MANUAL Blaze-Grating-Spektroskop/Spektrograph of N.Sommer Introduction
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
A Basic Requirement for Studying the Heavens Is Determining Where In
Abasic requirement for studying the heavens is determining where in the sky things are. To specify sky positions, astronomers have developed several coordinate systems. Each uses a coordinate grid projected on to the celestial sphere, in analogy to the geographic coordinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth's equator) . Each coordinate system is named for its choice of fundamental plane. The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the one most closely related to the geographic coordinate system, because they use the same fun damental plane and the same poles. The projection of the Earth's equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles on to the celest ial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate systems: the geographic system is fixed to the Earth; it rotates as the Earth does . The equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but of course it's really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec for short) . It measures the angle of an object above or below the celestial equator. The longitud inal angle is called the right ascension (RA for short). -
Sejong Open Cluster Survey (SOS)-IV. the Young Open Clusters
Sejong Open Cluster Survey (SOS) - IV. The Young Open Clusters NGC 1624 and NGC 1931 Beomdu Lim1,5, Hwankyung Sung2, Michael S. Bessell3, Jinyoung S. Kim4, Hyeonoh Hur2, and Byeong-Gon Park1 [email protected] Received ; accepted Not to appear in Nonlearned J., 45. 1Korea Astronomy and Space Science Institute, 776 Daedeokdae-ro, Yuseong-gu, Daejeon 305-348, Korea 2Department of Astronomy and Space Science, Sejong University, 209 Neungdong-ro, arXiv:1502.00105v1 [astro-ph.SR] 31 Jan 2015 Gwangjin-gu, Seoul 143-747, Korea 3Research School of Astronomy and Astrophysics, Australian National University, MSO, Cotter Road, Weston, ACT 2611, Australia 4Steward Observatory, University of Arizona, 933 N. Cherry Ave. Tucson, AZ 85721-0065, USA 5Corresponding author, Korea Research Council of Fundamental Science & Technology Research Fellow –2– ABSTRACT Young open clusters located in the outer Galaxy provide us with an oppor- tunity to study star formation activity in a different environment from the solar neighborhood. We present a UBVI and Hα photometric study of the young open clusters NGC 1624 and NGC 1931 that are situated toward the Galactic anticenter. Various photometric diagrams are used to select the members of the clusters and to determine the fundamental parameters. NGC 1624 and NGC 1931 are, on average, reddened by hE(B − V )i = 0.92 ± 0.05 and 0.74 ± 0.17 mag, respectively. The properties of the reddening toward NGC 1931 indicate an abnormal reddening law (RV,cl = 5.2 ± 0.3). Using the zero-age main se- quence fitting method we confirm that NGC 1624 is 6.0 ± 0.6 kpc away from the Sun, whereas NGC 1931 is at a distance of 2.3 ± 0.2 kpc. -
List of Bright Nebulae Primary I.D. Alternate I.D. Nickname
List of Bright Nebulae Alternate Primary I.D. Nickname I.D. NGC 281 IC 1590 Pac Man Neb LBN 619 Sh 2-183 IC 59, IC 63 Sh2-285 Gamma Cas Nebula Sh 2-185 NGC 896 LBN 645 IC 1795, IC 1805 Melotte 15 Heart Nebula IC 848 Soul Nebula/Baby Nebula vdB14 BD+59 660 NGC 1333 Embryo Neb vdB15 BD+58 607 GK-N1901 MCG+7-8-22 Nova Persei 1901 DG 19 IC 348 LBN 758 vdB 20 Electra Neb. vdB21 BD+23 516 Maia Nebula vdB22 BD+23 522 Merope Neb. vdB23 BD+23 541 Alcyone Neb. IC 353 NGC 1499 California Nebula NGC 1491 Fossil Footprint Neb IC 360 LBN 786 NGC 1554-55 Hind’s Nebula -Struve’s Lost Nebula LBN 896 Sh 2-210 NGC 1579 Northern Trifid Nebula NGC 1624 G156.2+05.7 G160.9+02.6 IC 2118 Witch Head Nebula LBN 991 LBN 945 IC 405 Caldwell 31 Flaming Star Nebula NGC 1931 LBN 1001 NGC 1952 M 1 Crab Nebula Sh 2-264 Lambda Orionis N NGC 1973, 1975, Running Man Nebula 1977 NGC 1976, 1982 M 42, M 43 Orion Nebula NGC 1990 Epsilon Orionis Neb NGC 1999 Rubber Stamp Neb NGC 2070 Caldwell 103 Tarantula Nebula Sh2-240 Simeis 147 IC 425 IC 434 Horsehead Nebula (surrounds dark nebula) Sh 2-218 LBN 962 NGC 2023-24 Flame Nebula LBN 1010 NGC 2068, 2071 M 78 SH 2 276 Barnard’s Loop NGC 2149 NGC 2174 Monkey Head Nebula IC 2162 Ced 72 IC 443 LBN 844 Jellyfish Nebula Sh2-249 IC 2169 Ced 78 NGC Caldwell 49 Rosette Nebula 2237,38,39,2246 LBN 943 Sh 2-280 SNR205.6- G205.5+00.5 Monoceros Nebula 00.1 NGC 2261 Caldwell 46 Hubble’s Var. -
SAC's 110 Best of the NGC
SAC's 110 Best of the NGC by Paul Dickson Version: 1.4 | March 26, 1997 Copyright °c 1996, by Paul Dickson. All rights reserved If you purchased this book from Paul Dickson directly, please ignore this form. I already have most of this information. Why Should You Register This Book? Please register your copy of this book. I have done two book, SAC's 110 Best of the NGC and the Messier Logbook. In the works for late 1997 is a four volume set for the Herschel 400. q I am a beginner and I bought this book to get start with deep-sky observing. q I am an intermediate observer. I bought this book to observe these objects again. q I am an advance observer. I bought this book to add to my collect and/or re-observe these objects again. The book I'm registering is: q SAC's 110 Best of the NGC q Messier Logbook q I would like to purchase a copy of Herschel 400 book when it becomes available. Club Name: __________________________________________ Your Name: __________________________________________ Address: ____________________________________________ City: __________________ State: ____ Zip Code: _________ Mail this to: or E-mail it to: Paul Dickson 7714 N 36th Ave [email protected] Phoenix, AZ 85051-6401 After Observing the Messier Catalog, Try this Observing List: SAC's 110 Best of the NGC [email protected] http://www.seds.org/pub/info/newsletters/sacnews/html/sac.110.best.ngc.html SAC's 110 Best of the NGC is an observing list of some of the best objects after those in the Messier Catalog. -
Atlas Menor Was Objects to Slowly Change Over Time
C h a r t Atlas Charts s O b by j Objects e c t Constellation s Objects by Number 64 Objects by Type 71 Objects by Name 76 Messier Objects 78 Caldwell Objects 81 Orion & Stars by Name 84 Lepus, circa , Brightest Stars 86 1720 , Closest Stars 87 Mythology 88 Bimonthly Sky Charts 92 Meteor Showers 105 Sun, Moon and Planets 106 Observing Considerations 113 Expanded Glossary 115 Th e 88 Constellations, plus 126 Chart Reference BACK PAGE Introduction he night sky was charted by western civilization a few thou - N 1,370 deep sky objects and 360 double stars (two stars—one sands years ago to bring order to the random splatter of stars, often orbits the other) plotted with observing information for T and in the hopes, as a piece of the puzzle, to help “understand” every object. the forces of nature. The stars and their constellations were imbued with N Inclusion of many “famous” celestial objects, even though the beliefs of those times, which have become mythology. they are beyond the reach of a 6 to 8-inch diameter telescope. The oldest known celestial atlas is in the book, Almagest , by N Expanded glossary to define and/or explain terms and Claudius Ptolemy, a Greco-Egyptian with Roman citizenship who lived concepts. in Alexandria from 90 to 160 AD. The Almagest is the earliest surviving astronomical treatise—a 600-page tome. The star charts are in tabular N Black stars on a white background, a preferred format for star form, by constellation, and the locations of the stars are described by charts. -
Observing Bright Nebulae
OBSERVING BRIGHT NEBULAE Amateur astronomers often divide the visible universe into two components: the shallow sky, including the Moon and Sun, the planets, and anything else within our solar system; the deep sky, meaning everything outside our solar system. The deep sky is the realm of stars. There are open clusters and globular clusters of stars, double and multiple stars, and galaxies of stars beyond counting. But not everything in the deep sky is stellar, and these non-stellar objects include among them such wonders as the Great Nebula in Orion, one of the best known deep sky objects of all. The Orion Nebula is an example of a bright nebula, in this case a combination of two sorts of bright nebula (reflection and emission). Bright nebulae, while non-stellar, are intimately associated with stars all the same. The Orion Nebula is a stellar nursery, a place of star birth, lit by the young stars that formed within it. The Ring Nebula (M57) marks the site of an old star in the last stage of its life, while the Crab Nebula (M1) is the remnant of a star that ended its life in a brief blaze of glory, a supernova. It would seem that at each end of its life, a star is and then becomes again, the stuff of nebulae. The bright nebulae (and as soon as you look at M1 for the first time you will understand this to be a relative term) are wonderful and sometimes frustrating objects to view through a modest telescope. Since they are very popular subjects for astrophotographers people feel very familiar with these objects, and so have expectations of what they will see through the eyepiece. -
Astronomical Coordinate Systems
Appendix 1 Astronomical Coordinate Systems A basic requirement for studying the heavens is being able to determine where in the sky things are located. To specify sky positions, astronomers have developed several coordinate systems. Each sys- tem uses a coordinate grid projected on the celestial sphere, which is similar to the geographic coor- dinate system used on the surface of the Earth. The coordinate systems differ only in their choice of the fundamental plane, which divides the sky into two equal hemispheres along a great circle (the fundamental plane of the geographic system is the Earth’s equator). Each coordinate system is named for its choice of fundamental plane. The Equatorial Coordinate System The equatorial coordinate system is probably the most widely used celestial coordinate system. It is also the most closely related to the geographic coordinate system because they use the same funda- mental plane and poles. The projection of the Earth’s equator onto the celestial sphere is called the celestial equator. Similarly, projecting the geographic poles onto the celestial sphere defines the north and south celestial poles. However, there is an important difference between the equatorial and geographic coordinate sys- tems: the geographic system is fixed to the Earth and rotates as the Earth does. The Equatorial system is fixed to the stars, so it appears to rotate across the sky with the stars, but it’s really the Earth rotating under the fixed sky. The latitudinal (latitude-like) angle of the equatorial system is called declination (Dec. for short). It measures the angle of an object above or below the celestial equator. -
Making a Sky Atlas
Appendix A Making a Sky Atlas Although a number of very advanced sky atlases are now available in print, none is likely to be ideal for any given task. Published atlases will probably have too few or too many guide stars, too few or too many deep-sky objects plotted in them, wrong- size charts, etc. I found that with MegaStar I could design and make, specifically for my survey, a “just right” personalized atlas. My atlas consists of 108 charts, each about twenty square degrees in size, with guide stars down to magnitude 8.9. I used only the northernmost 78 charts, since I observed the sky only down to –35°. On the charts I plotted only the objects I wanted to observe. In addition I made enlargements of small, overcrowded areas (“quad charts”) as well as separate large-scale charts for the Virgo Galaxy Cluster, the latter with guide stars down to magnitude 11.4. I put the charts in plastic sheet protectors in a three-ring binder, taking them out and plac- ing them on my telescope mount’s clipboard as needed. To find an object I would use the 35 mm finder (except in the Virgo Cluster, where I used the 60 mm as the finder) to point the ensemble of telescopes at the indicated spot among the guide stars. If the object was not seen in the 35 mm, as it usually was not, I would then look in the larger telescopes. If the object was not immediately visible even in the primary telescope – a not uncommon occur- rence due to inexact initial pointing – I would then scan around for it. -
Commentary on Interstellar Matter Associated with 18 Open Clusters
NASA Reference Publication 1229 1989 Commentary on Interstellar Matter Associated With 18 Open Clusters David Leisawitz Goddard Space Flight Center Greenbelt, Maryland NASA National Aeronautics and Space Administration Office of Management Scientific and Technical Information Division Preface This report summarizes information supplementary to that contained in Section IV of an article entitled "A CO Survey of Regions Around 34 Open Clusters" (Leisawitz, Bash, and Thaddeus 1989). The information presented here, which describes the interstellar environments of young clusters and some cluster physical characteristics, comes from observations published in the astronomical literature and the author's carbon monoxide (CO) emission line survey, and may help clarify our understanding of the interaction of massive stars with the interstellar medium. PRECEDING PAGE BLANK NOT FILMED iii Identification and Galactic coordinate data for the open clusters discussed in this report are given in Table 1. Additional information about the clusters can be found in Leisawitz, Bash, and Thaddeus (1989; hereafter referred to as Paper I) and in the Catalog of Open Clusters and Associated Interstellar Matter (Leisawitz 1988). Following the table, the clusters and their associated interstellar matter are described. The molecular cloud nomenclature is that of Paper I. TABLE 1 Identifications and Galactic coordinates of clusters Associated Galactic Cluster Identification H I1 Region Coordinates Member of 111 bI I OCLa Common Alias Association Sb wc Name ( deg 1 ( deg 1 100 NGC 6709 ... ... 42.16 4.70 124 NGC 6823 Vu1 OB1 86 55 59.41 -0.15 138 Roslund 4 IC 4954/5 ... ... 66.96 -1.26 I 205 NGC 7062 ... ... 89.93 -2.72 222 IC 1396 Tr 37 Cep OB2 131 *** 99.29 3.73 244 NGC 7380 Cep OB1 142 *** 107.08 -0.90 286 Berkeley 59 Cep OB4 171 1 118.25 4.95 313 NGC 281 184 a** 123.13 -6.24 321 NGC 457 .. -
Multiwavelength Observations of the Peculiar Planetary Nebula Ic 2149 R
The Astrophysical Journal, 576:860–869, 2002 September 10 # 2002. The American Astronomical Society. All rights reserved. Printed in U.S.A. MULTIWAVELENGTH OBSERVATIONS OF THE PECULIAR PLANETARY NEBULA IC 2149 R. Va´zquez,1 L. F. Miranda,2 J. M. Torrelles,3 L. Olguı´n,4 G. Benı´tez,1,5 L. F. Rodrı´guez,6 and J. A. Lo´pez1 Received 2001 August 18; accepted 2002 May 15 ABSTRACT We report high- and low-dispersion spectroscopy, optical imaging, and high-resolution Very Large Array- A 3.6 cm continuum observations of the peculiar planetary nebula IC 2149. These observations show that ‘‘ bipolar ’’ is a suitable morphological classification for IC 2149. Most nebular material is concentrated in a knotty, bright ring seen edge-on, embedded in an apparently oblate ellipsoidal shell from which remnant or incipient bipolar lobes emerge. We confirm the previously reported depletion in heavy elements and deduce a very low ejected nebular mass d0.03 M . All this information indicates that the formation of IC 2149 is the result of the evolution of a low-mass central star. Subject headings: ISM: kinematics and dynamics — planetary nebulae: individual (IC 2149) — stars: AGB and post-AGB 1. INTRODUCTION ula. IC 2149 hosts a very bright central star (V ’ 11:34, Ciardullo et al. 1999) with a stellar wind indicated by the In the last 10 yr, the commonly accepted theory on forma- presence of P Cygni profiles in the UV spectrum that indi- tion of planetary nebulae (PNs), involving the interaction of cate a wind velocity of V 1000–1600 km sÀ1 and a mass- stellar winds (Kwok, Purton, & Fitzgerald 1978), has been w ’ loss rate of M_ 10À8 M yrÀ1 (Perinotto, Benvenuti, & constantly revised in order to take into account a variety of w ’ Cerruti-Sola 1982; Feibelman et al. -
April 2019 BRAS Newsletter
Monthly Meeting April 8th at 7PM at HRPO (Monthly meetings are on 2nd Mondays, Highland Road Park Observatory). Speaker: Merrill Hess will speak on “The life cycle of stars." What's In This Issue? President’s Message Secretary's Summary Outreach Report Astrophotography Group Asteroid and Comet News Light Pollution Committee Report Globe at Night Recent BRAS Forum Entries Messages from the HRPO Science Academy Friday Night Lecture Series Special Presentation 13 April: “Skygazing—A Pursuer’s Guide” International Astronomy Day” American Radio Relay League Field Day Observing Notes – Cancer the Crab & Mythology Like this newsletter? See PAST ISSUES online back to 2009 Visit us on Facebook – Baton Rouge Astronomical Society Newsletter of the Baton Rouge Astronomical Society April 2019 © 2019 President’s Message As we move into spring hopefully the run of cloudy nights we had this winter will end. At the last meeting we finally did the drawing for the Meade ETX 90EC, which was won by Joel Tews. Congratulations and thanks to all who bought raffle tickets. I would like take this moment to congratulate Coy Wagoner on being published in the March 2019 Reflector. BRAS CRAWFISH BOIL There will be a crawfish boil on May 18, 2019 at the home of Michele and John. Club will provide the crawfish and trimmings, with side dishes by attendees. Put it on your calendar now, please. We will need a head count to know how many crawfish to buy. More details and a map will follow in next month’s newsletter. Raffle winner was Joel Tews VOLUNTEER AT HRPO: If any of the members wish to volunteer at HRPO, please speak to Chris Kersey, BRAS Liaison for BREC, to fill out the paperwork. -
1995 Observer's Calendar
Royal Astronomical Society of Canada Observer’s Calendar 1995 The Pleiades Star Cluster, M45 This bright open cluster is a favourite naked-eye object. Most can see 6 or 7 stars with no optical aid, and some report seeing over ten. In this photo, we see the full extent of the surrounding nebulosity. JANUARY J. C. Mirtle SUNDAY MONDAY TUESDAY WEDNESDAY THURSDAY FRIDAY SATURDAY N ew Y ear's Day 2 3 4 5 6 7 West East 9:06 am Moon rises 8:51 am 8:02 am Sun rises 7:38 am 3:56 am New Moon 5:56 am 4 pm Quadrantid meteors max 6 pm 10:46 am Moon rises 10:49 am 7:50 am Moon rises 7:25 am 8:32 am Moon rises 3:12 am 6 pm Mars stationary 8 pm 9:35 am Moon rises 9:25 am 10:00 am Moon rises 9:55 am 10:24 am Moon rises 10:22 am 4:11 pm Sun sets 4:35 pm 5:00 pm Moon sets 5:14 pm 6:17 pm Moon sets 3:26 pm 7:33 pm Moon sets 7:38 pm 8:47 pm Moon sets 8:48 pm 9:59 pm Moon sets 3:54 pm 11:07 pm Moon sets 10:59 pm Moon sets 8 9 10 11 12 13 14 West East 5 am Venus greatest 7 am 6:02 am Moon sets 5:36 am 12:14 am Moon sets 12:01 am elongation W. [47°] 7:58 am Sun rises 7:35 am 8:46 am First Quarter 10:46 am 1:19 am Moon sets 1:02 am 2:22 am Moon sets 2:01 am 3:22 am Moon sets 2:59 am 4:20 am Moon sets 3:55 am 5:13 am Moon sets 4:47 am 2:51 pm Moon rises 3:08 pm 11:10am Moon rises 11:17am 11:35 am Moon rises 11:45 am 12:03 pm Moon rises 12:17 pm 12:36 pm Moon rises 12:52 pm 1:14 pm Moon rises 1:32 pm 1:59 pm Moon rises 2:17 pm 4:21 pm Sun sets 4:43 pm 15 16 17 18 19 20 21 2:43 am In Ont.