Floral Development in Aphandra (Arecaceae)1

Total Page:16

File Type:pdf, Size:1020Kb

Floral Development in Aphandra (Arecaceae)1 American Journal of Botany 88(2): 185–195. 2001. FLORAL DEVELOPMENT IN APHANDRA (ARECACEAE)1 ANDERS S. BARFOD AND NATALIE W. UHL2 Department of Systematic Botany, Aarhus University, Nordlandsvej 68, DK-8240 Risskov, Denmark; and L. H. Bailey Hortorium, 467 Mann Library, Cornell University, Ithaca, New York 14853 USA The organogenesis of staminate flower clusters and flowers and some observations on the corresponding pistillate structures of Aphandra natalia are described and compared with those of the other two genera in the Phytelephantoideae (Arecaceae). In Aphandra, staminate flowers are borne in monopodial clusters of mostly four (1–6) flowers. Each flower is surrounded by two pairs of subopposite bracteoles and has two rather indistinctly four-parted whorls of perianth parts. Stamen primordia arise on a shallow apical dome and then centrifugally down the sides of a long, angled, and laterally flattened receptacle. Immediately before the staminate bud opens, the floral receptacle below the androecium rapidly elongates, becoming funnel-shaped, with the bracteoles and a perianth sheath adnate to it forming a pseudopedicel. Epidermal and subepidermal layers of these pseudopedicels split at anthesis and release a great number of raphide idioblasts that resemble the pollen grains in shape and size. It is hypothesized that the idioblasts deter pollen feeding or ovidepositing insects. The phylogenetic implications of these findings are important within the Phytelephantoideae and among palms in general. Key words: Arecaceae; Aphandra natalia; floral development; monotocotyledons; palms; Phytelephantoideae; pollination; pseu- dopedicel. Aphandra natalia (Balslev and Henderson) Barfod is a pin- ficult to obtain since large valuable trees must be felled to get a series. Inflo- nate leaved, single-stemmed palm found in Amazonian Ec- rescence stages were obtained from three individuals growing in semi-culti- uador and Peru near the foothills of the Andes. The genus vated populations near Logron˜o, Province of Morona-Santiago in Ecuador, the belongs to the subfamily Phytelephantoideae, which includes type locality of Aphandra natalia. The young inflorescences (Figs. 1–4) (Ta- only three small genera and constitutes a morphologically iso- ble 2) were fixed in FAA (formalin-acetic acid-alcohol) in the field and after lated group of dioecious genera within the Palmae (Uhl and 2 d, transferred to storage in nine parts 70% glycerine alcohol to one part Dransfield, 1987). Developmental studies have shown that the 10% glycerine. Prophylls and peduncular bracts (PD bracts) were cut open to phytelephantoid genera have the only monopodial flower clus- facilitate infiltration. ters in the family, a four-parted perianth otherwise known only in only one species of Chelyocarpus (Coryphoideae), and cen- Scanning electron microscopy—The various pistillate and staminate de- trifugal stamen inception. Partial centrifugal stamen develop- velopmental stages were critical point dried in a Biorad CPD-750 Apparatus, ment is known to occur elsewhere only in the genus Eugeis- mounted on stubs with double-adhesive tape, and coated with platinum in an sona (Calamoideae) (Uhl and Moore, 1977; Uhl and Drans- Edwards S150B Sputter Coater. They were studied with a JEOL 840 Scanning Microscope at 20 kV. field, 1984). Balslev and Henderson (1987) originally referred Aphandra natalia to Ammandra based on the prominent submarginal Clearings—Material for study of vasculature was cleared using a 5% so- lution of NaOH and left overnight in an oven at 50ЊC. After 24 h the NaOH veins on the pinnae and the pedicellate condition of the sta- was changed and we repeated the procedure until clearing was satisfactory. minate flower clusters. Monographic work on the subfamily The material was then rinsed in distilled water and treated with commercial Phytelephantoideae has shown that it is a distinct genus (Bar- bleach to remove any cloudiness. Subsequently preparations were stored in fod, Henderson, and Balslev, 1987; Barfod, 1991) (Table 1) glycerine alcohol. The material was stained in a basic fuchsin solution (1 g and that the structure of the floral pedicel is critical. Devel- of fuchsin and 6 g of solid KOH in 100 mL water) for photographing. opmental studies of the inflorescence and flowers of Aphandra are important for eludication of the pedicel and for comparison RESULTS with developmental patterns previously described for the other genera of Phytelephantoideae (Uhl and Moore, 1977; Uhl and Inflorescence structure—In wild populations of Aphandra Dransfield, 1984). In this study we address three issues in par- natalia the distribution of staminate and pistillate individuals ticular: ontogeny of the staminate flower cluster, stamen in- is almost even. Flowering occurs throughout the year, peaking ception, and the structure of the pedicel of the staminate flow- slightly in February–March (Barfod, 1991). Inflorescences er. Some observations are also presented on the development form in acropetal sequence in the axils of their subtending of the pistillate flower clusters and flowers. leaves. All leaves produced during periods of flowering sub- tend a young inflorescence bud. The pistillate and staminate MATERIALS AND METHODS buds have a similar overall appearance while they are still included in the sheaths of the subtending leaves, but they de- Plant material—Aphandra is exploited for fibers extracted from the leaf velop differently after the peduncular bract (PD bract) breaks bases (Borgtoft Pedersen and Balslev, 1990); developmental material is dif- through the prophyll (Figs. 1–7). In the staminate bud, the PD bract continues to grow and before it splits will attain more 1 Manuscript received 21 December, 1999; revision accepted 27 April 2000. The authors thank Anni Sloth for assistance with laboratory work, SEM, than twice the size of the prophyll. At anthesis the entire in- and electronic processing of the photographs; and the reviewers. Support is florescence is exposed and pendant. The pistillate bud, in con- acknowledged from NSF grant BSR-8806042 to NWU. trast, elongates only a little after the splitting of the prophyll, 2 Author for correspondence (e-mail: [email protected]). the PD bract reaching only about three-quarters the length of 185 186 AMERICAN JOURNAL OF BOTANY [Vol. 88 TABLE 1. Diagnostic table. Ammandra decasperma Aphrandra natalia Phytelephas macrocarpa Phytelephas aequatorialis Pistillate inflorescence No. of flowers per inflorescence 6–10 30–50 5–25 15–25 No. of sepaloid bracts 0? 4–6 4–6 4–6 No. of perianth segments 7–10 7–9 5–8 6–9 No. of carpels 6–9 6–8 4–5 5–6 Staminate inflorescence Length of rachis 30–60 100–170 30–60 90–150 Axis of flower cluster at anthes- present indistinguishable indistinguishable indistinguishable isa No. of flowers per cluster b 6–9 4 (Ϫ5) 4 (Ϫ5) 4 (Ϫ5) Pedicel pseudopedicel?c pseudopedicelc indistinguishable pedicel Distribution of idioblasts concentrated in even even even blisters Idioblast released at anthesis yes yes no no No. of sepaloid bracts 0? 4 4 4 No. of perianth segments 8? 8 8 8 Shape of male receptacle at an- elongated, recurved elongated, dome flat to dome shaped widened, flat thesis shaped Stamen inception centrifugal? centrifugal, sequential centrifugal, sequential centrifugal, in 2 phases No. of stamens 300–500 400–650 150–300 500–700 Length of filament at anthesis 0.1–0.2 2.5–3 3–9 6–10 Length of anthers at anthesis 0.5 3–3.5 4–6.5 3–5 Pistillode ϩ/Ϫ present absent absent absent Size and shape of pollen grain 45–55, rounded 60–70, elliptic 55–65, elliptic to 80, elongate elongate Pollen grain aperture monoporate monosulcate monosulcate monosulcate a The individual pseudopedicels or pedicels of the flowers of Aphandra natalia and Phytelephas aequatorialis are fused, thus forming a pseudo- axis. b Aberrant number in parentheses. c Pseudopedicel formed by fusion and elongation of the perianth and the receptacle (see text). the prophyll. The rachis of the pistillate inflorescence is much comes adpressed to the rachis with the posterior flower partly shorter, and the flowers remain closely bunched. At anthesis, hidden (Fig. 19A). they are partly contained in the PD bract, which splits longi- tudinally along the abaxial side to expose only the tips of long Organogenesis of staminate flower clusters and flowers— strap-shaped perianth parts and stigma branches (Fig. 19C). In the earliest developmental stages available to us, the flower cluster sites are covered by their subtending bracts. Removal Structure of the staminate flower cluster—The staminate of the bract exposes a lentil-shaped apical dome in each flower inflorescence of Aphandra natalia breaks through the PD bract cluster (Fig. 16). The two bracts that subtend the lateral flow- in the evening and finishes development overnight. Elongation ers (Fig. 16: A, B) are clearly discernible (ba and bb), whereas proceeds at up to 10 cm/h until the rachis has attained a length the subtending bracts of the posterior and anterior flowers, of 100–170 cm at anthesis the following day. The staminate respectively, are not visible in distal view. The apices of the flowers are gathered in 200–300 spirally arranged and densely four flowers are flattened to slightly dome-shaped (Fig. 17: A, inserted clusters (Figs. 6, 19A). The individual clusters have B, and D). In distal outline, they appear three- to four-lobed mostly four (1–6) flowers. Lower, stalklike parts of the flowers because of primordial bulges (Fig. 18, 19D). On the lateral are united to varying degrees and taper proximally to a com- flowers, a pair of subopposite bracteoles develops first, slightly mon attachment (Figs. 8, 19A). The basal clusters have fewer displaced relative to the plane of symmetry (Figs. 16, 19: 1b, flowers, usually two or three, and a number of solitary flowers 2b, 1a, 2a). The posterior member of this pair is usually visible are always present at the apex of the inflorescence. Each clus- before the anterior one. On the posterior flower of the cluster, ter is subtended by a bract that differs in shape and size from the first-formed pair of subopposite bracteoles can be distin- deltoid and is ϳ3 cm long at the base of the rachis to a narrow, guished in lateral positions (Fig.
Recommended publications
  • Nitrogen Containing Volatile Organic Compounds
    DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants.
    [Show full text]
  • Matses Indian Rainforest Habitat Classification and Mammalian Diversity in Amazonian Peru
    Journal of Ethnobiology 20(1): 1-36 Summer 2000 MATSES INDIAN RAINFOREST HABITAT CLASSIFICATION AND MAMMALIAN DIVERSITY IN AMAZONIAN PERU DAVID W. FLECK! Department ofEveilltioll, Ecology, alld Organismal Biology Tile Ohio State University Columbus, Ohio 43210-1293 JOHN D. HARDER Oepartmeut ofEvolution, Ecology, and Organismnl Biology Tile Ohio State University Columbus, Ohio 43210-1293 ABSTRACT.- The Matses Indians of northeastern Peru recognize 47 named rainforest habitat types within the G61vez River drainage basin. By combining named vegetative and geomorphological habitat designations, the Matses can distinguish 178 rainforest habitat types. The biological basis of their habitat classification system was evaluated by documenting vegetative ch<lracteristics and mammalian species composition by plot sampling, trapping, and hunting in habitats near the Matses village of Nuevo San Juan. Highly significant (p<:O.OOI) differences in measured vegetation structure parameters were found among 16 sampled Matses-recognized habitat types. Homogeneity of the distribution of palm species (n=20) over the 16 sampled habitat types was rejected. Captures of small mammals in 10 Matses-rc<:ognized habitats revealed a non-random distribution in species of marsupials (n=6) and small rodents (n=13). Mammal sighlings and signs recorded while hunting with the Matses suggest that some species of mammals have a sufficiently strong preference for certain habitat types so as to make hunting more efficient by concentrating search effort for these species in specific habitat types. Differences in vegetation structure, palm species composition, and occurrence of small mammals demonstrate the ecological relevance of Matses-rccognized habitat types. Key words: Amazonia, habitat classification, mammals, Matses, rainforest. RESUMEN.- Los nalivos Matslis del nordeste del Peru reconacen 47 tipos de habitats de bosque lluvioso dentro de la cuenca del rio Galvez.
    [Show full text]
  • Jarina (Phytelephas Macrocarpa Ruiz & Pav. )
    Jarina (Phytelephas macrocarpa Ruiz & Pav. ) As sementes amadurecidas tornam-se duras, brancas e opacas como o marfim, com a vantagem de não ser quebradiça e fácil de ser Nome científico:Phytelephas macrocarpa Ruiz & Pav. trabalhada. A coleta das sementes ocorre em grande quantidade entre os meses de maio e agosto, sendo a regeneração natural aleatória. Sinonímia:Elephantusia macrocarpa (Ruiz & Pav.) Willd.; Phytelephas Parte da planta utilizada: A palmeira é utilizada por populações locais microcarpa(Ruiz & Pav.); Elephantusia microcarpa (Ruiz & Pav.) Willd.; na construção civil (cobertura de casas com as folhas), alimentação do Yarina microcarpa (Ruiz & Pav.) O. F. Cook. homem e animais (polpa não amadurecida) e confecções de cordas (fibras). Contudo, a parte mais usada da planta é a semente, que em Espécies: P. macrocarpa (na Amazônia brasileira, boliviana e peruana), substituição ao marfim animal, é empregada na confecção de P. tenuicaulis(na Amazônia equatoriana e colombiana), P. schotii (no ornamentos, botões, peças de joalheria, teclas de piano, pequenas vale de Magdalena, Colombia),P. seemanii (América Central e lado estatuetas e vários souvenirs. As sobras da jarina são transformadas colombiano do Pacífico),P. aequatoriales e P. tumacana (na região em um pó, que é exportado do Equador para os Estados Unidos e Pacífica do Equador e Colômbia). Japão, após o corte do material para a produção de botões. Família botânica: Arecaceae. Aspectos agronômicos: ainda não se dispõe de informações acerca de plantios experimentais de P. macrocarpa. As poucas plantas cultivadas Nomes populares: "marfim vegetal", em português; tagua em espanhol; podem ser encontradas em jardins públicos e particulares com função ivory plant, em inglês e Brazilianische steinmüssee, em alemão.
    [Show full text]
  • Sap Beetles of the Tribe Mystropini (Coleoptera: Nitidulidae) Associated with South American Palm Infl Orescences
    Ann. soc. entomol. Fr. (n.s.), 2010, 46 (3–4) : 367-421 ARTICLE Sap beetles of the tribe Mystropini (Coleoptera: Nitidulidae) associated with South American palm infl orescences Alexander G. Kirejtshuk (1) & Guy Couturier (2) (1) Zoological Institute of the Russian Academy of Sciences, St. Petersburg, 199034, Russia (2) Institut de Recherche pour le Développement & UMR 7205, OSEB, Département Systématique et Evolution, Museum national d’Histoire naturelle, Entomologie, case 50, 57 rue Cuvier, F-75231 Paris Cedex 05, France Abstract. The paper is devoted to the complex of pollinators from the tribe Mystropini collected on the infl orescences of the palms, cultivated or growing under natural conditions in South America, which includes Anthepurops depressa Kirejtshuk 1996; Anthocorcina subcalva Kirejtshuk & Jelínek 2000; Mystrops astrocaryi Kirejtshuk & Couturier n. sp.; M. atrata Kirejtshuk & Couturier n. sp.; M. bactrii Kirejtshuk & Couturier n. sp.; M. beserrai Kirejtshuk & Couturier n. sp.; M. costaricensis Gillogly 1972; M. dalmasi (Grouvelle 1902) n. comb.; M. delgadoi Kirejtshuk & Couturier 2009; M. discoidea Murray 1864; M. gigas Kirejtshuk & Couturier 2009; M. hisamatsui Kirejtshuk & Couturier 2009; M. kahni Kirejtshuk & Couturier n. sp.; M. komissari Kirejtshuk & Couturier n. sp.; M. lobanovi Kirejtshuk & Couturier n. sp.; M. neli Kirejtshuk & Couturier 2009; M. pectoralis Kirejtshuk, Couturier & Jelínek n. sp.; M. pulchra Kirejtshuk & Couturier 2009; M. rotundula Sharp 1889; M. squamae Kirejtshuk & Couturier n. sp.; M. vasquezi Kirejtshuk & Couturier n. sp.; Platychorodes adentatus Kirejtshuk & Couturier n. sp. The synonymy of the taxa is established. Mystrops corpulenta Jelínek 1969 is very similar and could be a variety of M. rotundula Sharp 1899. Palaeocorcina Jelínek & Kirejtshuk 2000 n.
    [Show full text]
  • Journal of the International Palm Society Vol. 60(4) Dec. 2016 the INTERNATIONAL PALM SOCIETY, INC
    Cellebratiing 60 Years Palms Journal of the International Palm Society Vol. 60(4) Dec. 2016 THE INTERNATIONAL PALM SOCIETY, INC. The International Palm Society Palms (formerly PRINCIPES) Journal of The International Palm Society Founder: Dent Smith The International Palm Society is a nonprofit corporation An illustrated, peer-reviewed quarterly devoted to engaged in the study of palms. The society is inter- information about palms and published in March, national in scope with worldwide membership, and the June, September and December by The International formation of regional or local chapters affiliated with the Palm Society Inc., 9300 Sandstone St., Austin, TX international society is encouraged. Please address all 78737-1135 USA. inquiries regarding membership or information about Editors: John Dransfield, Herbarium, Royal Botanic the society to The International Palm Society Inc., 9300 Gardens, Kew, Richmond, Surrey, TW9 3AE United Sandstone St., Austin, TX 78737-1135 USA, or by e-mail Kingdom, e-mail [email protected], tel. 44-20- to [email protected], fax 512-607-6468. 8332-5225. OFFICERS: Scott Zona, Dept. of Biological Sciences (OE 167), Florida International University, 11200 SW 8 Street, President: Ray Hernandez, 4315 W. San Juan Street, Miami, Florida 33199 USA, e-mail [email protected], tel. Tampa, Florida 33629 USA, e-mail 1-305-348-1247. [email protected], tel. 1-813-832-3561. Associate Editor: Natalie Uhl. Vice-Presidents: Jeff Brusseau, 1030 Heather Dr., Vista, California 92084 USA, e-mail Guidelines for authors are available on request from [email protected], tel. 1-760-271-8003. the Editors, or on-line at: Kim Cyr, PO Box 60444, San Diego, California 92166- www.palms.org/palms_author_guidelines.cfm 8444 USA, e-mail [email protected], tel.
    [Show full text]
  • Early Inflorescence and Floral Development in Cocos Nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P
    Available online at www.sciencedirect.com South African Journal of Botany 76 (2010) 482–492 www.elsevier.com/locate/sajb Early inflorescence and floral development in Cocos nucifera L. (Arecaceae: Arecoideae) ⁎ P.I.P. Perera a,d, , V. Hocher b, L.K. Weerakoon a, D.M.D. Yakandawala c,d, S.C. Fernando a, J.-L. Verdeil e a Coconut Research Institute, Tissue Culture Division, 61150 Lunuwila, Sri Lanka b Institute for Research and Development (IRD), UMR 1098 BEPC, IRD, BP 64501-911 Avenue Agropolis, 34394 Montpellier Cedex 1, France c Department of Botany, University of Peradeniya, Sri Lanka d Postgraduate Institute of Science, University of Peradeniya, Sri Lanka e CIRAD, TA40/02 Avenue Agropolis, 34398 Montpellier Cedex 5, France Received 9 September 2009; received in revised form 17 March 2010; accepted 18 March 2010 Abstract Palms are generally characterized by a large structure with a massive crown that creates difficulties in anatomical studies. The flowering behaviour of palm species may be a useful indicator of phylogenetic relationships and therefore evolutionary events. This paper presents a detailed histological study of reproductive development in coconut (Cocos nucifera L.), from initiation up to maturation of staminate and pistillate flowers. Reproductive development in coconut consists of a sequence of individual events that span more than two years. Floral morphogenesis is the longest event, taking about one year, while sex determination is a rapid process that occurs within one month. The inflorescence consists of different ultimate floral structural components. Pistillate flowers are borne in floral triads that are flanked by two functional staminate flowers.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • Las Palmeras En El Marco De La Investigacion Para El
    REVISTA PERUANA DE BIOLOGÍA Rev. peru: biol. ISSN 1561-0837 Volumen 15 Noviembre, 2008 Suplemento 1 Las palmeras en el marco de la investigación para el desarrollo en América del Sur Contenido Editorial 3 Las comunidades y sus revistas científicas 1he scienrific cornmuniries and their journals Leonardo Romero Presentación 5 Laspalmeras en el marco de la investigación para el desarrollo en América del Sur 1he palrns within the framework ofresearch for development in South America Francis Kahny CésarArana Trabajos originales 7 Laspalmeras de América del Sur: diversidad, distribución e historia evolutiva 1he palms ofSouth America: diversiry, disrriburíon and evolutionary history Jean-Christopbe Pintaud, Gloria Galeano, Henrik Balslev, Rodrigo Bemal, Fmn Borchseníus, Evandro Ferreira, Jean-Jacques de Gran~e, Kember Mejía, BettyMillán, Mónica Moraes, Larry Noblick, FredW; Staufl'er y Francis Kahn . 31 1he genus Astrocaryum (Arecaceae) El género Astrocaryum (Arecaceae) . Francis Kahn 49 1he genus Hexopetion Burret (Arecaceae) El género Hexopetion Burret (Arecaceae) Jean-Cbristopbe Pintand, Betty MiJJány Francls Kahn 55 An overview ofthe raxonomy ofAttalea (Arecaceae) Una visión general de la taxonomía de Attalea (Arecaceae) Jean-Christopbe Pintaud 65 Novelties in the genus Ceroxylon (Arecaceae) from Peru, with description ofa new species Novedades en el género Ceroxylon (Arecaceae) del Perú, con la descripción de una nueva especie Gloria Galeano, MariaJosé Sanín, Kember Mejía, Jean-Cbristopbe Pintaud and Betty MiJJán '73 Estatus taxonómico
    [Show full text]
  • Rebecca Summerour Buffalo State College the Examination And
    Rebecca Summerour Buffalo State College The Examination and Conservation of a Snake Skin Suit Jacket Summerour, ANAGPIC 2012, 2 ABSTRACT 1. INTRODUCTION………………………………………………………………………………………..P 3 2. BACKGROUND………………………………………………………………………………………...P 4 2.1 Peter Gruber’s Background 2.2 History of the Jacket 3. DESCRIPTION AND MATERIALS……………………………………………………………………….P 8 3.1 Jacket Description 3.2 Skin Identification 3.3 The Snakes 3.4 Additional Materials 3.5 Condition 3.6 Previous Treatment 4. Imaging Techniques ……………………………………………………………………………….. P15 4.1 Photographic Documentation 4.2 Computed X-radiography 5. MATERIAL ANALYSIS………………………………………………………………………………...P18 5.1 Objectives 5.2 Microchemical Testing 5.3 Polarized Light Microscopy 5.4 Hydrothermal Stability Assessment 5.5 X-ray Fluorescence Spectroscopy 5.6 Fourier Transform Infrared Spectroscopy 5.7 Scanning Electron Microscopy with Energy-dispersive X-ray Spectroscopy 5.8 Pyrolysis Gas-Chromatography/Mass Spectrometry 5.9 Discussion of Findings from Scientific Analysis 6. CONSERVATION TREATMENT………………………………………………………………………...P31 6.1 Treatment Goals 6.2 Cleaning 6.3 Humidification 6.4. Consolidation and Tear Repair 6.5. Filling 6.6 Mounting 7. CONCLUSION………………………………………………………………………………………....P 40 ACKNOWLEDGEMENTS ………………………………………………………………………………….P 40 APPENDICES…………………………………………………………………………………………….P 41 APPENDIX A: X-ray Fluorescence Spectroscopy APPENDIX B: Fourier Transform Infrared Spectroscopy APPENDIX C: Scanning Electron Microscopy with Energy-dispersive X-ray Spectroscopy APPENDIX D: Pyrolysis Gas-Chromatography/Mass
    [Show full text]
  • Astrocaryum Carnosum
    Astrocaryum carnosum VU Taxonomic Authority: F.Kahn & B.Millán Global Assessment Regional Assessment Region: Global Endemic to region Synonyms Common Names HUICUNGO Spanish; Castilian Upper Level Taxonomy Kingdom: PLANTAE Phylum: TRACHEOPHYTA Class: LILIOPSIDA Order: ARECALES Family: PALMAE Lower Level Taxonomy Rank: Infra- rank name: Plant Hybrid Subpopulation: Authority: General Information Distribution Astrocaryum carnosum is known only from the upper Huallaga River, Tocache to Tingo María in central Peru (Kahn 2008). Extent of occurrence is estimated based on the extent of the upper Huallaga River and known occurrences. Range Size Elevation Biogeographic Realm Area of Occupancy: Upper limit: 500 Afrotropical Extent of Occurrence: 5335 Lower limit: Antarctic Map Status: Depth Australasian Upper limit: Neotropical Lower limit: Oceanian Depth Zones Palearctic Shallow photic Bathyl Hadal Indomalayan Photic Abyssal Nearctic Population Between 1987-1990 dense populations of A. carnosum were recorded on the understory of the forest in the upper Huallaga valley, department San Martin, province Mariscal Cáceres at about 20 km from Uchiza near an industrial plantation of African oil palm (Palmas del Espin, S.A) (Couturier et al. 1992). Exact population size is not known. Total Population Size Minimum Population Size: Maximum Population Size: Habitat and Ecology This multi-stemmed palm grows in forests on alluvial soils (Kahn et al. 1992) and seasonal swamp forest (Kahn 2008), where it dominates the understory with two other palm species, Phytelephas macrocarpa Ruiz and Pavon and Chelyocarpus ulei Dammer. These forests are periodically flooded by the Huallaga River in February and March. The average rainfall in this area is 3,000 mm with a peak from December to March and a dry period from June to August.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • Table of Contents Than a Proper TIMOTHY K
    Palms Journal of the International Palm Society Vol. 57(1) Mar. 2013 PALMS Vol. 57(1) 2013 CONTENTS Island Hopping for Palms in Features 5 Micronesia D.R. H ODEL Palm News 4 Palm Literature 36 Shedding Light on the 24 Pseudophoenix Decline S. E DELMAN & J. R ICHARDS An Anatomical Character to 30 Support the Cohesive Unit of Butia Species C. M ARTEL , L. N OBLICK & F.W. S TAUFFER Phoenix dactylifera and P. sylvestris 37 in Northwestern India: A Glimpse of their Complex Relationships C. N EWTON , M. G ROS -B ALTHAZARD , S. I VORRA , L. PARADIS , J.-C. P INTAUD & J.-F. T ERRAL FRONT COVER A mighty Metroxylon amicarum , heavily laden with fruits and festooned with epiphytic ferns, mosses, algae and other plants, emerges from the low-hanging clouds near Nankurupwung in Nett, Pohnpei. See article by D.R. Hodel, p. 5. Photo by D.R. Hodel. The fruits of Pinanga insignis are arranged dichotomously BACK COVER and ripen from red to Hydriastele palauensis is a tall, slender palm with a whitish purplish black. See article by crownshaft supporting the distinctive canopy. See article by D.R. Hodel, p. 5. Photo by D.R. Hodel, p. 5. Photo by D.R. Hodel . D.R. Hodel. 3 PALMS Vol. 57(1) 2013 PALM NEWS Last year, the South American Palm Weevil ( Rhynchophorus palmarum ) was found during a survey of the Lower Rio Grande Valley, Texas . This palm-killing weevil has caused extensive damage in other parts of the world, according to Dr. Raul Villanueva, an entomologist at the Texas A&M AgriLife Research and Extension Center at Weslaco.
    [Show full text]