Keep Your Fingers Off My DNA: Protein-Protein Interactions
Total Page:16
File Type:pdf, Size:1020Kb
Load more
Recommended publications
-
RBP-J Signaling − Cells Through Notch Novel IRF8-Controlled
Sca-1+Lin−CD117− Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch −RBP-J Signaling This information is current as of September 25, 2021. Xingxia Liu, Shaoda Ren, Chaozhuo Ge, Kai Cheng, Martin Zenke, Armand Keating and Robert C. H. Zhao J Immunol 2015; 194:4298-4308; Prepublished online 30 March 2015; doi: 10.4049/jimmunol.1402641 Downloaded from http://www.jimmunol.org/content/194/9/4298 Supplementary http://www.jimmunol.org/content/suppl/2015/03/28/jimmunol.140264 http://www.jimmunol.org/ Material 1.DCSupplemental References This article cites 59 articles, 19 of which you can access for free at: http://www.jimmunol.org/content/194/9/4298.full#ref-list-1 Why The JI? Submit online. • Rapid Reviews! 30 days* from submission to initial decision by guest on September 25, 2021 • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2015 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. The Journal of Immunology Sca-1+Lin2CD1172 Mesenchymal Stem/Stromal Cells Induce the Generation of Novel IRF8-Controlled Regulatory Dendritic Cells through Notch–RBP-J Signaling Xingxia Liu,*,1 Shaoda Ren,*,1 Chaozhuo Ge,* Kai Cheng,* Martin Zenke,† Armand Keating,‡,x and Robert C. -
502 the Keratinocyte Growth-Differentiation Switch Intact Skin
[Frontiers in Bioscience 3, d502-508, May 15, 1998] THE KERATINOCYTE GROWTH-DIFFERENTIATION SWITCH Paolo Dotto Cutaneous Biology Research Center, Massachusetts General Hospital, Building 149, 13th Street, Charlestown, Massachusetts, 02129- 2000 Received 5/4/98 Accepted 5/8/98 TABLE OF CONTENTS 1. Abstract 2. Introduction 3. Signals which control the switch between keratinocyte growth and differentiation 4. Intermediate signalling pathways which are responsible for transduction of the differentiation signal 5. Tyrosine phosphorylation : key to regulation of keratinocyte differentiation 6. Transcription and cell cycle regulatory events connected with the onset of keratinocyte differentiation 7. References medium at low calcium concentrations (our unpublished 1. ABSTRACT observations). Growth/differentiation control of normal epithelial Besides calcium, growth/differentiation of primary cells has been relatively understudied, because of the keratinocyte cultures can be controlled by pharmacological complexities involved in their cultivation and means. In particular, treatment with the phorbol ester TPA characterization. The present review is focused on progress (12-0-tetradecanoylphorbol-13-acetate) induces growth in this area using the mouse primary keratinocyte system. arrest as well as expression of a set of differentiation This system reproduces under well defined culture markers such as involucrin, loricrin and filaggrin. However, conditions the switch between epithelial cell growth and expression of other markers induced differentiation -
Supplementary Materials: Evaluation of Cytotoxicity and Α-Glucosidase Inhibitory Activity of Amide and Polyamino-Derivatives of Lupane Triterpenoids
Supplementary Materials: Evaluation of cytotoxicity and α-glucosidase inhibitory activity of amide and polyamino-derivatives of lupane triterpenoids Oxana B. Kazakova1*, Gul'nara V. Giniyatullina1, Akhat G. Mustafin1, Denis A. Babkov2, Elena V. Sokolova2, Alexander A. Spasov2* 1Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71, pr. Oktyabrya, 450054 Ufa, Russian Federation 2Scientific Center for Innovative Drugs, Volgograd State Medical University, Novorossiyskaya st. 39, Volgograd 400087, Russian Federation Correspondence Prof. Dr. Oxana B. Kazakova Ufa Institute of Chemistry of the Ufa Federal Research Centre of the Russian Academy of Sciences 71 Prospeсt Oktyabrya Ufa, 450054 Russian Federation E-mail: [email protected] Prof. Dr. Alexander A. Spasov Scientific Center for Innovative Drugs of the Volgograd State Medical University 39 Novorossiyskaya st. Volgograd, 400087 Russian Federation E-mail: [email protected] Figure S1. 1H and 13C of compound 2. H NH N H O H O H 2 2 Figure S2. 1H and 13C of compound 4. NH2 O H O H CH3 O O H H3C O H 4 3 Figure S3. Anticancer screening data of compound 2 at single dose assay 4 Figure S4. Anticancer screening data of compound 7 at single dose assay 5 Figure S5. Anticancer screening data of compound 8 at single dose assay 6 Figure S6. Anticancer screening data of compound 9 at single dose assay 7 Figure S7. Anticancer screening data of compound 12 at single dose assay 8 Figure S8. Anticancer screening data of compound 13 at single dose assay 9 Figure S9. Anticancer screening data of compound 14 at single dose assay 10 Figure S10. -
Dissertation Philip Böhler
Three Tales of Death: New Pathways in the Induction, Inhibition and Execution of Apoptosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Philip Böhler aus Bonn Düsseldorf, Juni 2019 aus dem Institut für Molekulare Medizin I der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Prof. Dr. Sebastian Wesselborg 2. Prof. Dr. Henrike Heise Tag der mündlichen Prüfung: 29. Oktober 2019 “Where the first primal cell was, there was I also. Where man is, there am I. When the last life crawls under freezing stars, there will I be.” — DEATH, in: Mort, by Terry Pratchett “Right away I found out something about biology: it was very easy to find a question that was very interesting, and that nobody knew the answer to.” — Richard Feynman, in: Surely You're Joking, Mr. Feynman! Acknowledgements (Danksagung) Acknowledgements (Danksagung) Viele Menschen haben zum Gelingen meiner Forschungsarbeit und dieser Dissertation beigetragen, und nicht alle können hier namentlich erwähnt werden. Dennoch möchte ich einige besonders hervorheben. An erster Stelle möchte ich Professor Sebastian Wesselborg danken, der diese Dissertation als Erstgutachter betreut hat und der mir die Möglichkeit gab, die dazugehörigen experimentellen Arbeiten am Institut für Molekulare Medizin durchzuführen. Er und Professor Björn Stork, dem ich für die herzliche Aufnahme in seine Arbeitsgruppe danke, legten durch die richtige Mischung aus aktiver Förderung und dem Freiraum zur Umsetzung eigener wissenschaftlicher Ideen die ideale Grundlage für die Forschungsprojekte, aus denen diese Dissertation entstand. Professorin Henrike Heise, die sich freundlicherweise zur Betreuung dieser Dissertation als Zweitgutachterin bereiterklärt hat, gilt ebenfalls mein herzlicher Dank. -
Multiple Facets of Jund Gene Expression Are Atypical Among AP-1 Family Members
Oncogene (2008) 27, 4757–4767 & 2008 Macmillan Publishers Limited All rights reserved 0950-9232/08 $30.00 www.nature.com/onc REVIEW Multiple facets of junD gene expression are atypical among AP-1 family members JM Hernandez1, DH Floyd2, KN Weilbaecher2, PL Green1,3 and K Boris-Lawrie1,3 1Department of Veterinary Biosciences and Center for Retrovirus Research, The Ohio State University, Columbus, OH, USA and 2Department of Medicine, Division of Molecular Oncology, Washington University School of Medicine, St Louis, MO, USA and 3Department of Medicine, Comprehensive Cancer Center, The Ohio State University, Columbus, OH, USA JunD is a versatile AP-1 transcription factor that can 2003; Milde-Langosch, 2005). The AP-1 component activate or repress a diverse collection of target genes. proteins are characterized structurally by their leucine- Precise control of junD expression and JunD protein– zipper dimerization motif and basic DNA-binding protein interactions modulate tumor angiogenesis, cellular domain. They can either activate or repress transcription differentiation, proliferation and apoptosis. Molecular and this versatile functional activity is dependent on the and clinical knowledge of two decades has revealed specific components of the dimeric complex and the that precise JunD activity is elaborated by interrelated cellular environment (Eferl and Wagner, 2003; Hess layers of constitutive transcriptional control, complex et al., 2004). AP-1 figures prominently in transcriptional post-transcriptional regulation and a collection of regulation of early response genes (reviewed by Jochum post-translational modifications and protein–protein et al., 2001; Mechta-Grigoriou et al., 2001; Eferl and interactions. The stakes are high, as inappropriate JunD Wagner, 2003). -
Impact of ZBTB7A Hypomethylation and Expression Patterns on Treatment Response to Hydroxyurea Vasiliki Chondrou1†, Eleana F
Chondrou et al. Human Genomics (2018) 12:45 https://doi.org/10.1186/s40246-018-0177-z PRIMARY RESEARCH Open Access Impact of ZBTB7A hypomethylation and expression patterns on treatment response to hydroxyurea Vasiliki Chondrou1†, Eleana F. Stavrou1†, Georgios Markopoulos2, Alexandra Kouraklis-Symeonidis3, Vasilios Fotopoulos4, Argiris Symeonidis5, Efthymia Vlachaki6, Panagiota Chalkia7, George P. Patrinos8, Adamantia Papachatzopoulou9 and Argyro Sgourou1* Abstract Background: We aimed to clarify the emerging epigenetic landscape in a group of genes classified as “modifier genes” of the β-type globin genes (HBB cluster), known to operate in trans to accomplish the two natural developmental switches in globin expression, from embryonic to fetal during the first trimester of conception and from fetal to adult around the time of birth. The epigenetic alterations were determined in adult sickle cell anemia (SCA) homozygotes and SCA/β-thalassemia compound heterozygotes of Greek origin, who are under hydroxyurea (HU) treatment. Patients were distinguished in HU responders and HU non-responders (those not benefited from the HU) and both, and in vivo and in vitro approaches were implemented. Results: We examined the CpG islands’ DNA methylation profile of BCL11A, KLF1, MYB, MAP3K5, SIN3A, ZBTB7A,andGATA2, along with γ-globin and LRF/ZBTB7A expression levels. In vitro treatment of hematopoietic stem cells (HSCs) with HU induced a significant DNA hypomethylation pattern in ZBTB7A (p*, 0.04) and GATA2 (p*, 0.03) CpGs exclusively in the HU non-responders. Also, this group of patients exhibited significantly elevated baseline methylation patterns in ZBTB7A, before the HU treatment, compared to HU responders (p*, 0.019) and to control group of healthy individuals (p*, 0.021) , which resembles a potential epigenetic barrier for the γ-globin expression. -
Open Dogan Phdthesis Final.Pdf
The Pennsylvania State University The Graduate School Eberly College of Science ELUCIDATING BIOLOGICAL FUNCTION OF GENOMIC DNA WITH ROBUST SIGNALS OF BIOCHEMICAL ACTIVITY: INTEGRATIVE GENOME-WIDE STUDIES OF ENHANCERS A Dissertation in Biochemistry, Microbiology and Molecular Biology by Nergiz Dogan © 2014 Nergiz Dogan Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2014 ii The dissertation of Nergiz Dogan was reviewed and approved* by the following: Ross C. Hardison T. Ming Chu Professor of Biochemistry and Molecular Biology Dissertation Advisor Chair of Committee David S. Gilmour Professor of Molecular and Cell Biology Anton Nekrutenko Professor of Biochemistry and Molecular Biology Robert F. Paulson Professor of Veterinary and Biomedical Sciences Philip Reno Assistant Professor of Antropology Scott B. Selleck Professor and Head of the Department of Biochemistry and Molecular Biology *Signatures are on file in the Graduate School iii ABSTRACT Genome-wide measurements of epigenetic features such as histone modifications, occupancy by transcription factors and coactivators provide the opportunity to understand more globally how genes are regulated. While much effort is being put into integrating the marks from various combinations of features, the contribution of each feature to accuracy of enhancer prediction is not known. We began with predictions of 4,915 candidate erythroid enhancers based on genomic occupancy by TAL1, a key hematopoietic transcription factor that is strongly associated with gene induction in erythroid cells. Seventy of these DNA segments occupied by TAL1 (TAL1 OSs) were tested by transient transfections of cultured hematopoietic cells, and 56% of these were active as enhancers. Sixty-six TAL1 OSs were evaluated in transgenic mouse embryos, and 65% of these were active enhancers in various tissues. -
Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of C-Myb
doi:10.1016/j.jmb.2004.01.038 J. Mol. Biol. (2004) 337, 521–534 Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb Tsaffrir Zor, Roberto N. De Guzman, H. Jane Dyson and Peter E. Wright* Department of Molecular The hematopoietic transcription factor c-Myb activates transcription of Biology and the Skaggs target genes through direct interactions with the KIX domain of the Institute for Chemical Biology co-activator CBP. The solution structure of the KIX domain in complex The Scripps Research Institute with the activation domain of c-Myb reveals a helical structure very simi- 10550 N. Torrey Pines Road, La lar to that adopted by KIX in complex with the phosphorylated kinase Jolla, CA 92037, USA inducible domain (pKID) of CREB. While pKID contains two helices, aA and aB, which interact with KIX, the structure of bound c-Myb reveals a single bent amphipathic helix that binds in the same hydrophobic groove as the aB helix of pKID. The affinity of c-Myb for KIX is lower than that of pKID, and relies more heavily on optimal interactions of the single helix of c-Myb with residues in the hydrophobic groove. In particular, a deep hydrophobic pocket in KIX accounts for more than half the inter- actions with c-Myb observed by NMR. A bend in the a-helix of c-Myb enables a critical leucine side-chain to penetrate into this pocket more deeply than the equivalent leucine residue of pKID. The components that mediate the higher affinity of pKID for KIX, i.e. -
A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated. -
Aiolos Overexpression in Systemic Lupus Erythematosus B Cell
Aiolos Overexpression in Systemic Lupus Erythematosus B Cell Subtypes and BAFF-Induced Memory B Cell Differentiation Are Reduced by CC-220 This information is current as Modulation of Cereblon Activity of September 27, 2021. Yumi Nakayama, Jolanta Kosek, Lori Capone, Eun Mi Hur, Peter H. Schafer and Garth E. Ringheim J Immunol 2017; 199:2388-2407; Prepublished online 28 August 2017; Downloaded from doi: 10.4049/jimmunol.1601725 http://www.jimmunol.org/content/199/7/2388 http://www.jimmunol.org/ Supplementary http://www.jimmunol.org/content/suppl/2017/08/26/jimmunol.160172 Material 5.DCSupplemental References This article cites 131 articles, 45 of which you can access for free at: http://www.jimmunol.org/content/199/7/2388.full#ref-list-1 Why The JI? Submit online. by guest on September 27, 2021 • Rapid Reviews! 30 days* from submission to initial decision • No Triage! Every submission reviewed by practicing scientists • Fast Publication! 4 weeks from acceptance to publication *average Subscription Information about subscribing to The Journal of Immunology is online at: http://jimmunol.org/subscription Permissions Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html Author Choice Freely available online through The Journal of Immunology Author Choice option Email Alerts Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts The Journal of Immunology is published twice each month by The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2017 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. -
4-6 Weeks Old Female C57BL/6 Mice Obtained from Jackson Labs Were Used for Cell Isolation
Methods Mice: 4-6 weeks old female C57BL/6 mice obtained from Jackson labs were used for cell isolation. Female Foxp3-IRES-GFP reporter mice (1), backcrossed to B6/C57 background for 10 generations, were used for the isolation of naïve CD4 and naïve CD8 cells for the RNAseq experiments. The mice were housed in pathogen-free animal facility in the La Jolla Institute for Allergy and Immunology and were used according to protocols approved by the Institutional Animal Care and use Committee. Preparation of cells: Subsets of thymocytes were isolated by cell sorting as previously described (2), after cell surface staining using CD4 (GK1.5), CD8 (53-6.7), CD3ε (145- 2C11), CD24 (M1/69) (all from Biolegend). DP cells: CD4+CD8 int/hi; CD4 SP cells: CD4CD3 hi, CD24 int/lo; CD8 SP cells: CD8 int/hi CD4 CD3 hi, CD24 int/lo (Fig S2). Peripheral subsets were isolated after pooling spleen and lymph nodes. T cells were enriched by negative isolation using Dynabeads (Dynabeads untouched mouse T cells, 11413D, Invitrogen). After surface staining for CD4 (GK1.5), CD8 (53-6.7), CD62L (MEL-14), CD25 (PC61) and CD44 (IM7), naïve CD4+CD62L hiCD25-CD44lo and naïve CD8+CD62L hiCD25-CD44lo were obtained by sorting (BD FACS Aria). Additionally, for the RNAseq experiments, CD4 and CD8 naïve cells were isolated by sorting T cells from the Foxp3- IRES-GFP mice: CD4+CD62LhiCD25–CD44lo GFP(FOXP3)– and CD8+CD62LhiCD25– CD44lo GFP(FOXP3)– (antibodies were from Biolegend). In some cases, naïve CD4 cells were cultured in vitro under Th1 or Th2 polarizing conditions (3, 4). -
Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell
cancers Article Detection of Pathogenic Isoforms of IKZF1 in Leukemic Cell Lines and Acute Lymphoblastic Leukemia Samples: Identification of a Novel Truncated IKZF1 Transcript in SUP-B15 Weiqiang Zhao 1,*, Ying Li 2 , Chenjiao Yao 2 , Guojuan Zhang 1, Kevin Y. Zhao 1, Wei Chen 1, Peng Ru 1, Xiaokang Pan 1, Huolin Tu 1 and Daniel Jones 1 1 The James Comprehensive Cancer Center and Solove Research Institute, The Ohio State University, Columbus, OH 43210, USA; [email protected] (G.Z.); [email protected] (K.Y.Z.); [email protected] (W.C.); [email protected] (P.R.); [email protected] (X.P.); [email protected] (H.T.); [email protected] (D.J.) 2 The Department of Pediatrics and Department of Hematology, Xiang-Ya Third Hospital, Changsha 410013, China; [email protected] (Y.L.); [email protected] (C.Y.) * Correspondence: [email protected]; Tel.: +1-6142934210 Received: 27 August 2020; Accepted: 22 October 2020; Published: 28 October 2020 Simple Summary: Abnormal RNA splicing plays a fundamental role in leukemogenesis in acute lymphoblastic leukemia (ALL). Many cases of high-risk B-cell ALL cases, including BCR-ABL1+ and BCR-ABL1-like ALL, share a common molecular mechanism of aberrant fusion transcripts involving tyrosine kinase genes combined with dysregulation of the transcription factor and lymphocyte differentiation factor IKZF1. Dysfunction of IKZF1 in ALL is caused by mutation and gene deletion but also alternative splicing resulting in exon skipping with production of aberrant IKZF1 proteins. We report here an assay to detect aberrantly spliced isoforms of IKZF1 in ALL to assist in diagnosis, outcome prediction, and therapy selection in ALL and the identification of a novel altered IKZF1 product in a model ALL cell line.