A Robust and Highly Efficient Immune Cell Reprogramming System

Total Page:16

File Type:pdf, Size:1020Kb

A Robust and Highly Efficient Immune Cell Reprogramming System View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Cell Stem Cell Resource A Robust and Highly Efficient Immune Cell Reprogramming System Lars H. Bussmann,1,4 Alexis Schubert,1,4 Thien Phong Vu Manh,1,4 Luisa De Andres,1 Sabrina C. Desbordes,1,2 Maribel Parra,1 Timo Zimmermann,1 Francesca Rapino,1 Javier Rodriguez-Ubreva,2 Esteban Ballestar,2 and Thomas Graf1,3,* 1Center for Genomic Regulation and Universitat Pompeu Fabra, 08003 Barcelona, Spain 2Bellvitge Institute for Biomedical Research (IDIBELL), l’Hospitalet de Llobregat, 08907 Barcelona, Spain 3Institucio Catalana de Recerca I Estudis Avancats, Catalonia 4These authors contributed equally to this work *Correspondence: [email protected] DOI 10.1016/j.stem.2009.10.004 SUMMARY embryonic stem cells into the trophectoderm by Cdx2 (Niwa et al., 2005). Direct reprogramming of specialized cells has Here we describe a lineage reprogramming system also been shown in vivo. Thus, an activated form of Pdx1 induces consisting of a B cell line with an estradiol-inducible hepatic cells to turn into pancreatic beta islet cells in Xenopus form of C/EBPa where cells can be converted into (Horb et al., 2003). More recently, a combination of Pdx1 with macrophage-like cells at 100% efficiency within 2 to Ngn1 and MafA was shown to reprogram exocrine cells into 3 days. The reprogrammed cells are larger, contain beta islet cells in the mouse pancreas (Zhou et al., 2008). Given altered organelle and cytoskeletal structures, are enough knowledge about how lineages are reprogrammed, it might therefore one day become feasible to directly custom- phagocytic, and exhibit an inflammatory response. make any desired cell type in cultures or in patients. Time-lapse experiments showed that the cells To unravel the molecular basis of lineage reprogramming, a cell acquire a macrophage morphology and increased system would be desirable where reprogramming can be induced migratory activity as early as 10 hr. During induction, with high efficiency and within a short time span and cell numbers thousands of genes become up- or downregulated, are not limiting. Several of these requirements are met by the including several dozen transcription and chro- conversion of primary lymphoid cells into myeloid cells. For matin-remodeling factors. Time-limited exposure of example, the enforced expression of C/EBPa by retroviral infection cells to the inducer showed that the reprogrammed can convert more than 60% committed B and T cell progenitors cells become transgene independent within 1 to 2 into macrophages (Xie et al., 2004; Laiosa et al., 2006b). The days. The reprogramming can be inhibited, at least frequency of induced lymphoid to macrophage conversions is partially, by perturbation experiments with B cell therefore substantially higher compared to the reprogramming of somatic cells into induced pluripotent stem cells (iPSCs) by embry- and macrophage transcription factors. The tightness, onic stem cell-associated transcription factors (Takahashi and robustness, and speed of the system described make Yamanaka, 2006). However, even primary lymphoid cells are not it a versatile tool to study biochemical and biological ideal because an important fraction of the cells are resistant to re- aspects of lineage reprogramming. programming, the cultures require stromal cells, and cell numbers are limiting. In addition, for every experiment the starting population INTRODUCTION hastobe freshlyisolatedfrom bonemarrow and infected with retro- viruses, and the infected cells have to be sorted before analyses. Harold Weintraub’s laboratory showed that a single gene, en- Here we describe a pre-B cell line that can be converted by coding the transcription factor MyoD, can induce the differentia- C/EBPa into macrophage-like cells at 100% efficiency within 2 to tion of fibroblasts into myotubes (Davis et al., 1987). The subse- 3 days in the absence of stroma. The induced cells exhibit dramatic quent finding that MyoD can also induce the expression of changes in gene expression within hours and acquire functional muscle genes in cell lines of ectodermal and endodermal origin macrophage properties. Time-lapse experiments showed that all (Weintraub et al., 1989) raised the possibility that fully specialized cells change in morphology and become highly motile. Further- cells can be reprogrammed into other cell types. Indeed, exper- more, we showed that the system can be used to test for genes iments with avian myeloid leukemia cells showed that GATA-1 with the capacity to specifically perturb cell reprogramming. can convert the cells into megakaryocytic/erythroid cells. The cells not only activated genes of the megakaryocytic/erythroid RESULTS lineage but also downregulated macrophage genes (Kulessa et al., 1995). Since then, transcription factors have been used Pre-B Cell Lines Containing C/EBPaER Can Be Induced to reprogram a number of other tissues, such as cultured astro- to Reciprocally Regulate Lineage Marker Expression cytes into neuronal cells by Pax6 (Heins et al., 2002); pancreatic and to Change Cell Parameters at 100% Efficiency cells into liver cells by activation of C/EBPb (Shen et al., 2003); To develop a reprogrammable cell line system, we screened two B cells into macrophages by C/EBPa (Xie et al., 2004); and adult and one fetal pre-B cell lines for their ability to convert into 554 Cell Stem Cell 5, 554–566, November 6, 2009 ª2009 Elsevier Inc. Cell Stem Cell Immune Cell Reprogramming Figure 1. Inducible Reciprocal Regulation A 5’5’ LTR LTR C/EBPaERC/EBPα IRESIRES EGFP 3´3’ LTR LTR of Differentiation Markers in the C10 Cell Line Days after induction B (A) C/EBPaER retroviral construct. 0 1 2 3 4 (B) FACS plot of Mac-1 and CD19 expression in C/ EBPaER-infected cells (C10 cell line) at different times after induction with b-estradiol. (C and D) Kinetics of differentiation-specific cell Mac-1 surface antigens of b-estradiol-induced cells and ethanol-treated control C10 cells, showing median CD19 values of three separate experiments with stan- CDE dard deviation. Blue lines, CD19 expression; red 100 Day 0 Day 3 lines, Mac-1. 80 (E) Morphology of the cells before and after induc- 60 tion, via interference contrast microscopy. Scale bar represents 10 mm. 40 (F) FACS plots showing side scatter (a measure of 20 granularity) and forward scatter (a measure of cell % ag. pos. cells 0 size) of the cells shown in (B). 01234 0 1234 Days after induction F Days after induction the cells became heterogeneous in size 0 1 2 3 4 and shape after prolonged culturing (Fig- ures S2B–S2D). To reveal structural changes, C10 cells were induced for 3 days, fixed, stained, Granularity (SSC) and photographed with a fluorescence Cell volume (FSC) microscope. Staining of mannosidase II revealed reorganization of the Golgi apparatus from a symmetric to a polar macrophages after ectopic expression of C/EBPa. To overcome structure located at one side of the nucleus, facing away from the problem that uninfected B cells rapidly overgrow the reprog- the lamellipodium at the leading edge of the cell (Figure 2A). rammed cells, we generated an inducible virus, containing Staining of F-actin revealed massive actin accumulations at the a fusion between C/EBPa and the estrogen hormone binding leading edge, while the trailingedgeshowed the formation ofstress domain (C/EBPaER), as well as GFP, as an infection marker fibers and increased concentration of Mac-1 antigen. By contrast, (Figure 1A). GFP-positive clones isolated from the lines were in uninduced C10 cells, both actin and CD19 antigen were infected with this virus, treated with b-estradiol, and analyzed symmetrically distributed around the cell periphery (Figure 2B). for Mac-1 (CD11b) and CD19 expression at different times there- after. Clones from the fetal-derived cell line HAFTL responded Induced Cells Exhibit Phagocytic Capacity and Respond most completely and rapidly and one clone, C10, was selected to an Inflammatory Stimulus for further studies. HAFTL cells, which contain a normal, diploid Activated macrophages are highly phagocytic and respond to karyotype of 20 chromosomes (Figure S1 available online), incoming bacterial pathogens with cytokine production and resemble pre-B cells (B220+CD19+, CD43ÀIgMÀ), and will be inflammation (Gordon and Taylor, 2005). To test whether the called ‘‘B cells’’ in the following. Treatment of C10 cells with reprogrammed cells acquire these properties, C10 cells were b-estradiol induced a substantial increase in Mac-1 expression induced for 3 days and tested. They indeed show high phagocytic and downregulation of CD19 already within 1 day, and after activity when incubated with fluorescently labeled E. coli, whereas 3 days essentially 100% of the cells showed a reciprocal regula- uninduced cells were essentially negative (Figures 3A–3C). Then, tion of these markers (Figures 1B and 1C). The kinetics of induced induced cells were treated with LPS or kept unstimulated. As antigen expression changes were highly reproducible, with shown by the qRT-PCR results in Figure 3D, they responded values varying less then 10% in repeat experiments. Induced with a 30- to 1000-fold increased expression of RNAs encoding C10 cells showed an increase in size and granularity (Figures TNF-a, IL-6, IL-1b, and Ccl3 (Mip1a). The data also show that 1E and 1F) and most cells became adherent (Figure S2A). No for some of these markers (IL-1b and Ccl3), the induced cells changes in antigen expression or cellular parameters were seen already expressed elevated levels before LPS stimulation. in solvent-treated C10 cells (Figure 1D) or HAFTL cells treated with b-estradiol. We also determined their growth and survival Time-Lapse Experiments Show Rapid Changes properties. Whereas untreated C10 cells kept growing and then in Morphology, Migratory Activity, and Induction slowed down after 3 days because of overcrowding, induced of Membrane Ruffling cells doubled in number within the first day and then remained Next, we performed time-lapse experiments to observe the quiescent.
Recommended publications
  • Open Dogan Phdthesis Final.Pdf
    The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • 4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
    Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4).
    [Show full text]
  • The E–Id Protein Axis Modulates the Activities of the PI3K–AKT–Mtorc1
    Downloaded from genesdev.cshlp.org on October 6, 2021 - Published by Cold Spring Harbor Laboratory Press The E–Id protein axis modulates the activities of the PI3K–AKT–mTORC1– Hif1a and c-myc/p19Arf pathways to suppress innate variant TFH cell development, thymocyte expansion, and lymphomagenesis Masaki Miyazaki,1,8 Kazuko Miyazaki,1,8 Shuwen Chen,1 Vivek Chandra,1 Keisuke Wagatsuma,2 Yasutoshi Agata,2 Hans-Reimer Rodewald,3 Rintaro Saito,4 Aaron N. Chang,5 Nissi Varki,6 Hiroshi Kawamoto,7 and Cornelis Murre1 1Department of Molecular Biology, University of California at San Diego, La Jolla, California 92093, USA; 2Department of Biochemistry and Molecular Biology, Shiga University of Medical School, Shiga 520-2192, Japan; 3Division of Cellular Immunology, German Cancer Research Center, D-69120 Heidelberg, Germany; 4Department of Medicine, University of California at San Diego, La Jolla, California 92093, USA; 5Center for Computational Biology, Institute for Genomic Medicine, University of California at San Diego, La Jolla, California 92093, USA; 6Department of Pathology, University of California at San Diego, La Jolla, California 92093, USA; 7Department of Immunology, Institute for Frontier Medical Sciences, Kyoto University, Kyoto 606-8507, Japan It is now well established that the E and Id protein axis regulates multiple steps in lymphocyte development. However, it remains unknown how E and Id proteins mechanistically enforce and maintain the naı¨ve T-cell fate. Here we show that Id2 and Id3 suppressed the development and expansion of innate variant follicular helper T (TFH) cells. Innate variant TFH cells required major histocompatibility complex (MHC) class I-like signaling and were associated with germinal center B cells.
    [Show full text]
  • IKZF3/Aiolos Is Associated with but Not Sufficient for the Expression of IL-10 by CD4 + T Cells
    IKZF3/Aiolos Is Associated with but Not Sufficient for the Expression of IL-10 by CD4 + T Cells This information is current as Michael L. Ridley, Veerle Fleskens, Ceri A. Roberts, of September 28, 2021. Sylvine Lalnunhlimi, Aldana Alnesf, Aoife M. O'Byrne, Kathryn J. A. Steel, Giovanni A. M. Povoleri, Jonathan Sumner, Paul Lavender and Leonie S. Taams J Immunol published online 22 April 2020 http://www.jimmunol.org/content/early/2020/04/17/jimmun Downloaded from ol.1901283 Supplementary http://www.jimmunol.org/content/suppl/2020/04/17/jimmunol.190128 Material 3.DCSupplemental http://www.jimmunol.org/ Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists by guest on September 28, 2021 • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2020 The Authors All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. Published April 22, 2020, doi:10.4049/jimmunol.1901283 The Journal of Immunology IKZF3/Aiolos Is Associated with but Not Sufficient for the Expression of IL-10 by CD4+ T Cells Michael L.
    [Show full text]
  • 1714 Gene Comprehensive Cancer Panel Enriched for Clinically Actionable Genes with Additional Biologically Relevant Genes 400-500X Average Coverage on Tumor
    xO GENE PANEL 1714 gene comprehensive cancer panel enriched for clinically actionable genes with additional biologically relevant genes 400-500x average coverage on tumor Genes A-C Genes D-F Genes G-I Genes J-L AATK ATAD2B BTG1 CDH7 CREM DACH1 EPHA1 FES G6PC3 HGF IL18RAP JADE1 LMO1 ABCA1 ATF1 BTG2 CDK1 CRHR1 DACH2 EPHA2 FEV G6PD HIF1A IL1R1 JAK1 LMO2 ABCB1 ATM BTG3 CDK10 CRK DAXX EPHA3 FGF1 GAB1 HIF1AN IL1R2 JAK2 LMO7 ABCB11 ATR BTK CDK11A CRKL DBH EPHA4 FGF10 GAB2 HIST1H1E IL1RAP JAK3 LMTK2 ABCB4 ATRX BTRC CDK11B CRLF2 DCC EPHA5 FGF11 GABPA HIST1H3B IL20RA JARID2 LMTK3 ABCC1 AURKA BUB1 CDK12 CRTC1 DCUN1D1 EPHA6 FGF12 GALNT12 HIST1H4E IL20RB JAZF1 LPHN2 ABCC2 AURKB BUB1B CDK13 CRTC2 DCUN1D2 EPHA7 FGF13 GATA1 HLA-A IL21R JMJD1C LPHN3 ABCG1 AURKC BUB3 CDK14 CRTC3 DDB2 EPHA8 FGF14 GATA2 HLA-B IL22RA1 JMJD4 LPP ABCG2 AXIN1 C11orf30 CDK15 CSF1 DDIT3 EPHB1 FGF16 GATA3 HLF IL22RA2 JMJD6 LRP1B ABI1 AXIN2 CACNA1C CDK16 CSF1R DDR1 EPHB2 FGF17 GATA5 HLTF IL23R JMJD7 LRP5 ABL1 AXL CACNA1S CDK17 CSF2RA DDR2 EPHB3 FGF18 GATA6 HMGA1 IL2RA JMJD8 LRP6 ABL2 B2M CACNB2 CDK18 CSF2RB DDX3X EPHB4 FGF19 GDNF HMGA2 IL2RB JUN LRRK2 ACE BABAM1 CADM2 CDK19 CSF3R DDX5 EPHB6 FGF2 GFI1 HMGCR IL2RG JUNB LSM1 ACSL6 BACH1 CALR CDK2 CSK DDX6 EPOR FGF20 GFI1B HNF1A IL3 JUND LTK ACTA2 BACH2 CAMTA1 CDK20 CSNK1D DEK ERBB2 FGF21 GFRA4 HNF1B IL3RA JUP LYL1 ACTC1 BAG4 CAPRIN2 CDK3 CSNK1E DHFR ERBB3 FGF22 GGCX HNRNPA3 IL4R KAT2A LYN ACVR1 BAI3 CARD10 CDK4 CTCF DHH ERBB4 FGF23 GHR HOXA10 IL5RA KAT2B LZTR1 ACVR1B BAP1 CARD11 CDK5 CTCFL DIAPH1 ERCC1 FGF3 GID4 HOXA11 IL6R KAT5 ACVR2A
    [Show full text]
  • GATA3-Controlled Nucleosome Eviction Drives MYC Enhancer Activity in T-Cell Development and Leukemia
    Published OnlineFirst September 13, 2019; DOI: 10.1158/2159-8290.CD-19-0471 RESEARCH ARTICLE GATA3-Controlled Nucleosome Eviction Drives MYC Enhancer Activity in T-cell Development and Leukemia Laura Belver 1 , Alexander Y. Yang 1 , Robert Albero 1 , Daniel Herranz 2 , 3 , Francesco G. Brundu 4 , S. Aidan Quinn1 , Pablo Pérez-Durán 1 , Silvia Álvarez 1 , Francesca Gianni 1 , Marissa Rashkovan 1 , Devya Gurung1 , Pedro P. Rocha 5 , Ramya Raviram 6 , 7 , Clara Reglero 1 , Jose R. Cortés 1 , Anisha J. Cooke 1 , Agnieszka A. Wendorff1 , Valentina Cordó 8 , Jules P. Meijerink 8 , Raúl Rabadan 4 , 9 , and Adolfo A. Ferrando 1 , 4 , 10 , 11 ABSTRACT Long-range enhancers govern the temporal and spatial control of gene expres s ion; however, the mechanisms that regulate enhancer activity during normal and malig- nant development remain poorly understood. Here, we demonstrate a role for aberrant chromatin acces- sibility in the regulation of MYC expression in T-cell lymphoblastic leukemia (T-ALL). Central to this process, the NOTCH1-MYC enhancer (N-Me), a long-range T cell–specifi c MYC enhancer, shows dynamic changes in chromatin accessibility during T-cell specifi cation and maturation and an aberrant high degree of chromatin accessibility in mouse and human T-ALL cells. Mechanistically, we demonstrate that GATA3- driven nucleosome eviction dynamically modulates N-Me enhancer activity and is strictly required for NOTCH1-induced T-ALL initiation and maintenance. These results directly implicate aberrant regulation of chromatin accessibility at oncogenic enhancers as a mechanism of leukemic transformation. SIGNIFICANCE: MYC is a major effector of NOTCH1 oncogenic programs in T-ALL.
    [Show full text]
  • Science Journals
    SCIENCE IMMUNOLOGY | RESEARCH RESOURCE T CELL MEMORY Copyright © 2020 The Authors, some rights reserved; Early precursors and molecular determinants of tissue- exclusive licensee + American Association resident memory CD8 T lymphocytes revealed by for the Advancement of Science. No claim single-cell RNA sequencing to original U.S. Nadia S. Kurd1*†, Zhaoren He2,3*, Tiani L. Louis1, J. Justin Milner3, Kyla D. Omilusik3, Government Works Wenhao Jin2, Matthew S. Tsai1, Christella E. Widjaja1, Jad N. Kanbar1, Jocelyn G. Olvera1, Tiffani Tysl1, Lauren K. Quezada1, Brigid S. Boland1, Wendy J. Huang2, Cornelis Murre3, Ananda W. Goldrath3, Gene W. Yeo2,4‡, John T. Chang1,5‡§ + During an immune response to microbial infection, CD8 T cells give rise to distinct classes of cellular progeny that coordinately mediate clearance of the pathogen and provide long-lasting protection against reinfection, including a subset of noncirculating tissue-resident memory (TRM) cells that mediate potent protection within nonlymphoid + Downloaded from tissues. Here, we used single-cell RNA sequencing to examine the gene expression patterns of individual CD8 T cells in the spleen and small intestine intraepithelial lymphocyte (siIEL) compartment throughout the course of their differentiation in response to viral infection. These analyses revealed previously unknown transcriptional + heterogeneity within the siIEL CD8 T cell population at several stages of differentiation, representing functionally distinct TRM cell subsets and a subset of TRM cell precursors within the tissue early in infection. Together, these + findings may inform strategies to optimize CD8 T cell responses to protect against microbial infection and cancer. http://immunology.sciencemag.org/ INTRODUCTION composed of distinct subsets that play unique roles in mediating CD8+ T cells responding to microbial challenge differentiate into protective immunity.
    [Show full text]
  • IKZF3 Antibody Cat
    IKZF3 Antibody Cat. No.: 61-999 IKZF3 Antibody Western blot analysis of extracts from MM cells, treated with DMSO or lenalidomide, using rabbit polyclonal IKZF3 Antibody . Specifications HOST SPECIES: Rabbit SPECIES REACTIVITY: Human, Mouse HOMOLOGY: Predicted species reactivity based on immunogen sequence: Bovine This IKZF3 antibody is generated from rabbits immunized with a KLH conjugated synthetic IMMUNOGEN: peptide between 76-103 amino acids from the Central region of human IKZF3. TESTED APPLICATIONS: WB APPLICATIONS: For WB starting dilution is: 1:1000 PREDICTED MOLECULAR 58 kDa WEIGHT: September 28, 2021 1 https://www.prosci-inc.com/ikzf3-antibody-61-999.html Properties This antibody is purified through a protein A column, followed by peptide affinity PURIFICATION: purification. CLONALITY: Polyclonal ISOTYPE: Rabbit Ig CONJUGATE: Unconjugated PHYSICAL STATE: Liquid BUFFER: Supplied in PBS with 0.09% (W/V) sodium azide. CONCENTRATION: batch dependent Store at 4˚C for three months and -20˚C, stable for up to one year. As with all antibodies STORAGE CONDITIONS: care should be taken to avoid repeated freeze thaw cycles. Antibodies should not be exposed to prolonged high temperatures. Additional Info OFFICIAL SYMBOL: IKZF3 ALTERNATE NAMES: Zinc finger protein Aiolos, Ikaros family zinc finger protein 3, IKZF3, ZNFN1A3 ACCESSION NO.: Q9UKT9 PROTEIN GI NO.: 212276437 GENE ID: 22806 USER NOTE: Optimal dilutions for each application to be determined by the researcher. Background and References This gene encodes a member of the Ikaros family of zinc-finger proteins. Three members of this protein family (Ikaros, Aiolos and Helios) are hematopoietic-specific transcription factors involved in the regulation of lymphocyte development.
    [Show full text]
  • Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4+ T Cell Differentiation and Metabolism
    International Journal of Molecular Sciences Article Deletion of Irf4 in T Cells Suppressed Autoimmune Uveitis and Dysregulated Transcriptional Programs Linked to CD4+ T Cell Differentiation and Metabolism Minkyung Kang 1,†, Hyun-Su Lee 1,†, Jin Kyeong Choi 1,2, Cheng-Rong Yu 1 and Charles E. Egwuagu 1,* 1 Molecular Immunology Section, Laboratory of Immunology, National Eye Institute (NEI), National Institute of Health, Bethesda, MD 20892, USA; [email protected] (M.K.); [email protected] (H.-S.L.); [email protected] (J.K.C.); [email protected] (C.-R.Y.) 2 Department of Immunology, Jeonbuk National University Medical School, Jeonju, Jeonbuk 54907, Korea * Correspondence: [email protected]; Tel.: +301-496-0049; Fax: +301-480-3914 † These authors contributed equally. Abstract: Interferon regulatory factor-4 (IRF4) and IRF8 regulate differentiation, growth and functions of lymphoid and myeloid cells. Targeted deletion of irf8 in T cells (CD4-IRF8KO) has been shown to exacerbate colitis and experimental autoimmune uveitis (EAU), a mouse model of human uveitis. We therefore generated mice lacking irf4 in T cells (CD4-IRF4KO) and investigated whether expression of IRF4 by T cells is also required for regulating T cells that suppress autoimmune diseases. Surprisingly, we found that CD4-IRF4KO mice are resistant to EAU. Suppression of EAU derived in part from inhibiting pathogenic responses of Th17 cells while inducing expansion of regulatory lymphocytes that secrete IL-10 and/or IL-35 in the eye and peripheral lymphoid tissues. Furthermore, CD4- IRF4KO T cells exhibit alterations in cell metabolism and are defective in the expression of two Citation: Kang, M.; Lee, H.-S.; Choi, Ikaros zinc-finger (IKZF) transcription factors (Ikaros, Aiolos) that are required for lymphocyte J.K.; Yu, C.-R.; Egwuagu, C.E.
    [Show full text]
  • Host Cell Factors Necessary for Influenza a Infection: Meta-Analysis of Genome Wide Studies
    Host Cell Factors Necessary for Influenza A Infection: Meta-Analysis of Genome Wide Studies Juliana S. Capitanio and Richard W. Wozniak Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta Abstract: The Influenza A virus belongs to the Orthomyxoviridae family. Influenza virus infection occurs yearly in all countries of the world. It usually kills between 250,000 and 500,000 people and causes severe illness in millions more. Over the last century alone we have seen 3 global influenza pandemics. The great human and financial cost of this disease has made it the second most studied virus today, behind HIV. Recently, several genome-wide RNA interference studies have focused on identifying host molecules that participate in Influen- za infection. We used nine of these studies for this meta-analysis. Even though the overlap among genes identified in multiple screens was small, network analysis indicates that similar protein complexes and biological functions of the host were present. As a result, several host gene complexes important for the Influenza virus life cycle were identified. The biological function and the relevance of each identified protein complex in the Influenza virus life cycle is further detailed in this paper. Background and PA bound to the viral genome via nucleoprotein (NP). The viral core is enveloped by a lipid membrane derived from Influenza virus the host cell. The viral protein M1 underlies the membrane and anchors NEP/NS2. Hemagglutinin (HA), neuraminidase Viruses are the simplest life form on earth. They parasite host (NA), and M2 proteins are inserted into the envelope, facing organisms and subvert the host cellular machinery for differ- the viral exterior.
    [Show full text]
  • Keep Your Fingers Off My DNA: Protein-Protein Interactions
    1 2 Keep your fingers off my DNA: 3 protein-protein interactions mediated by C2H2 zinc finger domains 4 5 6 a scholarly review 7 8 9 10 11 Kathryn J. Brayer1 and David J. Segal2* 12 13 14 15 16 17 1Department of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, 18 Tucson, AZ, 85721. 19 2Genome Center and Department of Pharmacology, University of California, Davis, CA, 95616. 20 21 22 23 24 *To whom correspondence should be addressed: 25 David J. Segal, Ph.D. 26 University of California, Davis 27 Genome Center/Pharmacology 28 4513 GBSF 29 451 E. Health Sciences Dr. 30 Davis, CA 95616 31 Tel: 530-754-9134 32 Fax: 530-754-9658 33 Email: [email protected] 34 35 36 Running header: C2H2 ZF interactions with proteins 37 38 Keywords: transcription factors, protein-DNA interactions, protein chemistry, structural biology, 39 functional annotations 40 41 Abstract: 154 words 42 Body Text: 5863 words 43 Figures: 9 44 Tables: 5 45 References: 165 46 C2H2 ZF interactions with proteins Brayer and Segal - review 46 ABSTRACT 47 Cys2-His2 (C2H2) zinc finger domains were originally identified as DNA binding 48 domains, and uncharacterized domains are typically assumed to function in DNA binding. 49 However, a growing body of evidence suggests an important and widespread role for these 50 domains in protein binding. There are even examples of zinc fingers that support both DNA and 51 protein interactions, which can be found in well-known DNA-binding proteins such as Sp1, 52 Zif268, and YY1. C2H2 protein-protein interactions are proving to be more abundant than 53 previously appreciated, more plastic than their DNA-binding counterparts, and more variable and 54 complex in their interactions surfaces.
    [Show full text]