Reply of Ecuador

Total Page:16

File Type:pdf, Size:1020Kb

Reply of Ecuador INTERNATIONAL COURT OF JUSTICE CASE CONCERNING AERIAL HERBICIDE SPRAYING ECUADOR v. COLOMBIA REPLY OF ECUADOR VOLUME II ANNEXES 31 JANUARY 2011 VOLUME II ANNEXES TABLE OF CONTENTS EXPERT REPORTS Annex 1 R. John Hansman, Ph.D. & Carlos F. Mena, Ph.D., Analysis of Aerial Eradication Spray Events in the Vicinity of the Border Between Colombia and Ecuador from 2000 to 2008 (Jan. 2011) Annex 2 Durham K. Giles, Ph.D., Spray Drift Modeling of Conditions of Application for Coca Crops in Colombia (Jan. 2011) Annex 3 Stephen C. Weller, Ph.D., Glyphosate-Based Herbicides and Potential for Damage to Non-Target Plants Under Conditions of Application in Colombia (Jan. 2011) Annex 4 Henrik Balslev, Ph.D., The Vulnerability of the Ecuador-Colombia Border Region to Ecological Harm (Jan. 2011) Annex 5 Norman E. Whitten, Jr., Ph.D., Dr. William T. Vickers, Ph.D. & Michael Cepek, Ph.D., Tropical Forest Cultural Ecology and Social Adaptation in the Ecuadorian Border Region with Colombia (Jan. 2011) Annex 6 Charles A. Menzie, Ph.D. & Pieter N. Booth, M.S., Response to: “Critique of Evaluation of Chemicals Used in Colombia’s Aerial Spraying Program, and Hazards Presented to People, Plants, Animals and the Environment in Ecuador,” As Presented in: Counter-Memorial of the Republic of Colombia, Appendix (Jan. 2011) Annex 7 Reinhard Joas, Ph.D., The Development of the 2009 European Union Pesticides Directive With Particular Focus on Aerial Spraying (Jan. 2011) Annex 8 Claudia Rojas Quiñonez, Esq., The Aerial Spray Program and Violations of Colombia’s Domestic Laws Regarding the Environment and the Rights of Indigenous Peoples (Jan. 2011) Annex 1 R. John Hansman, Ph.D. & Carlos F. Mena, Ph.D., Analysis of Aerial Eradication Spray Events in the Vicinity of the Border Between Colombia and Ecuador from 2000 to 2008 (Jan. 2011) Annex 1 Analysis of Aerial Eradication Spray Events in the Vicinity of the Border Between Colombia and Ecuador from 2000 to 2008 January 2011 R. John Hansman Carlos F. Mena Annex 1 Annex 1 Table of Contents 6#!32'4# 3++07TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTS ST ,20-"3!2'-,TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TT #2&-"-*-%7TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTU TTS #1!0'.2'-,-$ .072 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTU TTT 2 ,*71'1#2&-"1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTY TTTTS .07"',##-1'2'-, TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTY TTTTT *2'23"#-$ .07 '0!0$2TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTY TTTTU $-*3+#-$%#0 '!'"# .07#"TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SR UT ,*71'1-$ .074#,2"-!2'-,1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTSS UTS ,*71'1-$ .074#,21('2&)#1.#!22-2&#,2#0,2'-,**-0"#0 TTTTTTTTTTTTTTTT SS UTSTS SR+'*-+#2#0 ,*71'1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SS UTSTT TTY2-UTR+'*-+#2#0 $#270%', ,*71'1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT ST UTSTU ,*71'1-$ .07',%('2&',SR+'*-+#2#01-$2&#!3"-0',*-0"#0 30',% 31.#,1'-,1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SU UTSTV .074#,21--,"3!2#".4#0!3"-0',/#00'2-07TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SU UTT ,*71'1-$--+.*',!#('2&*3$$#00-,#1)#/3'0#"*72&#--*-+ ', 2-4#0,+#,2TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SV UTTTS *3$$#00-,#12-#0-2#!2%3+,% '22'-,1,"32'-,*#0)1 TTTTTTTTTTTTT SV UTTTT ,*71'1-$SRR#2#0*3$$#00-,#1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SV VT ,*71'1-$--+.*',!#5'2&..#02'-,*#0+#2#01TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SY VTS *2'23"#TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT SZ VTT .##"TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TR VTU --+ ',#" .##"," *2'23"# ,*71'1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TS VTV ..*'!2'-,)2#TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TU VTW /'+#-$7-$ .074#,21TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TU VTX /7.#-$ '0!0$2TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TV VTXTS /VZRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TW VTXTT /VXWTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TX VTXTU .$VSRTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TY VTY 52&('"2&TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TZ Annex 1 VTZ /0!) #.02'-,,"/0!)#,1'27TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT T[ VT[ #2#-0-*-%'!*--,"'2'-,1TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT UR WT --,!*31'-, TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT UR XT -322&# 32&-01TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT UT YT )#$#0#,!#1 TTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT UU Annex 1 Executive Summary Flight track data which documented 114,525 aerial eradication spray events conducted by Colombia within 10 kilometers of the border between Colombia and Ecuador from 2000 to 2008 were analyzed to determine compliance with territorial and operational restrictions identified in Colombia’s Environmental Management Plan and in other limitations imposed at various times by the Colombian government. Numerous, and in some cases pervasive, exceedances of territorial and operational criteria were observed in the data. There were 114,525 documented spray events within 10 km of the Ecuadorian border which sprayed an estimated 326,658 gallons (1,236,535 liters) of herbicide. A minimum of 25,050 spray events were observed within 2.7 km of Ecuadorian territory. During periods in which Colombia voluntarily suspended eradication within 10 km of the Ecuadorian border, 6,046 spray events were recorded. There were 1,078 spray events documented within 2 km of Ecuador’s National Parks or Indigenous Reserves and numerous spray events were observed within 2 km of communities in both Colombia and Ecuador. The operational parameters established by Colombia to control spray drift were routinely violated. Of the spray events for which data was recorded 96% (89,124 of 92,643 spray events) were flown higher than the 25 meter maximum ceiling referred to in Colombia’s submission to the Inter-American Commission on Human Rights. In addition, 17% (16,143) were higher than the 50 ft meter altitude ceiling referred to in the Counter-Memorial. These are conservative figures for the 2000 to 2008 period because the altitude data for two years (2001 and 2004) was not included as it could not be accurately analyzed due to lack of identification of altitude units (feet vs. meters) in the data set. Of the spray events for which data was recorded 69% (75,841 of 110,418 spray events) were flown faster than the 165 mph (265 km/hr) “maximum operational speed” and 10% (11,113) exceeded the 333 km/hr “worst case scenario” referenced in the Counter-Memorial. The 140 mph (225 km/hr) maximum speed reported by Colombia to the Inter-American Commission on Human Rights was exceeded in 98% (108,563) of the spray events. With respect to application rate, at least 27,429 documented spray events exceeded the 23.65 liters per hectare maximum application rate established by Colombia’s Environmental Management Plan. With respect to the time of day, a total of 24,540 spray events were recorded within 10 km of the Ecuador border during night time hours (8 pm to 4 am) when temperature inversions are most likely to occur. The data indicate that the AT-802 aircraft referenced in the Counter- Memorial was only used in 35% (38,142 of 110,418) of the spray events and 2 other aircraft types, the T-65 and OV-10 were used for a majority of the spray events. The OV-10 was designed as a military observation aircraft and it is unusual for it to be used in for aerial application of herbicides. Complete analysis of the spray events database was not possible because some information, such of the calendar day of the flight, was missing, and in other cases, other information,
Recommended publications
  • Nitrogen Containing Volatile Organic Compounds
    DIPLOMARBEIT Titel der Diplomarbeit Nitrogen containing Volatile Organic Compounds Verfasserin Olena Bigler angestrebter akademischer Grad Magistra der Pharmazie (Mag.pharm.) Wien, 2012 Studienkennzahl lt. Studienblatt: A 996 Studienrichtung lt. Studienblatt: Pharmazie Betreuer: Univ. Prof. Mag. Dr. Gerhard Buchbauer Danksagung Vor allem lieben herzlichen Dank an meinen gütigen, optimistischen, nicht-aus-der-Ruhe-zu-bringenden Betreuer Herrn Univ. Prof. Mag. Dr. Gerhard Buchbauer ohne dessen freundlichen, fundierten Hinweisen und Ratschlägen diese Arbeit wohl niemals in der vorliegenden Form zustande gekommen wäre. Nochmals Danke, Danke, Danke. Weiteres danke ich meinen Eltern, die sich alles vom Munde abgespart haben, um mir dieses Studium der Pharmazie erst zu ermöglichen, und deren unerschütterlicher Glaube an die Fähigkeiten ihrer Tochter, mich auch dann weitermachen ließ, wenn ich mal alles hinschmeissen wollte. Auch meiner Schwester Ira gebührt Dank, auch sie war mir immer eine Stütze und Hilfe, und immer war sie da, für einen guten Rat und ein offenes Ohr. Dank auch an meinen Sohn Igor, der mit viel Verständnis akzeptierte, dass in dieser Zeit meine Prioritäten an meiner Diplomarbeit waren, und mein Zeitbudget auch für ihn eingeschränkt war. Schliesslich last, but not least - Dank auch an meinen Mann Joseph, der mich auch dann ertragen hat, wenn ich eigentlich unerträglich war. 2 Abstract This review presents a general analysis of the scienthr information about nitrogen containing volatile organic compounds (N-VOC’s) in plants.
    [Show full text]
  • Perú: Cordillera Escalera-Loreto Perú: Cordillera Escalera-Loreto Escalera-Loreto Cordillera Perú: Instituciones Participantes/ Participating Institutions
    .................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................................... .............................................................................................................................................................................................................................................................................................................................................................................................no. 26 ....................................................................................................................... 26 Perú: Cordillera Escalera-Loreto Perú: Cordillera Escalera-Loreto Instituciones participantes/ Participating Institutions The Field Museum Nature and Culture International (NCI) Federación de Comunidades Nativas Chayahuita (FECONACHA) Organización Shawi del Yanayacu y Alto Paranapura (OSHAYAAP) Municipalidad Distrital de Balsapuerto Instituto de Investigaciones de la Amazonía Peruana (IIAP) Herbario Amazonense de la Universidad Nacional de la Amazonía Peruana (AMAZ) Museo de Historia Natural de la Universidad Nacional Mayor de San Marcos Centro
    [Show full text]
  • Ornithological Surveys in Serranía De Los Churumbelos, Southern Colombia
    Ornithological surveys in Serranía de los Churumbelos, southern Colombia Paul G. W . Salaman, Thomas M. Donegan and Andrés M. Cuervo Cotinga 12 (1999): 29– 39 En el marco de dos expediciones biológicos y Anglo-Colombian conservation expeditions — ‘Co­ conservacionistas anglo-colombianas multi-taxa, s lombia ‘98’ and the ‘Colombian EBA Project’. Seven llevaron a cabo relevamientos de aves en lo Serranía study sites were investigated using non-systematic de los Churumbelos, Cauca, en julio-agosto 1988, y observations and standardised mist-netting tech­ julio 1999. Se estudiaron siete sitios enter en 350 y niques by the three authors, with Dan Davison and 2500 m, con 421 especes registrados. Presentamos Liliana Dávalos in 1998. Each study site was situ­ un resumen de los especes raros para cada sitio, ated along an altitudinal transect at c. 300- incluyendo los nuevos registros de distribución más m elevational steps, from 350–2500 m on the Ama­ significativos. Los resultados estabilicen firme lo zonian slope of the Serranía. Our principal aim was prioridad conservacionista de lo Serranía de los to allow comparisons to be made between sites and Churumbelos, y aluco nos encontramos trabajando with other biological groups (mammals, herptiles, junto a los autoridades ambientales locales con insects and plants), and, incorporating geographi­ cuiras a lo protección del marcizo. cal and anthropological information, to produce a conservation assessment of the region (full results M e th o d s in Salaman et al.4). A sizeable part of eastern During 14 July–17 August 1998 and 3–22 July 1999, Cauca — the Bota Caucana — including the 80-km- ornithological surveys were undertaken in Serranía long Serranía de los Churumbelos had never been de los Churumbelos, Department of Cauca, by two subject to faunal surveys.
    [Show full text]
  • Etar a Área De Distribuição Geográfica De Anfíbios Na Amazônia
    Universidade Federal do Amapá Pró-Reitoria de Pesquisa e Pós-Graduação Programa de Pós-Graduação em Biodiversidade Tropical Mestrado e Doutorado UNIFAP / EMBRAPA-AP / IEPA / CI-Brasil YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRE LÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA Dissertação apresentada ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBIO) da Universidade Federal do Amapá, como requisito parcial à obtenção do título de Mestre em Biodiversidade Tropical. Orientador: Dra. Fernanda Michalski Co-Orientador: Dr. Rafael Loyola MACAPÁ, AP 2017 YURI BRENO DA SILVA E SILVA COMO A EXPANSÃO DE HIDRELÉTRICAS, PERDA FLORESTAL E MUDANÇAS CLIMÁTICAS AMEAÇAM A ÁREA DE DISTRIBUIÇÃO DE ANFÍBIOS NA AMAZÔNIA BRASILEIRA _________________________________________ Dra. Fernanda Michalski Universidade Federal do Amapá (UNIFAP) _________________________________________ Dr. Rafael Loyola Universidade Federal de Goiás (UFG) ____________________________________________ Alexandro Cezar Florentino Universidade Federal do Amapá (UNIFAP) ____________________________________________ Admilson Moreira Torres Instituto de Pesquisas Científicas e Tecnológicas do Estado do Amapá (IEPA) Aprovada em de de , Macapá, AP, Brasil À minha família, meus amigos, meu amor e ao meu pequeno Sebastião. AGRADECIMENTOS Agradeço a CAPES pela conceção de uma bolsa durante os dois anos de mestrado, ao Programa de Pós-Graduação em Biodiversidade Tropical (PPGBio) pelo apoio logístico durante a pesquisa realizada. Obrigado aos professores do PPGBio por todo o conhecimento compartilhado. Agradeço aos Doutores, membros da banca avaliadora, pelas críticas e contribuições construtivas ao trabalho.
    [Show full text]
  • Revealing Cryptic Diversity Using Molecular Phylogenetics and Phylogeography in Frogs of the Scinax Ruber and Rhinella Margaritifera Species Groups
    Molecular Phylogenetics and Evolution 43 (2007) 567–582 www.elsevier.com/locate/ympev Revealing cryptic diversity using molecular phylogenetics and phylogeography in frogs of the Scinax ruber and Rhinella margaritifera species groups Antoine Fouquet a,f,¤, Miguel Vences b, Marie-Dominique Salducci a, Axel Meyer c, Christian Marty d, Michel Blanc e, André Gilles a a EA 3781 EGEE Evolution Genome Environment, Université de Provence, Centre St. Charles, 3 place Victor Hugo, 13331 Marseille, France b Zoological Institute, Technical University of Braunschweig, Spielmannstr. 8, 38106 Braunschweig, Germany c Department of Biology, Evolutionary Biology, University of Konstanz, 78457 Konstanz, Germany d Impasse Jean Galot, 97354 Montjoly, Guyane Française e 2 rue Doct. Floch, 97310 Kourou, Guyane Française f Molecular Ecology Laboratory, School of Biological Sciences, University of Canterbury, Private Bag 4800, Christchurch, New Zealand Received 25 April 2006; revised 27 November 2006; accepted 1 December 2006 Available online 23 December 2006 Abstract Few studies to date have examined genetic variability of widespread tropical amphibian species over their distributional range using diVer- ent kinds of molecular markers. Here, we use genetic data in an attempt to delimit evolutionary entities within two groups of Neotropical frogs, the Scinax ruber species group and the Rhinella margaritifera species group. We combined mitochondrial and nuclear markers for a phylogenetic (a total of »2500 bp) and phylogeographic study (»1300 bp) to test the reliability of the currently accepted taxonomic assign- ments and to explore the geographic structure of their genetic variation, mainly based upon samples from the French Guianan region. Phylo- genetic analyses demonstrated the polyphyly of Scinax ruber and Rhinella margaritifera.
    [Show full text]
  • Languages of the Middle Andes in Areal-Typological Perspective: Emphasis on Quechuan and Aymaran
    Languages of the Middle Andes in areal-typological perspective: Emphasis on Quechuan and Aymaran Willem F.H. Adelaar 1. Introduction1 Among the indigenous languages of the Andean region of Ecuador, Peru, Bolivia, northern Chile and northern Argentina, Quechuan and Aymaran have traditionally occupied a dominant position. Both Quechuan and Aymaran are language families of several million speakers each. Quechuan consists of a conglomerate of geo- graphically defined varieties, traditionally referred to as Quechua “dialects”, not- withstanding the fact that mutual intelligibility is often lacking. Present-day Ayma- ran consists of two distinct languages that are not normally referred to as “dialects”. The absence of a demonstrable genetic relationship between the Quechuan and Aymaran language families, accompanied by a lack of recognizable external gen- etic connections, suggests a long period of independent development, which may hark back to a period of incipient subsistence agriculture roughly dated between 8000 and 5000 BP (Torero 2002: 123–124), long before the Andean civilization at- tained its highest stages of complexity. Quechuan and Aymaran feature a great amount of detailed structural, phono- logical and lexical similarities and thus exemplify one of the most intriguing and intense cases of language contact to be found in the entire world. Often treated as a product of long-term convergence, the similarities between the Quechuan and Ay- maran families can best be understood as the result of an intense period of social and cultural intertwinement, which must have pre-dated the stage of the proto-lan- guages and was in turn followed by a protracted process of incidental and locally confined diffusion.
    [Show full text]
  • THE JEPSON GLOBE a Newsletter from the Friends of the Jepson Herbarium
    THE JEPSON GLOBE A Newsletter from the Friends of The Jepson Herbarium VOLUME 17 NUMBER 3 MARCH 2007 Director’s Column by Brent D. Mishler Bryophyte Biology The bryophytes, with more than 20,000 species worldwide, are the most diverse set of land plants aside from the flowering plants. The group includes three quite distinct lineages (i.e., moss- es, hornworts, and liverworts), some familiar species frequently encountered in mesic forests and along streams, as well as a number of less familiar species of tropical rain forests, arctic tundra, and desert boulders. The bryophytes have an ancient history; Dr. Paul Silva and Dr. Richard L. Moe they are remnant lineages surviving Announcing the Silva Center for Phycological Documentation today from the spectacular radiation of the land plants in the Devonian Pe- From its beginnings in the 19th tradition of Setchell and Papenfuss and riod, some 400-450 million years ago. Century, the University Herbarium has brought to UC a principal role in These three main bryophyte lineages (UC) has emphasized phycological phycological nomenclature. He as- (not monophyletic taken together), plus collections. William Setchell, who was sembled a comprehensive index of algal a fourth lineage (the tracheophytes, i.e., interested in marine algal taxonomy names (the Index Nominum Algarum) the so-called vascular plants), comprise and biogeography, communicated with and a corresponding index of phycolog- the monophyletic embryophytes phycologists worldwide and built up the ical literature (Bibliotheca Phycologica (land plants), arguably one of the most herbarium and library through ex- Universalis). He was a founding mem- important lineages to have arisen in change.
    [Show full text]
  • Unraveling the Mystery of the Origin of Ayahuasca by Gayle Highpine1
    ______________________________________________________________________________________________www.neip.info Unraveling the Mystery of the Origin of Ayahuasca by Gayle Highpine1 ABSTRACT For decades, researchers have puzzled over the mystery of the origin of Ayahuasca, especially the question of how the synergy was discovered between the the two components of the brew: the vine (Banisteriopsis caapi) with a monoamine oxidase inhibiting (MAOI) action and the leaf (Psychotria viridis or Diplopterys cabrerana), which requires that MAOI action to make their dimethyltryptamine (DMT) orally active. Drawing from two years of fieldwork among Napo Runa Indian shamans, cross-dialect studies of Quechua, and the record of anthropological data, I contend that the botanical origin of B. caapi was on the Napo River; that the original form of Ayahuasca shamanism employed the vine Banisteriopsis caapi alone; that the shamanic use of Banisteriopsis caapi alone spread and diffused before the DMT-containing admixtures were discovered; that the synergy between B. caapi and Psychotria viridis was discovered in the region of present-day Iquitos, the synergy between B. caapi and Diplopterys cabrerana was discovered around the upper Putumayo River, and that each combination diffused from there; and that the discoveries of these synergies came about because of the traditional practice of mixing other medicinal plants with Ayahuasca brew. Among the Napo Runa, the Ayahuasca vine is considered “the mother of all plants” and a mediator and translator between the human and plant worlds, helping humans and plants to communicate with each other. 1 The author has a BA in Applied Linguistics and an MA in Educational Policy, Foundations, and Administration from Portland State University.
    [Show full text]
  • Disentangling the Phenotypic Variation and Pollination Biology of the Cyclocephala Sexpunctata Species Complex (Coleoptera:Scara
    DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) A Thesis by Matthew Robert Moore Bachelor of Science, University of Nebraska-Lincoln, 2009 Submitted to the Department of Biological Sciences and the faculty of the Graduate School of Wichita State University in partial fulfillment of the requirements for the degree of Master of Science July 2011 © Copyright 2011 by Matthew Robert Moore All Rights Reserved DISENTANGLING THE PHENOTYPIC VARIATION AND POLLINATION BIOLOGY OF THE CYCLOCEPHALA SEXPUNCTATA SPECIES COMPLEX (COLEOPTERA: SCARABAEIDAE: DYNASTINAE) The following faculty members have examined the final copy of this thesis for form and content, and recommend that it be accepted in partial fulfillment of the requirement for the degree of Master of Science with a major in Biological Sciences. ________________________ Mary Jameson, Committee Chair ________________________ Bin Shuai, Committee Member ________________________ Gregory Houseman, Committee Member ________________________ Peer Moore-Jansen, Committee Member iii DEDICATION To my parents and my dearest friends iv "The most beautiful thing we can experience is the mysterious. It is the source of all true art and all science. He to whom this emotion is a stranger, who can no longer pause to wonder and stand rapt in awe, is as good as dead: his eyes are closed." – Albert Einstein v ACKNOWLEDMENTS I would like to thank my academic advisor, Mary Jameson, whose years of guidance, patience and enthusiasm have so positively influenced my development as a scientist and person. I would like to thank Brett Ratcliffe and Matt Paulsen of the University of Nebraska State Museum for their generous help with this project.
    [Show full text]
  • Amphibians and Reptiles Recorded in the Conservation Area Imiría in the Ucayali Region in Peru
    Acta Soc. Zool. Bohem. 80: 317–341, 2016 ISSN 1211-376X Amphibians and reptiles recorded in the Conservation Area Imiría in the Ucayali region in Peru Jiří Moravec1,4), Illich Arista Tuanama2), Giussepe Gagliardi Urrutia3) & Václav Gvoždík1) 1) National Museum Prague, Department of Zoology, Cirkusová 1740, CZ–193 00 Praha 9, Czech Republic 2) Urb. El Trébol, Mz. Ñ, Lote 23, Distrito Los Olivos, Lima, Peru 3) Laboratório de Sistemática de Vertebrados, Pontifícia Universidade Católica do Rio Grande do Sul, Av. Ipiranga 6681, 90619-900 Porto Alegre, Brasil 4) corresponding author: [email protected] Received 20 September 2016; accepted 14 December 2016 Published 28 December 2016 Abstract. This study summarizes the faunistic and natural history information for 38 amphibians and 17 species of reptiles recorded in and in the vicinity of the northern part of the Regional Conservation Area Imiría (Region Ucayali, Peru). Considerable extensions in ranges of Pristimantis delius Duellman et Mendelson, 1995 (Craugastoridae) and Osteocephalus yasuni Ron et Pramuk, 1999 (Hylidae) are documented. Current knowledge of the local herpetofauna is discussed and the importance of the conservation area for the protection of the regional flora and fauna is highlighted. Key words. Biogeography, species diversity, habitat conservation, Amphibia, Reptilia, Amazonia. INTRODUCTION The Regional Conservation Area Imiría (Área de Conservación Regional Imiría) managed by the Regional government of Ucayali, is located on the right bank of the Ucayali River within the watersheds of the rivers Tamaya and Inamapuya (District Masisea, Province Coronel Portillo, Region Ucayali, Peru). This conservation area was founded in June 2010 in order to protect the ecosystem of humid and seasonally flooded lowland forests, local natural resources and the esthe- tical value of the landscape.
    [Show full text]
  • Seed Geometry in the Arecaceae
    horticulturae Review Seed Geometry in the Arecaceae Diego Gutiérrez del Pozo 1, José Javier Martín-Gómez 2 , Ángel Tocino 3 and Emilio Cervantes 2,* 1 Departamento de Conservación y Manejo de Vida Silvestre (CYMVIS), Universidad Estatal Amazónica (UEA), Carretera Tena a Puyo Km. 44, Napo EC-150950, Ecuador; [email protected] 2 IRNASA-CSIC, Cordel de Merinas 40, E-37008 Salamanca, Spain; [email protected] 3 Departamento de Matemáticas, Facultad de Ciencias, Universidad de Salamanca, Plaza de la Merced 1–4, 37008 Salamanca, Spain; [email protected] * Correspondence: [email protected]; Tel.: +34-923219606 Received: 31 August 2020; Accepted: 2 October 2020; Published: 7 October 2020 Abstract: Fruit and seed shape are important characteristics in taxonomy providing information on ecological, nutritional, and developmental aspects, but their application requires quantification. We propose a method for seed shape quantification based on the comparison of the bi-dimensional images of the seeds with geometric figures. J index is the percent of similarity of a seed image with a figure taken as a model. Models in shape quantification include geometrical figures (circle, ellipse, oval ::: ) and their derivatives, as well as other figures obtained as geometric representations of algebraic equations. The analysis is based on three sources: Published work, images available on the Internet, and seeds collected or stored in our collections. Some of the models here described are applied for the first time in seed morphology, like the superellipses, a group of bidimensional figures that represent well seed shape in species of the Calamoideae and Phoenix canariensis Hort. ex Chabaud.
    [Show full text]
  • Three New Records of Pristimantis (Amphibia: Anura: Craugastoridae) for Brazil and a Comment of the Advertisement Call of Pristimantis Orcus
    Check List 9(6): 1548–1551, 2013 © 2013 Check List and Authors Chec List ISSN 1809-127X (available at www.checklist.org.br) Journal of species lists and distribution N Three new records of Pristimantis (Amphibia: Anura: Craugastoridae) for Brazil and a comment of the ISTRIBUTIO advertisement call of Pristimantis orcus D Jhon J. López-Rojas 1*, Werther Pereira Ramalho 1, Monik da Silveira Susçuarana 1 and Moisés RAPHIC G Barbosa de Souza 2 EO G N O 1 Universidade Federal do Acre, Programa de Pós-Graduação em Ecologia e Manejo de Recursos Naturais. BR346, Km04. CEP 69915-900. Rio Branco, AC, Brazil. 2 Universidade Federal do Acre, Centro de Ciências Biológicas e da Natureza, Laboratório de Herpetologia (HerPet). BR346, Km04. CEP 69915-900. OTES Rio Branco, AC, Brazil. N * Corresponding author. E-mail: [email protected] Abstract: We report Pristimantis achuar, Pristimantis delius, and Pristimantis orcus as three new records from Brazil, extending their known geographic distributions from Ecuador, Colombia, and Perú. Additionally we comment on the vocalizations of Pristimantis orcus. There are 6200 species of anuran amphibians described The three species of Pristimantis were found during world-wide (Frost 2013). In Brazil, 946 species have been the Field Ecology–2012 course at the Federal University recorded, with 32 from the Pristimantis genus (Segalla et al. of Acre in a white sand area with Campinarana Vegetation 2012). The family Craugastoridae has a broad distribution, (Daly and Silveira 2008) and dense forest with abundant ranging from Southern Arizona to central Texas (USA) and Lepidocaryum tenue (caranaí) (Daly and Silveira 2008), in Mexico south through tropical and subtropical habitats Cruzeiro do Sul, Acre Brazil.
    [Show full text]