On Plutella Xylostella (Lepidoptera: Plutellidae) Larvae Parasitized by Cotesia Plutellae (Hymenoptera: Braconidae) and Its Impact on Cabbage

Total Page:16

File Type:pdf, Size:1020Kb

On Plutella Xylostella (Lepidoptera: Plutellidae) Larvae Parasitized by Cotesia Plutellae (Hymenoptera: Braconidae) and Its Impact on Cabbage Available online at www.sciencedirect.com Biological Control 45 (2008) 386–395 www.elsevier.com/locate/ybcon Predation by Podisus maculiventris (Hemiptera: Pentatomidae) on Plutella xylostella (Lepidoptera: Plutellidae) larvae parasitized by Cotesia plutellae (Hymenoptera: Braconidae) and its impact on cabbage Nathan J. Herrick a,*, Stuart R. Reitz b, James E. Carpenter c, Charles W. O’Brien d,1 a Department of Entomology, Virginia Polytechnic Institute and State University, 216 Price Hall (0319), Blacksburg, VA 24061, USA b USDA-ARS-CMAVE, 6383 Mahan Drive, Tallahassee, FL 32308, USA c USDA-ARS-CPMRU, 2747 Davis Road, Tifton, GA 31794, USA d Formerly: CBC-CESTA, 105 Perry-Paige Building [South], Florida A&M University, FL 32307, USA Received 17 September 2007; accepted 20 February 2008 Available online 4 March 2008 Abstract Biological control offers potentially effective suppression of the diamondback moth (DBM), Plutella xylostella, a serious pest of Bras- sica crops. Little is known of whether multiple natural enemies have additive, antagonistic, or synergistic effects on DBM populations. No-choice and choice tests were conducted to assess predation by Podisus maculiventris on DBM larvae parasitized by Cotesia plutellae and unparasitized larvae. In no-choice tests, P. maculiventris preyed on greater numbers of parasitized than unparasitized larvae and greater numbers of young larvae than old larvae. In choice tests with early third instar DBM, there was no difference in predation between parasitized or unparasitized larvae. However, in choice tests with older prey, P. maculiventris preyed on more parasitized than unparasitized larvae. Two field studies were conducted to test if this predator and parasitoid have additive, antagonistic or synergistic effects on DBM populations and plant damage in cabbage (Brassica oleracea var. capitata). In 2002, DBM populations were significantly lower in the presence of C. plutellae but not in the presence of P. maculiventris. There was not a significant interaction between the nat- ural enemies. Plant damage was reduced only with C. plutellae. In 2003, DBM populations were significantly lower in the presence of C. plutellae and P. maculiventris, although the combination of natural enemies did not lead to a non-additive interaction. Plant damage was unaffected by the presence of either natural enemy. Because of its greater predation on parasitized larvae, P. maculiventris could be an intraguild predator of C. plutellae. Yet, their overall combined effect in the field was additive rather than antagonistic. Ó 2008 Elsevier Inc. All rights reserved. Keywords: Plutella xylostella; Diamondback moth; Podisus maculiventris; Spined-soldier bug; Cotesia plutellae; Intraguild predation; Predator–parasitoid interaction; Biological control 1. Introduction tions among natural enemies affect mortality in pest popu- lations because the outcome of these interactions can Interactions among multiple natural enemies of pests, significantly influence suppression of a pest and subsequent especially the interactions between predator and parasitoid plant damage. guilds, have generated considerable interest within the field Ecologists once considered that mortality from multiple of biological control. A primary interest lies in how interac- natural enemies is additive; however, it is now understood that synergistic or antagonistic interactions can transpire * Corresponding author. Fax: +1 540 231 9131. (Ferguson and Stiling, 1996; Sih et al., 1998; Swisher E-mail address: [email protected] (N.J. Herrick). et al., 1998). An additive association occurs when the 1 Retired. proportion of mortality caused by one natural enemy is 1049-9644/$ - see front matter Ó 2008 Elsevier Inc. All rights reserved. doi:10.1016/j.biocontrol.2008.02.008 N.J. Herrick et al. / Biological Control 45 (2008) 386–395 387 independent of the mortality induced by any other natural DBM (Vuorinen et al., 2004). Although previous research enemy. Resource partitioning, such as when natural ene- has shown that P. maculiventris has potential as a biologi- mies prefer different areas of a shared habitat, can result cal control agent for DBM (Ibrahim and Holopanin, 2004), in an additive association (Streams, 1987). The combined Mallampalli et al. (2002) and DeClerq et al. (2003) reported mortality from multiple natural enemies acting indepen- instances of intraguild predation (IGP) by P. maculiventris dently can be predicted from a multiplicative risk model on alternate predators. Mallampalli et al. (2002) found that based their individual effects (Soluk, 1993). Deviations P. maculiventris could prey on larvae of the predatory cocc- from these independent, additive effects would indicate inellid Coleomegilla maculata Lengi (Coleoptera: Coccinel- the natural enemies act antagonistically or synergistically. lidae), and their results indicate that interactions between Antagonism occurs when natural enemies interfere with these two predators on their extraguild prey were antago- each other and cause less mortality than the additive effect. nistic. DeClerq et al. (2003) found that IGP by P. maculiv- Antagonism results in greater pest populations, and conse- entris on Harmonia axyridis (Pallas) (Coleoptera: quently increases crop damage. Antagonism can result Coccinellidae) decreased significantly in the presence of from interactions such as intraguild predation (Pemberton the extraguild prey, Spodoptera littoralis (Boisduval) (Lep- and Willard, 1918; Lindgren and Wolfenbarger, 1976; idoptera: Noctuidae), but not when aphids, Myzus persicae DeClerq et al., 2003; Finke and Denno, 2003). Alterna- (Sulzer) (Homoptera: Aphididae), served as the extraguild tively, synergism has the potential to produce the greatest prey. reduction in pest populations (Furlong and Groden, Similarly, Bilu and Coll (2007) studied IGP of the pred- 2001) and is desirable in pest management because total ator Coccinella undecimpunctata L. (Coleoptera: Coccinelli- pest mortality would be greater than the additive mortality dae) on the parasitoid Aphidius colemani Viereck of the multiple natural enemies (Rosenheim et al., 1993; (Hymenoptera: Braconidae) with M. persicae as the source Ferguson and Stiling, 1996; Cloutier and Jean, 1998; Losey of extraguild prey. They conclude that the presence of the and Denno, 1998, 1999; Colfer and Rosenheim, 2001). predator had a short-term negative impact on parasitism. The diamondback moth (DBM), Plutella xylostella (L.) However, after five days the combined activity of the pred- (Lepidoptera: Plutellidae), is one of the most serious pests ator and parasitoid resulted in the greatest suppression of of brassica crops [Brassica oleracea (L.)]. The solitary spe- aphids. They suggest that this response was because the cialist parasitoid Cotesia plutellae (Kurdjumov) (Hyme- predator did not show a preference for parasitized prey noptera: Braconidae) is one of the most important and instances of IGP were low due to low parasitism rates. parasitoids of DBM (Talekar and Yang, 1991). Talekar If P. maculiventris preferentially preys on larvae parasitized and Yang (1991) found high levels of parasitism by C. plu- by C. plutellae, DBM populations and plant damage may tellae among brassica cultivars: 55%, 75%, 60%, and 37.5% be greater when C. plutellae is in the presence of P. macu- in cabbage, Chinese cabbage (B. chinensis L.), cauliflower, liventris than when C. plutellae acts alone. and broccoli, respectively. It has been released on numer- Our goal in these studies was to understand how DBM ous occasions throughout the world for DBM control populations and plant damage are affected by P. maculiven- (Lim, 1982; Mitchell et al., 1997, 1999). Parasitized individ- tris and C. plutellae alone and in combination. We studied uals remain on the host until egression of wasps, so both if P. maculiventris preferentially attacks larvae parasitized parasitized and unparasitized larvae are exposed to preda- by C. plutellae or unparasitized DBM larvae to determine tion. Yet, when DBM is parasitized by C. plutellae, its lar- whether such a preference has the potential to affect the val developmental time increases (Shi et al., 2002), which interaction between these natural enemies. We then con- could expose parasitized individuals to predation for ducted field cage studies to determine the effects that this longer than unparasitized individuals. Consequently, pre- predator and parasitoid have, alone and together, on dators may disproportionately consume parasitized larvae. DBM populations and consequent plant damage, which If so, populations of a parasitoid can be severely reduced is the most important measure from a crop management (Hassell and May, 1986). perspective. Podisus maculiventris (Say) (Hemiptera: Pentatomindae) is a generalist predator that preferentially feeds on lepidop- teran larvae, including larvae of DBM (Warren and Wallis, 2. Materials and methods 1971; McPherson, 1980; Muckenfuss, 1992; Wiedenmann et al., 1994; DeClerq et al., 1998; Westich and Hough- 2.1. Insect maintenance Goldstein, 2001; Pell et al., 2008). Podisus maculiventris is found in a variety of agroecosystems and is common in A colony of DBM was established in 2001 from eggs brassicas, especially when Lepidoptera populations are obtained from the USDA-ARS-CMPRU, Tifton, Georgia. high (McPherson, 1980; Culliney, 1986). Throughout much Larvae were maintained on a pinto bean-based artificial of its range, P. maculiventris is active during the same time diet (Carpenter and Bloem, 2002). Adults were held in of season
Recommended publications
  • Analysis of the Evolutionary Relationship and Geographical Patterns of Genetically Varied Populations of Diamondback Moth, Plutella Xylostella (L.)
    Analysis of the evolutionary relationship and geographical patterns of genetically varied populations of diamondback moth, Plutella xylostella (L.) by Shijun You MSc., The University of British Columbia, 2010 A THESIS SUBMITTED IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE OF DOCTOR OF PHILOSOPHY in THE FACULTY OF GRADUATE AND POSTDOCTORAL STUDIES (Botany) THE UNIVERSITY OF BRITISH COLUMBIA (Vancouver) October 2017 © Shijun You, 2017 Abstract The diamondback moth (DBM), Plutella xylostella, is well known for its extensive adaptation and distribution, high level of genetic variation and polymorphism, and strong resistance to a broad range of synthetic insecticides. Although understanding of the P. xylostella biology and ecology has been considerably improved, knowledge on the genetic basis of these traits remains surprisingly limited. Based on data generated by different sets of molecular markers, we uncovered the history of evolutionary origin and regional dispersal, identified the patterns of genetic diversity and variation, characterized the demographic history, and revealed natural and human-aided factors that are potentially responsible for contemporary distribution of P. xylostella. These findings rewrite our understanding of this exceptional system, revealing that South America might be a potential origin of P. xylostella, and recently colonized across most parts of the world resulting possibly from intensified human activities. With the data from selected continents, we demonstrated signatures of localized selection associated with environmental adaptation and insecticide resistance of P. xylostella. This work brings us to a better understanding of the regional movement and genetic bases on rapid adaptation and development of agrochemical resistance, and provides a solid foundation for better monitoring and management of this worldwide herbivore and forecast of regional pest status of P.
    [Show full text]
  • Butterflies of Ontario & Summaries of Lepidoptera
    ISBN #: 0-921631-12-X BUTTERFLIES OF ONTARIO & SUMMARIES OF LEPIDOPTERA ENCOUNTERED IN ONTARIO IN 1991 BY A.J. HANKS &Q.F. HESS PRODUCTION BY ALAN J. HANKS APRIL 1992 CONTENTS 1. INTRODUCTION PAGE 1 2. WEATHER DURING THE 1991 SEASON 6 3. CORRECTIONS TO PREVIOUS T.E.A. SUMMARIES 7 4. SPECIAL NOTES ON ONTARIO LEPIDOPTERA 8 4.1 The Inornate Ringlet in Middlesex & Lambton Cos. 8 4.2 The Monarch in Ontario 8 4.3 The Status of the Karner Blue & Frosted Elfin in Ontario in 1991 11 4.4 The West Virginia White in Ontario in 1991 11 4.5 Butterfly & Moth Records for Kettle Point 11 4.6 Butterflies in the Hamilton Study Area 12 4.7 Notes & Observations on the Early Hairstreak 15 4.8 A Big Day for Migrants 16 4.9 The Ocola Skipper - New to Ontario & Canada .17 4.10 The Brazilian Skipper - New to Ontario & Canada 19 4.11 Further Notes on the Zarucco Dusky Wing in Ontario 21 4.12 A Range Extension for the Large Marblewing 22 4.13 The Grayling North of Lake Superior 22 4.14 Description of an Aberrant Crescent 23 4.15 A New Foodplant for the Old World Swallowtail 24 4.16 An Owl Moth at Point Pelee 25 4.17 Butterfly Sampling in Algoma District 26 4.18 Record Early Butterfly Dates in 1991 26 4.19 Rearing Notes from Northumberland County 28 5. GENERAL SUMMARY 29 6. 1990 SUMMARY OF ONTARIO BUTTERFLIES, SKIPPERS & MOTHS 32 Hesperiidae 32 Papilionidae 42 Pieridae 44 Lycaenidae 48 Libytheidae 56 Nymphalidae 56 Apaturidae 66 Satyr1dae 66 Danaidae 70 MOTHS 72 CONTINUOUS MOTH CYCLICAL SUMMARY 85 7.
    [Show full text]
  • Is Diadegma Insulare Or Microplitis Plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella Xylostella ?
    War of the Wasps: Is Diadegma insulare or Microplitis plutellae a More Effective Parasitoid of the Diamondback Moth, Plutella xylostella ? ADAMO YOUNG 108 Homestead Street, Ottawa Ontario K2E 7N6 Canada; email: [email protected] Young, Adamo. 2013. War of the wasps: is Diadegma insulare or Microplitis plutellae a more effective parasitoid of the Dia - mondback Moth, Plutella xylostella ? Canadian Field-Naturalist 127(3): 211–215. Parasitism levels by Diadegma insulare (Muesebeck) (Hymenoptera: Ichneumonidae) and Microplitis plutellae (Haliday) (Hymenoptera: Braconidae) at various densities of their host, Plutella xylostella (L.) (Lepidoptera: Plutellidae), were assessed. Cages with densities of 10 hosts, 20 hosts, and 40 hosts were set up, with the cage volume (40 500 cm 3) and number of wasps (2 females) remaining constant. The host populations were also exposed to the wasps for two different exposure times: 1 day and 3 days. The study showed that D. insulare was a better parasitoid overall, achieving a level of parasitism equal to or higher than M. plutellae at all densities. Microplitis plutellae performed best at a lower host density (76% ± 9% of 10 hosts vs. 43% ± 3% of 40 hosts). Diadegma insulare performed similarly at all densities tested (75% ± 5% of 10 hosts, 83% ± 4% of 20 hosts, and 79% ± 6% of 40 hosts). This suggests that D. insulare may be the better parasitoid overall and should be applied in severe, large-scale infestations, while M. plutellae may be better for small-scale infestations. Key Words: Diamondback Moth; Plutella xylostella; Microplitis plutellae; Diadegma insulare; parasitoids; biological control Introduction ical control can provide better control than pesticides.
    [Show full text]
  • Twenty-Five Pests You Don't Want in Your Garden
    Twenty-five Pests You Don’t Want in Your Garden Prepared by the PA IPM Program J. Kenneth Long, Jr. PA IPM Program Assistant (717) 772-5227 [email protected] Pest Pest Sheet Aphid 1 Asparagus Beetle 2 Bean Leaf Beetle 3 Cabbage Looper 4 Cabbage Maggot 5 Colorado Potato Beetle 6 Corn Earworm (Tomato Fruitworm) 7 Cutworm 8 Diamondback Moth 9 European Corn Borer 10 Flea Beetle 11 Imported Cabbageworm 12 Japanese Beetle 13 Mexican Bean Beetle 14 Northern Corn Rootworm 15 Potato Leafhopper 16 Slug 17 Spotted Cucumber Beetle (Southern Corn Rootworm) 18 Squash Bug 19 Squash Vine Borer 20 Stink Bug 21 Striped Cucumber Beetle 22 Tarnished Plant Bug 23 Tomato Hornworm 24 Wireworm 25 PA IPM Program Pest Sheet 1 Aphids Many species (Homoptera: Aphididae) (Origin: Native) Insect Description: 1 Adults: About /8” long; soft-bodied; light to dark green; may be winged or wingless. Cornicles, paired tubular structures on abdomen, are helpful in identification. Nymph: Daughters are born alive contain- ing partly formed daughters inside their bodies. (See life history below). Soybean Aphids Eggs: Laid in protected places only near the end of the growing season. Primary Host: Many vegetable crops. Life History: Females lay eggs near the end Damage: Adults and immatures suck sap from of the growing season in protected places on plants, reducing vigor and growth of plant. host plants. In spring, plump “stem Produce “honeydew” (sticky liquid) on which a mothers” emerge from these eggs, and give black fungus can grow. live birth to daughters, and theygive birth Management: Hide under leaves.
    [Show full text]
  • Big Creek Lepidoptera Checklist
    Big Creek Lepidoptera Checklist Prepared by J.A. Powell, Essig Museum of Entomology, UC Berkeley. For a description of the Big Creek Lepidoptera Survey, see Powell, J.A. Big Creek Reserve Lepidoptera Survey: Recovery of Populations after the 1985 Rat Creek Fire. In Views of a Coastal Wilderness: 20 Years of Research at Big Creek Reserve. (copies available at the reserve). family genus species subspecies author Acrolepiidae Acrolepiopsis californica Gaedicke Adelidae Adela flammeusella Chambers Adelidae Adela punctiferella Walsingham Adelidae Adela septentrionella Walsingham Adelidae Adela trigrapha Zeller Alucitidae Alucita hexadactyla Linnaeus Arctiidae Apantesis ornata (Packard) Arctiidae Apantesis proxima (Guerin-Meneville) Arctiidae Arachnis picta Packard Arctiidae Cisthene deserta (Felder) Arctiidae Cisthene faustinula (Boisduval) Arctiidae Cisthene liberomacula (Dyar) Arctiidae Gnophaela latipennis (Boisduval) Arctiidae Hemihyalea edwardsii (Packard) Arctiidae Lophocampa maculata Harris Arctiidae Lycomorpha grotei (Packard) Arctiidae Spilosoma vagans (Boisduval) Arctiidae Spilosoma vestalis Packard Argyresthiidae Argyresthia cupressella Walsingham Argyresthiidae Argyresthia franciscella Busck Argyresthiidae Argyresthia sp. (gray) Blastobasidae ?genus Blastobasidae Blastobasis ?glandulella (Riley) Blastobasidae Holcocera (sp.1) Blastobasidae Holcocera (sp.2) Blastobasidae Holcocera (sp.3) Blastobasidae Holcocera (sp.4) Blastobasidae Holcocera (sp.5) Blastobasidae Holcocera (sp.6) Blastobasidae Holcocera gigantella (Chambers) Blastobasidae
    [Show full text]
  • Establishment and Characterization of Insect Cell Lines from 10 Lepidopteran Species
    In Vitro Cell. Dev. Biol.ÐAnimal 37:367±373, June 2001 q 2001 Society for In Vitro Biology 1071-2690/01 $10.00+0.00 ESTABLISHMENT AND CHARACTERIZATION OF INSECT CELL LINES FROM 10 LEPIDOPTERAN SPECIES CYNTHIA L. GOODMAN,1 GALAL N. EL SAYED, ARTHUR H. MCINTOSH, JAMES J. GRASELA, AND BRAD STILES Biological Control of Insects Research Laboratory (BCIRL), U.S. Department of Agriculture (USDA),2 Agricultural Research Service (ARS), Columbia, Missouri 65203-3535 (C. L. G., A. H. M., J. J. G.), Department of Entomology, University of Missouri, Columbia, Missouri 65211 (G. N. E.), and BASF Agro Research (formerly American Cyanamid Co., Agricultural Research Div.), P.O. Box 400, Princeton, New Jersey 08540 (B. S.) (Received 27 December 2000; accepted 16 March 2001) SUMMARY Cell lines from selected lepidopteran species were established for the overall purpose of use in baculovirus production. A total of 36 new cell lines from 10 lepidopteran species were generated, including cell lines from a pyralid, the European corn borer, Ostrinia nubilalis, a plutellid, the diamondback moth, Plutella xylostella, as well as eight noctuids: the black cutworm, Agrotis ipsilon, the celery looper, Anagrapha falcifera, the velvetbean caterpillar, Anticarsia gemmatalis, the corn earworm, Helicoverpa zea, the tobacco budworm, Heliothis virescens, the beet armyworm, Spodoptera exigua, the fall armyworm, Spodoptera frugiperda, and the cabbage looper, Trichoplusia ni. Tissues used for cell line establishment included fat bodies, ovaries, testes, or whole embryos/larvae/pupae. All the cell lines were subcultured numerous times, characterized by isoenzyme analysis and/or deoxyribonucleic acid ampli®cation ®ngerprinting using polymerase chain reaction, and stored in liquid nitrogen.
    [Show full text]
  • Chrysoperla Carnea by Chemical Cues from Cole Crops
    Biological Control 29 (2004) 270–277 www.elsevier.com/locate/ybcon Mediation of host selection and oviposition behavior in the diamondback moth Plutella xylostella and its predator Chrysoperla carnea by chemical cues from cole crops G.V.P. Reddy,a,* E. Tabone,b and M.T. Smithc a Agricultural Experiment Station, College of Agriculture and Life Sciences, University of Guam, Mangilao, GU 96923, USA b INRA, Entomologie et Lutte Biologique, 37 Bd du Cap, Antibes F-06606, France c USDA, ARS, Beneficial Insect Introduction Research Unit, University of Delaware, 501 S. Chapel, St. Newark, DE 19713-3814, USA Received 28 January 2003; accepted 15 July 2003 Abstract Host plant-mediated orientation and oviposition by diamondback moth (DBM) Plutella xylostella (L.) (Lepidoptera: Ypo- nomeutidae) and its predator Chrysoperla carnea Stephens (Neuroptera: Chrysopidae) were studied in response to four different brassica host plants: cabbage, (Brassica oleracea L. subsp. capitata), cauliflower (B. oleracea L. subsp. botrytis), kohlrabi (B. oleracea L. subsp. gongylodes), and broccoli (B. oleracea L. subsp. italica). Results from laboratory wind tunnel studies indicated that orientation of female DBM and C. carnea females towards cabbage and cauliflower was significantly greater than towards either broccoli or kohlrabi plants. However, DBM and C. carnea males did not orient towards any of the host plants. In no-choice tests, oviposition by DBM did not differ significantly among the test plants, while C. carnea layed significantly more eggs on cabbage, cauliflower, and broccoli than on kohlrabi. However, in free-choice tests, oviposition by DBM was significantly greater on cabbage, followed by cauliflower, broccoli, and kohlrabi, while C.
    [Show full text]
  • Variation Among 532 Genomes Unveils the Origin and Evolutionary
    ARTICLE https://doi.org/10.1038/s41467-020-16178-9 OPEN Variation among 532 genomes unveils the origin and evolutionary history of a global insect herbivore ✉ Minsheng You 1,2,20 , Fushi Ke1,2,20, Shijun You 1,2,3,20, Zhangyan Wu4,20, Qingfeng Liu 4,20, ✉ ✉ Weiyi He 1,2,20, Simon W. Baxter1,2,5, Zhiguang Yuchi 1,6, Liette Vasseur 1,2,7 , Geoff M. Gurr 1,2,8 , Christopher M. Ward 9, Hugo Cerda1,2,10, Guang Yang1,2, Lu Peng1,2, Yuanchun Jin4, Miao Xie1,2, Lijun Cai1,2, Carl J. Douglas1,2,3,21, Murray B. Isman 11, Mark S. Goettel1,2,12, Qisheng Song 1,2,13, Qinghai Fan1,2,14, ✉ Gefu Wang-Pruski1,2,15, David C. Lees16, Zhen Yue 4 , Jianlin Bai1,2, Tiansheng Liu1,2, Lianyun Lin1,5, 1234567890():,; Yunkai Zheng1,2, Zhaohua Zeng1,17, Sheng Lin1,2, Yue Wang1,2, Qian Zhao1,2, Xiaofeng Xia1,2, Wenbin Chen1,2, Lilin Chen1,2, Mingmin Zou1,2, Jinying Liao1,2, Qiang Gao4, Xiaodong Fang4, Ye Yin4, Huanming Yang4,17,19, Jian Wang4,18,19, Liwei Han1,2, Yingjun Lin1,2, Yanping Lu1,2 & Mousheng Zhuang1,2 The diamondback moth, Plutella xylostella is a cosmopolitan pest that has evolved resistance to all classes of insecticide, and costs the world economy an estimated US $4-5 billion annually. We analyse patterns of variation among 532 P. xylostella genomes, representing a worldwide sample of 114 populations. We find evidence that suggests South America is the geographical area of origin of this species, challenging earlier hypotheses of an Old-World origin.
    [Show full text]
  • Phylogeny and Evolution of Lepidoptera
    EN62CH15-Mitter ARI 5 November 2016 12:1 I Review in Advance first posted online V E W E on November 16, 2016. (Changes may R S still occur before final publication online and in print.) I E N C N A D V A Phylogeny and Evolution of Lepidoptera Charles Mitter,1,∗ Donald R. Davis,2 and Michael P. Cummings3 1Department of Entomology, University of Maryland, College Park, Maryland 20742; email: [email protected] 2Department of Entomology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560 3Laboratory of Molecular Evolution, Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland 20742 Annu. Rev. Entomol. 2017. 62:265–83 Keywords Annu. Rev. Entomol. 2017.62. Downloaded from www.annualreviews.org The Annual Review of Entomology is online at Hexapoda, insect, systematics, classification, butterfly, moth, molecular ento.annualreviews.org systematics This article’s doi: Access provided by University of Maryland - College Park on 11/20/16. For personal use only. 10.1146/annurev-ento-031616-035125 Abstract Copyright c 2017 by Annual Reviews. Until recently, deep-level phylogeny in Lepidoptera, the largest single ra- All rights reserved diation of plant-feeding insects, was very poorly understood. Over the past ∗ Corresponding author two decades, building on a preceding era of morphological cladistic stud- ies, molecular data have yielded robust initial estimates of relationships both within and among the ∼43 superfamilies, with unsolved problems now yield- ing to much larger data sets from high-throughput sequencing. Here we summarize progress on lepidopteran phylogeny since 1975, emphasizing the superfamily level, and discuss some resulting advances in our understanding of lepidopteran evolution.
    [Show full text]
  • The Origins of Infestations of Diamondback Moth, Plutella Xylostella (L.), in Canola in Western Canada L.M. Dosdall1, P.G. Mason
    The management of diamondback moth and other crucifer pests The origins of infestations of diamondback moth, Plutella xylostella (L.), in canola in western Canada L.M. Dosdall1, P.G. Mason2, O. Olfert3, L. Kaminski3, and B.A. Keddie4 1Dept. of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada T6G 2P5 2Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, Canada K1A 0C6 3Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2 4Dept. of Biological Sciences, University of Alberta, Edmonton, AB, Canada T6G 2E9 Corresponding author: [email protected] Abstract Recent evidence that a population of Plutella xylostella (L.) overwintered successfully in western Canada prompted studies to evaluate overwintering survival of diamondback moth under field conditions in Alberta and Saskatchewan. Successful overwintering was not demonstrated at either site for any life stage under a variety of tillage and organic matter treatments, using either laboratory-reared or field-acclimated specimens of diamondback moth. Diamondback moth infestations in western Canada evidently originate primarily from southern U.S.A. or Mexico when strong winds carry adults northward in spring. To provide early warning predictions of infestations, air parcel trajectories into western Canada were investigated for monitoring long-range movement of P. xylostella early in the season. Using wind fields generated by the Canadian Meteorological Centre’s Global Environmental Multiscale model, three-dimensional air parcel trajectories were calculated using time-forward (prognostic) and time-backward (diagnostic) modes for several sites in North America. The model predicted strong northerly airflow in May 2001 which coincided with the occurrence of massive infestations of diamondback moth in canola in western Canada.
    [Show full text]
  • Vegetable Insects Department of Entomology
    E-99-W Vegetable Insects Department of Entomology MANAGING INSECT PESTS OF COMMERCIALLY GROWN CRUCIFERS Ricky E. Foster, Extension Entomologist The crucifers include cabbage, caulifl ower, broccoli, The following practices will reduce cabbage maggot injury. Brussels sprouts, turnips, radishes, kale, rutabaga, mustard, • Disk crop residues immediately after harvest to reduce collards, horseradish, and other crucifers. All of the crucifers overwintering populations. are subject to attack by insects. Some, such as radishes, can • Plant in well-drained soils when soil temperatures exceed usually be grown without insect damage and others, such as 50°F. cabbage, must be managed carefully to avoid serious insect • Do not plant in fi elds to which animal manure has been damage. recently applied or in which a cover crop has been plowed down within 3-4 weeks of planting. CABBAGE MAGGOTS • Use the soil insecticides diazinon, Lorsban, or Capture LFR in the seed furrow or as transplant drenches. The fi rst insect of concern on crucifers is usually the cab- bage maggot. Cabbage maggot overwinters as pupae in the FLEA BEETLES soil. The fl ies, slightly smaller than a housefl y, emerge from the soil in late April or early May and lay white eggs at the Flea beetles are almost always a pest of crucifers, es- bases of newly set plants. Emergence usually coincides with pecially early in the growing season. Flea beetles are small, the time when yellow rocket, a common weed, is in full bloom. hard-shelled insects, so named because their enlarged hind Larvae from this fi rst generation tunnel in the roots of legs allow them to jump like fl eas when disturbed.
    [Show full text]
  • Home Pre-Fire Moth Species List by Species
    Species present before fire - by species Scientific Name Common Name Family Abantiades aphenges Hepialidae Abantiades hyalinatus Mustard Ghost Moth Hepialidae Abantiades labyrinthicus Hepialidae Acanthodela erythrosema Oecophoridae Acantholena siccella Oecophoridae Acatapaustus leucospila Nolidae Achyra affinitalis Cotton Web Spinner Crambidae Aeolochroma mniaria Geometridae Ageletha hemiteles Oecophoridae Aglaosoma variegata Notodontidae Agriophara discobola Depressariidae Agrotis munda Brown Cutworm Noctuidae Alapadna pauropis Erebidae Alophosoma emmelopis Erebidae Amata nigriceps Erebidae Amelora demistis Pointed Cape Moth Geometridae Amelora sp. Cape Moths Geometridae Antasia flavicapitata Geometridae Anthela acuta Common Anthelid Moth Anthelidae Anthela ferruginosa Anthelidae Anthela repleta Anthelidae Anthela sp. Anthelidae Anthela varia Variable Anthelid Anthelidae Antipterna sp. Oecophoridae Ardozyga mesochra Gelechiidae Ardozyga sp. Gelechiidae Ardozyga xuthias Gelechiidae Arhodia lasiocamparia Pink Arhodia Geometridae Arrade destituta Erebidae Arrade leucocosmalis Erebidae Asthenoptycha iriodes Tortricidae Asura lydia Erebidae Azelina biplaga Geometridae Barea codrella Oecophoridae Calathusa basicunea Nolidae Calathusa hypotherma Nolidae Capusa graodes Geometridae Capusa sp. Geometridae Carposina sp. Carposinidae Casbia farinalis Geometridae Casbia sp. Geometridae Casbia tanaoctena Geometridae Catacometes phanozona Oecophoridae Catoryctis subparallela Xyloryctidae Cernia amyclaria Geometridae Chaetolopha oxyntis Geometridae Chelepteryx
    [Show full text]