The Role of Tall Oil in Finnish Bio-Economy Policy and Changing Value Network

Total Page:16

File Type:pdf, Size:1020Kb

The Role of Tall Oil in Finnish Bio-Economy Policy and Changing Value Network The Role of Tall Oil in Finnish Bio-Economy Policy and Changing Value Network MASTER’S THESIS University of Helsinki Department of Forest Sciences Tania Afrin September 2018 HELSINGIN YLIOPISTO HELSINGFORS UNIVERSITET UNIVERSITY OF HELSINKI Tiedekunta/Osasto Fakultet/Sektion Faculty Laitos Institution Department Faculty of Agriculture and Forestry Department of Forest Sciences Tekijä Författare Author Tania Afrin Työn nimi Arbetets titel Title The Role of Tall Oil in Finnish Bio-Economy Oppiaine Läroämne Subject Forest Economics and Marketing Työn laji Arbetets art Level Aika Datum Month and year Sivumäärä Sidoantal Number of MSc in Agriculture and Forestry September, 2018 pages 66 Tiivistelmä Referat Abstract For 80 years, Pine Chemical Industries have used Crude Tall Oil (CTO) for a wide range of products. To fulfil the climate goal, the European Union (EU) has changed its policy by subsidizing renewable sources, which in turn has promoted CTO as a resource for biofuels. Also, Finland has followed the EU by setting the target for 2020. This research aims to analyze the role of CTO in Finnish bio-economy by focusing on the market dynamics and value network between biofuel and pine chemical industry after the new EU regulation. In addition, it forecast the optimal future end use market. The empirical study is based on qualitative data from five interviewees representing a forest company, two biochemical companies, a research institute and a consulting firm. This study showed that the double carbon benefit supported the increase in demand of CTO. The import also increased to produce biodiesel. In addition, biofuel companies have more purchasing power. Also, decrease in export and price fluctuation has been observed. Strategically, this has directed the biochemical companies to decrease their fixed costs. UPM, Forchem and Kraton are the key players using more than two times CTO where one fourth is used for biodiesel. If available enough, both sectors will have an impact on Finnish bio economy. The double counting has helped Finland to reach EU renewable energy quota for traffic fuel distribution. However, this study also showed that it is not beneficial to invest heavily based on subsidies. Both Biofuel and Biochemical Companies should consider CTO as a competitive product even without the subsidy. It is resource-efficient to use the functionality of the molecule and long value chain to produce diversified product. There should also be room for R&D and innovation. It is for example possible to produce biodiesel from other sources including waste and animal fat. If there is scarcity, then it would be wiser to produce biochemicals rather than biodiesel for maximum economic benefit. New holistic regulations are needed from Finnish authorities. The policy should consider equal access to the raw material, the higher value of the product, free market mechanism without any distortion, stable and balance operating environment for all its bio-based industries. Consumer awareness and motivation should be increased. Cross-industry collaboration, networking and integrating is also essential. Overall, co-operation rather than competition is needed from both biochemical and biodiesel sides. Avainsanat Nyckelord Keywords Tall oil, Bio-Economy, Value network, Market dynamics, Policy. Säilytyspaikka Förvaringsställe Where deposited University of Helsinki Muita tietoja Övriga uppgifter Further information Investment decision of pulp and paper industry. List of Figures Figure 1: CTO fraction percentage Figure 2: Four major components of wood Figure 3: Pulp process-At a glance Figure 4: Output of 2 tons of wood chips in forest industry in kraft pulping process Figure 5: Fractions of CTO in different process and its application Figure 6: Theoretical framework of the study Figure 7: Main part of Finnish Forest Cluster based on Lammi 2000 and Alen 2000 Figure 8: Forest cluster-movement towards bioeconomy Figure 9: The dimensions of the business ecosystem Figure 10: The effect of changing value network on business ecosystem Figure 11: Visual representation of the structure of the 2012 Bioeconomy Strategy and Action Plan Figure 12: Step towards sustainable business ecosystem Figure 13: Steps on sustainable business ecosystem towards Finnish Bioeconomy Figure 14: Pulp mill scenario at a glance Figure 15: Production of tall oil in the world Figure 16: Present World demand and supply of tall oil Figure 17: Tall oil Demand and Supply in Scandinavia Figure 18: Finland Export and Import situation, 2014-2018 Figure 19: Share of CTO use in Finland Figure 20: Crude tall oil price in Europe Figure 21: Market dynamics of tall oil Figure 22: Value chain network of tall oil Figure 23: Major CTO supplier and Value theory Figure 24: Impact of Climate policy on tall oil market 3 List of Tables Table 1: Difference in CTO derivatives Table 2: Comparison between cluster, value network and business ecosystem. Table 3: The implementation of interview protocol Table 4: Maximum potential based on investment plan Table 5: Use of CTO by three major players in Finland Table 6: Existing and planned tall oil base biodiesel in Finland and Sweden Table 7: Participant profile Table 8: Summary of participant responses according to questionnaire 4 ACKNOWLEDGEMENT I would like to give my heartiest gratitude to my supervisor, Professor Anne Toppinen, Department of Forest Science, University of Helsinki. Her vast knowledge, guidance and supervision supported me from start to end. She inspired me to this very interesting research topic, which is present time oriented in Finland. Her essential advices have helped me to complete this work. I also wish to deliver my special thanks to Jukka Lyyra, Area Manager, Paper Machine, Stora Enso Varkaus, who spend quite many hours to teach me about paper production process and how the tall oil produces as a by-product. He showed me the plant and also gave me a little bottle of tall oil for better understanding. Thanks to all the interviewee from VTT, Stora Enso, UPM, Forchem, Kraton and Häggblom & Partners for their valuable time, cooperation and support. No words to say thanks to Ullmaija Karhu, my teacher from Savonia AMK, who has always guide me to go forwards with my thesis. Deepest appreciation to my mother and husband for supporting me all the way. Thanks to all my friends, brothers and sisters for inspiring and encouraging me with my studies. Thank you all for being with me. Tania Afrin September, 2018 Helsinki, Finland 5 ABBREVIATIONS CO2 Carbon di-oxide CSS Crude sulphate soap CTO Crude tall oil DTO Distilled tall oil DJSI Dow Jones European and World Sustainability Indices EAV Economic added value EC European Commission EU European Union EU ETS European Union emission trading system HFO Heavy fuel oil HSL Helsinki Region Transport ISCC-EU International Sustainability and Carbon Certification LVL Laminated veneer lumber RED Renewable Energy Directive RES Renewable energy source RSB Roundtable of Sustainable Biomaterials SCA Svenska Cellulosa TOFA Tall oil fatty acid TOP Tall Oil Pitch TOR Tall oil Rosin USA United States of America 6 Table of Contents List of Figures.................................................................................................................................................... 3 List of Tables ..................................................................................................................................................... 4 ACKNOWLEDGEMENT ................................................................................................................................. 5 ABBREVIATIONS ........................................................................................................................................... 6 1 INTRODUCTION .......................................................................................................................................... 9 1.1 Background of the study .......................................................................................................................... 9 1.2 Aim, scope and Research Questions ...................................................................................................... 10 1.3 Outline of the Research ......................................................................................................................... 11 2 BACKGROUND OF CRUDE TALL OIL .................................................................................................. 13 2.1 Source of CTO ....................................................................................................................................... 14 2.2 Production process of CTO ................................................................................................................... 15 2.3 CTO applications and comparisons of the two main product ................................................................ 16 3 THEORETICAL BACKGROUND ............................................................................................................. 18 3.1 Value theory .......................................................................................................................................... 18 3.1.1 Porter’s Cluster theory and Forest cluster of Finland ..................................................................... 18 3.1.2 Value Network ................................................................................................................................ 22 3.1.3 Business
Recommended publications
  • The Miracle Resource Eco-Link
    Since 1989 Eco-Link Linking Social, Economic, and Ecological Issues The Miracle Resource Volume 14, Number 1 In the children’s book “The Giving Tree” by Shel Silverstein the main character is shown to beneÞ t in several ways from the generosity of one tree. The tree is a source of recreation, commodities, and solace. In this parable of giving, one is impressed by the wealth that a simple tree has to offer people: shade, food, lumber, comfort. And if we look beyond the wealth of a single tree to the benefits that we derive from entire forests one cannot help but be impressed by the bounty unmatched by any other natural resource in the world. That’s why trees are called the miracle resource. The forest is a factory where trees manufacture wood using energy from the sun, water and nutrients from the soil, and carbon dioxide from the atmosphere. In healthy growing forests, trees produce pure oxygen for us to breathe. Forests also provide clean air and water, wildlife habitat, and recreation opportunities to renew our spirits. Forests, trees, and wood have always been essential to civilization. In ancient Mesopotamia (now Iraq), the value of wood was equal to that of precious gems, stones, and metals. In Mycenaean Greece, wood was used to feed the great bronze furnaces that forged Greek culture. Rome’s monetary system was based on silver which required huge quantities of wood to convert ore into metal. For thousands of years, wood has been used for weapons and ships of war. Nations rose and fell based on their use and misuse of the forest resource.
    [Show full text]
  • Cardboard and Brown Paper Bags Office Paper, Newspaper, Junk Mail, Magazines, and Catalogs
    Recycling Center 801 Diamond Valley Drive Open: Daily to the public during daylight hours This guide will help you properly prepare your recyclable materials for drop-off at the Town of Windsor Recycle Center. This is a drop-off facility. It does not have a buy-back option and is for use by residents and small businesses. Following this information will help maintain the facility and the recycling program for the benefit of the community. IMPORTANT… • Do not leave your recyclables in plastic bags. Plastic bags are NOT recyclable! • The plastic item must be a BOTTLE or JAR. with a #1 or #2 on the bottom. • 99 percent of these will have a screw-on plastic lid (which isn’t recyclable). • Plastic containers with a #3 - #7 on the bottom are NOT acceptable. • Tubs, buckets, deli plates, microwave/fast food trays, wrappers, Styrofoam, toys, patio furniture, etc. are NOT acceptable. • Plastic bottles larger than 2.5 gallons are NOT acceptable. • Syringes and other medical supplies are NOT acceptable. Cardboard and Brown Paper Bags Corrugated cardboard is easy to recognize. It is made of paper and has an arched layer called “fluting” between smooth sheets called “liners”. The drop-off site has two 40-yard hydraulic compactor units for collecting corrugated cardboard and brown paper bags. The compaction system is self-activated by depositing the prepared materials into a six-inch tall slot. Flatten boxes. Cut or tear large boxes into sections no larger than 4 feet by 4 feet to prevent jamming the machine. No wet, waxed-coated or food-contaminated boxes.
    [Show full text]
  • The Story of Paper, Trees and Printing Is a Product from (Forest in School in Denmark)
    William’s grandfather is a fore- ster. He lives in a red house in the The story of forest. Some of his trees shall be harvested and made into paper. But how do you actually make white paper out of 15 meter tall p trees and printing trees with bark and branches? aper How did people invent paper ma- king? What has paper got to do with photosynthesis? How does printing press work? And how to make your own recycled paper? William and his grandpa take a journey into the history of paper, trees, and printing. ”The story of paper, trees, and printing” can be used in science classes’ from grade 4. The book covers paper, forest, forestry, wood, photosynthesis, wood fibres, paper history, recycling, the environment, the climate, paper production, printing press - and much more. The story of paper, trees and printing is a product from www.skoven-i-skolen.dk, (Forest in School in Denmark). English version is available from www.leaf-international.org, Learning about Forests. Malene Bendix Artwork by Eva Wulff The story of trees paperand printing Malene Bendix Graphic Association of Denmark and Forests in School in Denmark. The story of paper, trees and printing Originally published by The Graphic Association of Denmark and Skoven i Skolen (Forest in School in Denmark) 2012. Author: Malene Bendix, Skoven i Skolen (Forest in School in Denmark) Artwork and graphic design: Eva Wulff, Grafisk Tegnestue. Printed version: The original publication in Danish was printed by Kailow Graphic. Kailow Graphic is certified by DS 49001, which is a standard for social responsibility and sustainable business operation.
    [Show full text]
  • Tall Oil Rosin (TOR) Version Number: 8 Issued: 2021-03-15 Replaces SDS: 2019-01-16
    SAFETY DATA SHEET According to Regulation (EC) No 1907/2006 Tall Oil Rosin (TOR) Version number: 8 Issued: 2021-03-15 Replaces SDS: 2019-01-16 SECTION 1: Identification of the substance/mixture and of the company/undertaking 1.1. Product identifier Trade name Tall Oil Rosin (TOR) CAS No. 8050-09-7 UFI code 5SDP-7PGU-G604-3JPD EC number 232-475-7 REACH registration number 01-2119480418-32 Index No. 650-015-00-7 1.2. Relevant identified uses of the substance or mixture and uses advised against Use Manufacture rosin Rubber production Binders and release agents Coatings Production of paper and cardboard 1.3. Details of the supplier of the safety data sheet Supplier SunPine AB Street address Box 76 941 22 Piteå Sweden Telephone 0911-23 28 00 Email [email protected] Web site www.sunpine.se 1.4. Emergency telephone number NHS 111 1 / 15 SAFETY DATA SHEET According to Regulation (EC) No 1907/2006 Tall Oil Rosin (TOR) Version number: 8 Issued: 2021-03-15 Replaces SDS: 2019-01-16 Available outside office hours Yes SECTION 2: Hazards identification 2.1. Classification of the substance or mixture Classification according to Regulation (EC) No 1272/2008 Danger classes Skin sensitisation, hazard category 1 Hazard statements H317 2.2. Label elements Labelling according to Regulation (EC) No 1272/2008 Hazard pictograms Signal word Warning Hazard statements H317 May cause an allergic skin reaction. Precautionary statements P261 Avoid breathing smoke/fog/vapors/spray. P280 Wear protective gloves/protective clothing/eye protection/face protection. P302 + P352 IF ON SKIN: Wash with plenty of water/soap.
    [Show full text]
  • ( 12 ) United States Patent
    US009902815B2 (12 ) United States Patent ( 10 ) Patent No. : US 9 ,902 , 815 B2 Tamminen et al. ( 45 ) Date of Patent: Feb . 27 , 2018 ( 54 ) FUNCTIONALIZED LIGNIN AND METHOD ( 58 ) Field of Classification Search OF PRODUCING THE SAME ??? . .. C07G 1 / 00 See application file for complete search history . @(71 ) Applicant : Teknologian tutkimuskeskus VTT , VTT (FI ) ( 56 ) References Cited U . S . PATENT DOCUMENTS @(72 ) Inventors : Tarja Tamminen , Espoo (FI ) ; Jarmo Ropponen , Espoo (FI ) ; Eva - Lena Hult , 2 ,429 , 102 A 10 / 1947 Lewis et al. Espoo ( FI) ; Kristiina Poppius- Levlin , 3 , 149 , 085 A 9 / 1964 Ball et al . Espoo (FI ) 4 ,017 ,430 A * 4 / 1977 Briggs .. .. .. 530 / 502 5 ,773 , 590 A * 6 / 1998 Hart 530 / 500 6 ,172 ,204 B1 * 1 /2001 Sarkanen et al. 530 /500 @(73 ) Assignee : Teknologian tutkimuskeskus VTT Oy, 2010 /0105798 A1 * 4 /2010 Hasegawa . .. .. 522 / 99 Espoo (FI ) 2010 /0152428 A1* 6 / 2010 Gifford et al . .. .. .. 530 / 504 2010 / 0204368 A1 * 8 / 2010 Benko et al. .. .. .. .. .. .. .. 524 / 73 ( * ) Notice : Subject to any disclaimer, the term of this 2010 / 0331531 A1 * 12 / 2010 Mykytka .. .. 530 / 501 patent is extended or adjusted under 35 2011/ 0263836 A1 * 10 / 2011 Vuorenpalo et al. .. .. 530 / 500 U . S . C . 154 ( b ) by 33 days. 2012 /0012035 A1 * 1 / 2012 Blank et al. .. .. 106 / 802 ( 21) Appl. No. : 14 /348 , 904 OTHER PUBLICATIONS (22 ) PCT Filed : Oct. 8 , 2012 Holmbom ( Journal of the American Oil Chemists Society , 1977 , p . 289 - 293 ) . * Stenberg et al . (Surface Coatings International Part B : Coatings ( 86 ) PCT No. : PCT/ FI2012 /050965 Transactions , vol. 88 , B2 , 83 - 156 , 2005 ) .
    [Show full text]
  • Corrugated Board Structure: a Review M.C
    ISSN: 2395-3594 IJAET International Journal of Application of Engineering and Technology Vol-2 No.-3 Corrugated Board Structure: A Review M.C. Kaushal1, V.K.Sirohiya2 and R.K.Rathore3 1 2 Assistant Prof. Mechanical Engineering Department, Gwalior Institute of Information Technology,Gwalior, Assistant Prof. Mechanical Engineering 3 Departments, Gwalior Engineering College, Gwalior, M. Tech students Maharanapratap College of Technology, Gwalior, [email protected] [email protected] [email protected] ABSTRACT Corrugated board is widely used in the packing industry. The main advantages are lightness, recyclability and low cost. This makes the material the best choice to produce containers devoted to the shipping of goods. Furthermore examples of structure design based on corrugated boards can be found in different fields. Structural analysis of paperboard components is a crucial topic in the design of containers. It is required to investigate their strength properties because they have to protect the goods contained from lateral crushing and compression loads due to stacking. However in this paper complete and detailed information are presented. Keywords: - corrugated boards, recyclability, compression loads. Smaller flutes offer printability advantages as well as I. INTRODUCTION structural advantages for retail packaging. Corrugated board is essentially a paper sandwich consisting of corrugated medium layered between inside II. HISTORY and outside linerboard. On the production side, corrugated In 1856 the first known corrugated material was patented is a sub-category of the paperboard industry, which is a for sweatband lining in top hats. During the following four sub-category of the paper industry, which is a sub-category decades other forms of corrugated material were used as of the forest products industry.
    [Show full text]
  • Corrugated 101! ! !Corrugated Vs
    Corrugated 101! ! !Corrugated vs. Cardboard! • The term "cardboard box" is commonly misused when referring to a corrugated box. The correct technical term is "corrugated fiberboard carton.”! • Cardboard boxes are really chipboard boxes, and used primarily for packaging lightweight products, such as cereal or board games.! • Corrugated fiberboard boxes are widely utilized in retail packaging, shipping cartons, product displays and many other applications ! requiring lightweight, but sturdy materials.! !Corrugated Composition! Corrugated fiberboard is comprised of linerboard and heavy paper medium. Linerboard is the flat, outer surface that adheres to the medium. The medium is the wavy, fluted paper between the liners. Both are made of a special kind of heavy paper called !containerboard. Board strength will vary depending on the various linerboard and medium combinations.! • Single Face: Medium glued to 1 linerboard; flutes exposed! • Single Wall: Medium between 2 liners! • Double Wall: Varying mediums layered between 3 liners! !• Triple Wall: Varying mediums layered between 4 liners! !Flute Facts! !Corrugated board can be created with several different flute profiles. The five most common flute profiles are:! • A-Flute: Original corrugated flute design. Contains about 33 flutes per foot.! • B-Flute: Developed primarily for packaging canned goods. Contains about 47 flutes per foot and measures 1/8" thick! • C-Flute: Commonly used for shipping cartons. Contains about 39 flutes per foot and measures 5/32" thick! • E-Flute: Contains about 90 flutes per foot and measures 1/16" thick! • F-Flute: Developed for small retail packaging. Contains about 125 flutes per foot and measures 1/32" thick! • Generally, larger flute profiles deliver greater vertical compression strength and cushioning.
    [Show full text]
  • Paper from Alternative Fibres the Facts
    Paper From Alternative Fibres The Facts The paper and paper packaging industry depend on an efficient, abundant and economically viable source of cellulose fibre to manufacture the huge variety of paper products we use today, like; newspapers, magazines, tissue, and paper packaging. Most commonly fibre is sourced from trees, a natural renewable and sustainable source but, cellulose can also come from other agricultural sources. What are ‘alternative fibres’? • Cotton and linen remain excellent papermaking fibres, with very high cellulose content. This gives superior The key ingredient in papermaking is cellulose, which is strength and a luxurious feel but comes at a higher cost. derived from the vegetable fibres found in trees and other plants. Wood fibre (including recycled fibre) is by far the most • Bamboo has similar technical characteristics to wood common source used in modern papermaking, due to its pulp and is used commercially in some parts of the world, cost-effective availability, relatively high proportion of cellulose particularly Asia, albeit in relatively small quantities. and reliable technical characteristics. Alternative fibres come • Bagasse, the fibrous residue after extraction of sugar from from grasses, seed hairs and other parts of plants (such as sugar cane, behaves similarly to straw but is more difficult bast fibres and leaves) and have historically been used too, to process. albeit in relatively low volumes. • Sugar beet, meanwhile, has some potential, particularly History because of a low lignin content (the ‘glue’ that binds fibre together, causing impurities in paper) but is unproven at Paper was traditionally made from clothing rags, and scale. sometimes plant material such as straw, until the mid-19th century.
    [Show full text]
  • VNP Guideline LCA Data for Paper and Board in the Netherlands
    VNP Guidelines - LCA data for paper and board products It is of high importance that the data which isused from generic LCA databases (e.g. ecoinvent) are recent as well as representative for the kind of material used. Paper and board are complex materials that appear in different types suitable for the various applications. This document is set-up to assist LCA experts in finding the right data belonging to the type of paper and board studied. General advices: It is not advisable to use the data from European Life Cycle Database (ELCD) as these data are incomplete and also only ‘cradle to grave’: these are aggregated data hence difficult to identify where impacts come from and thus hardly usable for comparisons or to change for specific situations. Of all other generic databases ecoinvent is the most complete and current database. Other public datasets (e.g. GaBi, Base Impacts and ProBas) are less current and less easy to interpret from a user point of view. For LCA assessments on paper and board produced in the Netherlands it is essential to replace the input of the European average enery mix with input the Dutch energy mix. (NB this is not possible with ELCD as these allow no changes at all). Packaging paper Paper for corrugated board - Papier voor golfkarton Description Corrugated board (in Dutch: golfkarton) is the most commonly used transport packaging. Corrugated board consists of one or more layers of corrugated paper, in combination with one or more layers flat paper. The corrugated paper is called fluting or medium. The flat papers are called liners.
    [Show full text]
  • Cellulose Based Electrical Insulation
    . Cellulose-based electrical insulation REBECCA HOLLERTZ Supervised by Lars Wågberg and Claire Pitois DIELECTRIC INTRODUCTION PROPERTIES The aim of this PhD-project is to use novel A more efficient electrical energy generation and modification routes for wood-fibres, such as nano Increasing voltage levels transmission will be increasingly vital to meet Demand for fibrillation and layer-by-layer (LbL) adsorption of Permittivity and dielectric growing societal needs. The major failures in oil- improved electrical loss are important dielectric filled high voltage transformers, a key component modifying components to clarify the influence of Integration of renewables insulation properties which affect the in power transmission networks (with paper and chemistry and morphology on relevant electrical materials loss of energy and the build- pressboard used as the solid insulation material), phenomena and improve the electrical insulating Increased reliability up of electric fields in the are related to the insulation material. capability of wood-fibre based electrical insulation. insulator, and at inter-faces. The dielectric strength is used to describe the RESULTS AND OUTLOOK maximum electric field a material can with-stand * before flash-over or short- 1. Streamer inception and propagation circuiting. Before experiencing break- Streamer inception down, the insulating material is often subjected to deteriorating discharges and streamers which can also be triggered and analysed in the laboratory. Streamers, conducting gaseous channels which can travel in high speed, at oil- pressboard inter-faces have been identified as a signi- ficant cause responsible for PAPER transformer failures. The ultimate goal of this PhD project is a better The setup constructed gives valuable information about streamer inception and propagation at the solid-liquid interface and understanding of which will be used to characterize the influence of the solid material by testing different polymers and modified paper sheets.
    [Show full text]
  • Outlook for U.S. Paper and Paperboard Sector and Wood Fiber Supply in North America
    Chapter 5 - Outlook for U.S. paper and paperboard sector and Wood fiber supply in North America Mr. Peter J. Ince United States Forest Service U.S. Forest Products Laboratory, Madison, Wisconsin Abstract, Consumption of wood fiber in pulp, paper and paperboard increased in the United States over the past century and is projected to increase well into the next century at a decelerating rate of growth. Harvest of pulpwood on forest land is the single largest source of wood fiber, followed by recycled paper and wood residues. In the past decade, wood residues declined in supply while use of recycled paper increased rapidly. Use of recycled paper is projected to increase more steadily in the future with slower growth in paper recovery for recycling. Harvest of pulpwood on forest land is projected to remain the dominant source of U.S. fiber supply through the first half of the next century. Softwood pulpwood harvest on forest land is projected to increase as U.S. softwood residue supplies decline. Pulpwood stumpage values are projected to increase in the United States, based on supply and demand analysis, gradually improving economic opportunities for growing hardwood short-rotation woody crops on agricultural land. Hardwood pulpwood harvest on forest land is projected to increase for several decades but then decline in the long run with increasing fiber supply from agricultural short-rotation woody crops. Canada is projected to remain the principal source of U.S. pulp and paper imports, which are projected to increase. Most Canadian domestic pulpwood supply is projected to remain wood residues, as Canadian lumber production and residue output are projected to increase in the future.
    [Show full text]
  • The Bioeconomy Hub: Innovative Products from Biomass
    The Bioeconomy Hub: Innovative products from biomass Tim Caldecott and Douglas Singbeil Opportunities are everywhere! Building new connections and supply chain is the challenge. Composites Aerospace Food & Beverage Energy Automotive Fiber Construction © 2017 FPInnovations. Tous droits réservés. Reproduction et diffusion interdites. All rights reserved. Copying and redistribution prohibited. Biomass is bulky and expensive to transport Fibre supply chains need to be short and optimized. Better to process the biomass at a hub and send semi-finished or finished products to market. 3 © 2015 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. Volume and Value Pulp/paper biofuels Sweet spot Market size Specialty chemical and materials Copyright FPInnovations © 2013. Do not reproduce without permission. 4 Source: “Thermochemical Strategies for Biofuels, Green Chemicals, © 2015 FPInnovations. AllPolymeric rights reserved. Biomaterials Copying and redistribution and Biofuels”, prohibited. Esteban® FPInnovations, Chornet, its marks Novemberand logos are tr ade2005marks. of FPInnovations. Value of residues from macro to nano New Wood Attributes • “green” substitutes • Light-weighting • Stronger • Stretchable • Improved aesthetics • New attributes • Not necessarily cheaper 5 © 2015 FPInnovations. All rights reserved. Copying and redistribution prohibited. ® FPInnovations, its marks and logos are trademarks of FPInnovations. The Bio-economy from a BC Context
    [Show full text]