rate of return and sensitivity analysis which is used to examine the uncertainty of net present value results. Lastly, the net present values are presented with triangular pay-off distribution based on fuzzy pay-off method to clearly understand the profitability distributions.
    [Show full text]
  • Industry Platform Driving Development of Advanced Biofuels in Europe
    Industry platform driving development of advanced biofuels in Europe LSB is a coalition of leading advanced biofuel technology developers and producers commit- ted to making a significant contribution to meeting the EU ambitions of decarbonizing the transport sector. Sustainable advanced biofuels are a fast track solution for decarbonizing transport. Advanced biofuels bring multiple benefits in terms of CO2 reduction, investments, revenuers for farmers and forestry, and an increase in energy security. Biochemtex is part of the Mossi Ghisolfi Group, a leading name in the PET, engineering and renewable chemistry sector. It developed break-through proprietary technology (PROESA™) platform, commercial- ized by Beta Renewables, to produce clean fermentable sugars from cellulosic biomass. The PROESA™ technology platform, demonstrated on industrial scale at the Crescentino cellulosic ethanol plant, Italy, enables the cost-effective production of fuels and chemicals from non-food biomass derived sugars.” www.biochemtex.com BTG is private consultancy, project development and research & technology development company specialized in bioenergy, biofuels and biobased materials. BTG is a SME and based in the Netherlands. BTG is well known because of its’ many successful spin-offs. Through its’ spin-off company BTG-BTL (www.btg-btl.com), the flash pyrolysis technology is rolled-out. Through BTG-BTL’s daughter company Empyro (investment 20 million EUR, capacity 24.000 ton/year, 7 employees), the commercial production of crude flash pyrolysis oil has been taken place since 2015. The BTG-companies are particularly focusing at further expansion of installed production capacity and co-refining of pyrolysis oil in existing refineries. www.btgworld.com Clariant is a globally leading specialty chemicals company with 17,442 employees and an annual turnover of CHF 5.847 billion.
    [Show full text]
  • Process-SME Project - Exceeded Expectations
    Leena Parkkila & Kyllikki Taipale-Erävala (ed.) B Process-SME Project - Exceeded Expectations PUBLICATIONS OF LAPLAND UNIVERSITY OF APPLIED SCIENCES Series B. Research reports and compilations. 18/2019 Process-SME Project - Exceeded Expectations Leena Parkkila & Kyllikki Taipale-Erävala (ed.) Process-SME Project - Exceeded Expectations Series B. Research reports and compilations. 18/2019 Lapland University of Applied Sciences Rovaniemi 2019 © Lapland University of Applied Sciences and authors ISBN 978-952-316-318-8 (nid.) ISSN 2489-2629 (printed) ISBN 978-952-316-319-5 (pdf) ISSN 2489-2637 (Electronic publication) Publications of Lapland University of Applied Sciences Series B. Research reports and compilations. 18/2019 Financiers: Interreg V A Nord European Regional Development Fund, European Union, Region Norrbotten, Länsstyrelsen i Norrbotten, Lapland University of Applied Sciences Norrbottens läns landsting, Regional Council of Jokiväylä 11 C Lapland, Lapland University of Applied Sciences, 96300 Rovaniemi University of Oulu, NIHAK, Nivala Industrial Park Ltd., IUC Norr AB, Luleå University of Technology, Puh. 020 798 6000 Troms Fylkeskommune, Nordland Fylkeskom- www.lapinamk.fi/julkaisut mune, NORUT Narvik, Forskningsparken I Narvik The Lapland University Editors: Leena Parkkila & Kyllikki Taipale-Erävala Consortium (LUC) is a strategic Authors: Seppo Saari, Petter Kyösti, alliance between the University of John Lindström, Vinit Parida, Leena Parkkila, Lapland and Lapland Univeristy of David Sjödin, Kristiina Starck Enman, Applied Sciences. Kyllikki Taipale-Erävala, Ross Wakelin www.luc.fi Cover illustration: Pixabay Layout: Lapland UAS, Communications Contents Seppo Saari, Lapland University of Applied Sciences Kyllikki Taipale-Erävala, University of Oulu 1. FOREWORD . 7 Seppo Saari, Lapland University of Applied Sciences 2. THE DESCRIPTION OF THE PROCESS-SME PROJECT .
    [Show full text]