Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis

Total Page:16

File Type:pdf, Size:1020Kb

Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis International Journal of Molecular Sciences Review Aberrant Activity of Histone–Lysine N-Methyltransferase 2 (KMT2) Complexes in Oncogenesis Elzbieta Poreba 1,* , Krzysztof Lesniewicz 2 and Julia Durzynska 1,* 1 Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Pozna´nskiego6, 61-614 Pozna´n,Poland 2 Department of Molecular and Cellular Biology, Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Uniwersytetu Pozna´nskiego6, 61-614 Pozna´n,Poland; [email protected] * Correspondence: [email protected] (E.P.); [email protected] (J.D.); Tel.: +48-61-829-5857 (E.P.) Received: 19 November 2020; Accepted: 6 December 2020; Published: 8 December 2020 Abstract: KMT2 (histone-lysine N-methyltransferase subclass 2) complexes methylate lysine 4 on the histone H3 tail at gene promoters and gene enhancers and, thus, control the process of gene transcription. These complexes not only play an essential role in normal development but have also been described as involved in the aberrant growth of tissues. KMT2 mutations resulting from the rearrangements of the KMT2A (MLL1) gene at 11q23 are associated with pediatric mixed-lineage leukemias, and recent studies demonstrate that KMT2 genes are frequently mutated in many types of human cancers. Moreover, other components of the KMT2 complexes have been reported to contribute to oncogenesis. This review summarizes the recent advances in our knowledge of the role of KMT2 complexes in cell transformation. In addition, it discusses the therapeutic targeting of different components of the KMT2 complexes. Keywords: histone–lysine N-methyltransferase 2; COMPASS; COMPASS-like; H3K4 methylation; oncogenesis; cancer; epigenetics; chromatin 1. Introduction In the past two decades, efforts have been made to create a comprehensive and universal description of common traits of cancer cells. This gave rise to a new term—cancer hallmark—that reflects each of the intrinsic characteristics of a cancer cell not found in normal cells. Although a vigorous debate is still taking place, it can be agreed upon that cancer cells are independent of growth and antigrowth stimuli. These cells can evade apoptosis and replicate in a limitless manner and, hence, become immortal. Cancer cells also induce angiogenesis for a better supply of nutrients and are capable of spreading to different sites of the body (metastasis). Furthermore, they can reprogram energy metabolism, escape the immune response system, and promote inflammation. The underlying conditions are mutations and genome instability, which allow for the establishment of all cancer hallmarks [1–4]. However, the genetic landscape of cells undergoing transformation is only one part of the story, as the acquired knowledge of epigenetic modifications has helped us understand their crucial importance and contribution to virtually all classic hallmarks of cancer [5]. Recent studies based on the high-throughput sequencing of genomes, epigenomes, and transcriptomes have provided us with enormous data pointing to the relationship between cancer development and mutations in genes encoding epigenetic modifiers. Abnormal histone methylation resulting from gene mutation, translocation, or the deregulated expression of histone methyltransferases has been frequently observed in cancers. Depending on the histone and the modified residue, the process of methylation plays various Int. J. Mol. Sci. 2020, 21, 9340; doi:10.3390/ijms21249340 www.mdpi.com/journal/ijms Int. J. Mol. Sci. 2020, 21, x FOR PEER REVIEW 2 of 37 Int. J. Mol. Sci. 2020, 21, 9340 2 of 37 methylation plays various biological roles. The methylation of lysine 4 on histone H3 is associated with transcriptional activation and is catalyzed by histone methyltransferases classified as KMT2s biological(lysine-specific roles. methyltransferases The methylation of subclass lysine 4 on 2) histone[6]. H3K4 H3 trimethylation is associated with (H3K4me3) transcriptional is characteristic activation andof accessible is catalyzed gene by histonepromoters, methyltransferases whereas H3K4 classified monomethylation as KMT2s (lysine-specific(H3K4me1) occurs methyltransferases in enhancer subclasselements 2)[7–9]. [6]. H3K4 trimethylation (H3K4me3) is characteristic of accessible gene promoters, whereasThis H3K4 review monomethylation aims to present the (H3K4me1) most recent occurs advances in enhancer in our elementsunderstanding [7–9]. of the structure and role ofThis KMT2 review complexes aims to in present cellular the transformation most recent. advancesThe oncogenic in our outcomes understanding of mutations of the in structure KMT2s, andas well role as of in KMT2 the core complexes subunits in of cellular the KMT2 transformation. complexes, Theare oncogenicdiscussed. outcomesIn addition, of mutationsa number inof KMT2s,molecularas wellstrategies as in thetargeting core subunits different of the compon KMT2 complexes,ents of the are KMT2 discussed. complexes In addition, with aanticancer number of moleculartherapeutic strategies potential targeting are described different in detail. components of the KMT2 complexes with anticancer therapeutic potential are described in detail. 2. Structure of the KMT2 Complexes 2. Structure of the KMT2 Complexes KMT2s are the main H3K4 methyltransferases that regulate gene transcription. The KMT2 familyKMT2s is highly are the conserved main H3K4 in methyltransferaseseukaryotes. While thatthree regulate subgroups gene transcription.of KMT2s, each The with KMT2 a familysingle isrepresentative, highly conserved are inpresent eukaryotes. in Drosophila While three melanogaster subgroups—trithorax of KMT2s, (Trx), each trithorax-related with a single representative, (Trr), and areSet1—two present paralogs in Drosophila of each melanogaster subgroup—trithorax appeared (Trx),in humans trithorax-related during evolution. (Trr), and Human Set1—two cells paralogs contain oftwo each Trx-related subgroup KMT2s appeared (KMT2A in humans and KMT2B), during tw evolution.o Trr-related Human KMT2s cells (KMT2C contain and two KMT2D), Trx-related and KMT2stwo Set1-related (KMT2A KMT2s and KMT2B), (KMT2F two and Trr-related KMT2G) KMT2s(Figure (KMT2C1). Although and KMT2D),KMT2E was and initially two Set1-related classified KMT2sunder the (KMT2F KMT2 andfamily, KMT2G) it was (Figureidentified1). to Although be more KMT2E homologous was initially to yeast classified SET3 (SET under domain- the KMT2containing family, protein it was 3) and identified SET4 (SET to bedomain-containing more homologous protein to yeast 4) and SET3 Drosophila (SET domain-containing CG9007 (encoding proteinthe protein 3) and “UpSET”) SET4 (SET [10–12]. domain-containing Moreover, unlike protein the 4)other and KMT2sDrosophila presentCG9007 in humans, (encoding KMT2E the protein does “UpSET”)not exhibit[ intrinsic10–12]. Moreover, methyltransferase unlike the activity other toward KMT2s histone present substrates in humans, [12]. KMT2E does not exhibit intrinsic methyltransferase activity toward histone substrates [12]. Figure 1. (a) Domain structure of the KMT2 family and core subunits of the KMT2 complexes. The numbers Figure 1. (a) Domain structure of the KMT2 family and core subunits of the KMT2 complexes. The indicate the number of amino acids. KMT, histone–lysine N-methyltransferase; ASH2L, absent, numbers indicate the number of amino acids. KMT, histone–lysine N-methyltransferase; ASH2L, small, or homeotic 2-like; DPY30, Dumpy-30; RBBP5, retinoblastoma-binding protein 5; WDR5, absent, small, or homeotic 2-like; DPY30, Dumpy-30; RBBP5, retinoblastoma-binding protein 5; WD repeat-containing protein 5; AT-hook, adenosine-thymidine-hook; CXXC, Zinc finger-CXXC WDR5, WD repeat-containing protein 5; AT-hook, adenosine-thymidine-hook; CXXC, Zinc finger- domain; FYRN/FYRC, phenylalanine and tyrosine-rich region (N- and C-terminal); HMG, high mobility CXXC domain; FYRN/FYRC, phenylalanine and tyrosine-rich region (N- and C-terminal); HMG, high group; HWH, helix-wing-helix domain; N-SET, N-terminal of SET; PHD, plant homeodomain; Post-SET, C-terminalmobility group; of SET; HWH, RRM, RNAhelix-wing-helix recognition motif;domain; SDI, N-SET, Sdc1-Dpy-30 N-terminal interaction; of SET; SET, PHD, Su(var)3-9, plant motif Enhancer-of-zestehomeodomain; Post-SET, and Trithorax; C-terminal SPRY, of SPla SET; and RRM, the ryanodineRNA recognition receptor domain;; SDI, and Sdc1-Dpy-30 WD repeat, tryptophan-asparticinteraction; SET, Su(var)3-9, acid repeat. Enhancer-of-zeste (b) The structure and Trithorax; of the KMT2 SPRY, complex. SPla and The the enzyme ryanodine and receptor the core subunitsdomain; and of the WD complex repeat, aretryptophan-aspartic shown in the diagram. acid repeat. The interactions (b) The structure between of the individual KMT2 complex. subunits The are markedenzyme withand the blue core lines. subunits Subunits of the specific complex to individual are shown KMT2 in the complexes, diagram. The not interactions shown in the between figure, interactindividual with subunits the amino are marked terminus with of the blue KMT2s. lines. Su WINbunits motif, specific WDR5 to interactionindividual motif.KMT2 complexes, not shown in the figure, interact with the amino terminus of the KMT2s. WIN motif, WDR5 interaction motif. Int. J. Mol. Sci. 2020, 21, 9340 3 of 37 The KMT2s function in large multi-subunit complexes, which, in vertebrates, are often referred to as COMPASS or COMPASS-like complexes (COMplex of Proteins ASsociated with Set1). While
Recommended publications
  • Table 2. Functional Classification of Genes Differentially Regulated After HOXB4 Inactivation in HSC/Hpcs
    Table 2. Functional classification of genes differentially regulated after HOXB4 inactivation in HSC/HPCs Symbol Gene description Fold-change (mean ± SD) Signal transduction Adam8 A disintegrin and metalloprotease domain 8 1.91 ± 0.51 Arl4 ADP-ribosylation factor-like 4 - 1.80 ± 0.40 Dusp6 Dual specificity phosphatase 6 (Mkp3) - 2.30 ± 0.46 Ksr1 Kinase suppressor of ras 1 1.92 ± 0.42 Lyst Lysosomal trafficking regulator 1.89 ± 0.34 Mapk1ip1 Mitogen activated protein kinase 1 interacting protein 1 1.84 ± 0.22 Narf* Nuclear prelamin A recognition factor 2.12 ± 0.04 Plekha2 Pleckstrin homology domain-containing. family A. (phosphoinosite 2.15 ± 0.22 binding specific) member 2 Ptp4a2 Protein tyrosine phosphatase 4a2 - 2.04 ± 0.94 Rasa2* RAS p21 activator protein 2 - 2.80 ± 0.13 Rassf4 RAS association (RalGDS/AF-6) domain family 4 3.44 ± 2.56 Rgs18 Regulator of G-protein signaling - 1.93 ± 0.57 Rrad Ras-related associated with diabetes 1.81 ± 0.73 Sh3kbp1 SH3 domain kinase bindings protein 1 - 2.19 ± 0.53 Senp2 SUMO/sentrin specific protease 2 - 1.97 ± 0.49 Socs2 Suppressor of cytokine signaling 2 - 2.82 ± 0.85 Socs5 Suppressor of cytokine signaling 5 2.13 ± 0.08 Socs6 Suppressor of cytokine signaling 6 - 2.18 ± 0.38 Spry1 Sprouty 1 - 2.69 ± 0.19 Sos1 Son of sevenless homolog 1 (Drosophila) 2.16 ± 0.71 Ywhag 3-monooxygenase/tryptophan 5- monooxygenase activation protein. - 2.37 ± 1.42 gamma polypeptide Zfyve21 Zinc finger. FYVE domain containing 21 1.93 ± 0.57 Ligands and receptors Bambi BMP and activin membrane-bound inhibitor - 2.94 ± 0.62
    [Show full text]
  • Functional Roles of Bromodomain Proteins in Cancer
    cancers Review Functional Roles of Bromodomain Proteins in Cancer Samuel P. Boyson 1,2, Cong Gao 3, Kathleen Quinn 2,3, Joseph Boyd 3, Hana Paculova 3 , Seth Frietze 3,4,* and Karen C. Glass 1,2,4,* 1 Department of Pharmaceutical Sciences, Albany College of Pharmacy and Health Sciences, Colchester, VT 05446, USA; [email protected] 2 Department of Pharmacology, Larner College of Medicine, University of Vermont, Burlington, VT 05405, USA; [email protected] 3 Department of Biomedical and Health Sciences, University of Vermont, Burlington, VT 05405, USA; [email protected] (C.G.); [email protected] (J.B.); [email protected] (H.P.) 4 University of Vermont Cancer Center, Burlington, VT 05405, USA * Correspondence: [email protected] (S.F.); [email protected] (K.C.G.) Simple Summary: This review provides an in depth analysis of the role of bromodomain-containing proteins in cancer development. As readers of acetylated lysine on nucleosomal histones, bromod- omain proteins are poised to activate gene expression, and often promote cancer progression. We examined changes in gene expression patterns that are observed in bromodomain-containing proteins and associated with specific cancer types. We also mapped the protein–protein interaction network for the human bromodomain-containing proteins, discuss the cellular roles of these epigenetic regu- lators as part of nine different functional groups, and identify bromodomain-specific mechanisms in cancer development. Lastly, we summarize emerging strategies to target bromodomain proteins in cancer therapy, including those that may be essential for overcoming resistance. Overall, this review provides a timely discussion of the different mechanisms of bromodomain-containing pro- Citation: Boyson, S.P.; Gao, C.; teins in cancer, and an updated assessment of their utility as a therapeutic target for a variety of Quinn, K.; Boyd, J.; Paculova, H.; cancer subtypes.
    [Show full text]
  • Dissertation Philip Böhler
    Three Tales of Death: New Pathways in the Induction, Inhibition and Execution of Apoptosis Inaugural-Dissertation zur Erlangung des Doktorgrades der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf vorgelegt von Philip Böhler aus Bonn Düsseldorf, Juni 2019 aus dem Institut für Molekulare Medizin I der Heinrich-Heine-Universität Düsseldorf Gedruckt mit der Genehmigung der Mathematisch-Naturwissenschaftlichen Fakultät der Heinrich-Heine-Universität Düsseldorf Berichterstatter: 1. Prof. Dr. Sebastian Wesselborg 2. Prof. Dr. Henrike Heise Tag der mündlichen Prüfung: 29. Oktober 2019 “Where the first primal cell was, there was I also. Where man is, there am I. When the last life crawls under freezing stars, there will I be.” — DEATH, in: Mort, by Terry Pratchett “Right away I found out something about biology: it was very easy to find a question that was very interesting, and that nobody knew the answer to.” — Richard Feynman, in: Surely You're Joking, Mr. Feynman! Acknowledgements (Danksagung) Acknowledgements (Danksagung) Viele Menschen haben zum Gelingen meiner Forschungsarbeit und dieser Dissertation beigetragen, und nicht alle können hier namentlich erwähnt werden. Dennoch möchte ich einige besonders hervorheben. An erster Stelle möchte ich Professor Sebastian Wesselborg danken, der diese Dissertation als Erstgutachter betreut hat und der mir die Möglichkeit gab, die dazugehörigen experimentellen Arbeiten am Institut für Molekulare Medizin durchzuführen. Er und Professor Björn Stork, dem ich für die herzliche Aufnahme in seine Arbeitsgruppe danke, legten durch die richtige Mischung aus aktiver Förderung und dem Freiraum zur Umsetzung eigener wissenschaftlicher Ideen die ideale Grundlage für die Forschungsprojekte, aus denen diese Dissertation entstand. Professorin Henrike Heise, die sich freundlicherweise zur Betreuung dieser Dissertation als Zweitgutachterin bereiterklärt hat, gilt ebenfalls mein herzlicher Dank.
    [Show full text]
  • Identification of the Binding Partners for Hspb2 and Cryab Reveals
    Brigham Young University BYU ScholarsArchive Theses and Dissertations 2013-12-12 Identification of the Binding arP tners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non- Redundant Roles for Small Heat Shock Proteins Kelsey Murphey Langston Brigham Young University - Provo Follow this and additional works at: https://scholarsarchive.byu.edu/etd Part of the Microbiology Commons BYU ScholarsArchive Citation Langston, Kelsey Murphey, "Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins" (2013). Theses and Dissertations. 3822. https://scholarsarchive.byu.edu/etd/3822 This Thesis is brought to you for free and open access by BYU ScholarsArchive. It has been accepted for inclusion in Theses and Dissertations by an authorized administrator of BYU ScholarsArchive. For more information, please contact [email protected], [email protected]. Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactions and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston A thesis submitted to the faculty of Brigham Young University in partial fulfillment of the requirements for the degree of Master of Science Julianne H. Grose, Chair William R. McCleary Brian Poole Department of Microbiology and Molecular Biology Brigham Young University December 2013 Copyright © 2013 Kelsey Langston All Rights Reserved ABSTRACT Identification of the Binding Partners for HspB2 and CryAB Reveals Myofibril and Mitochondrial Protein Interactors and Non-Redundant Roles for Small Heat Shock Proteins Kelsey Langston Department of Microbiology and Molecular Biology, BYU Master of Science Small Heat Shock Proteins (sHSP) are molecular chaperones that play protective roles in cell survival and have been shown to possess chaperone activity.
    [Show full text]
  • Alternative Cleavage and Polyadenylation During Colorectal Cancer Development
    Author Manuscript Published OnlineFirst on August 8, 2012; DOI: 10.1158/1078-0432.CCR-12-0543 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. Alternative cleavage and polyadenylation during colorectal cancer development Adam R. Morris1#, Arnold Bos1#, Begoña Diosdado2, Koos Rooijers1, Ran Elkon1, Anne S. Bolijn2, Beatriz Carvalho2, Gerrit A. Meijer2, and Reuven Agami1,3$ 1. Division of Gene Regulation, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands 2. Department of Pathology VU medical centre, De Boelelaan 1117, 1081HV Amsterdam, The Netherlands 3. The Centre for Biomedical Genetics, The Netherlands Running Title: Alternative polyadenylation in colorectal cancer Keywords: Alternative cleavage and polyadenylation, colorectal cancer, next generation sequencing, Adenoma, carcinoma Conflicts of interest: none Word count: 4055 Tables: 2; Figures: 3 # These authors contributed equally to this work $Email: [email protected] Tel. +31(0)20 512 2079 Fax. +31(0)20 512 1999 Downloaded from clincancerres.aacrjournals.org on September 28, 2021. © 2012 American Association for Cancer Research. Author Manuscript Published OnlineFirst on August 8, 2012; DOI: 10.1158/1078-0432.CCR-12-0543 Author manuscripts have been peer reviewed and accepted for publication but have not yet been edited. ABSTRACT Purpose: Alternative cleavage and polyadenylation (APA) of mRNAs is a phenomenon that alters 3'-untranslated region length leading to altered posttranscriptional regulation of gene expression. Changing APA patterns have been shown to result in mis-regulation of genes involved in carcinogenesis, therefore we hypothesized that altered APA contributes to progression of colorectal cancer, and that measurement of APA may lead to discovery of novel biomarkers.
    [Show full text]
  • Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model
    Downloaded from http://www.jimmunol.org/ by guest on September 25, 2021 T + is online at: average * The Journal of Immunology , 34 of which you can access for free at: 2016; 197:1477-1488; Prepublished online 1 July from submission to initial decision 4 weeks from acceptance to publication 2016; doi: 10.4049/jimmunol.1600589 http://www.jimmunol.org/content/197/4/1477 Molecular Profile of Tumor-Specific CD8 Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A. Waugh, Sonia M. Leach, Brandon L. Moore, Tullia C. Bruno, Jonathan D. Buhrman and Jill E. Slansky J Immunol cites 95 articles Submit online. Every submission reviewed by practicing scientists ? is published twice each month by Receive free email-alerts when new articles cite this article. Sign up at: http://jimmunol.org/alerts http://jimmunol.org/subscription Submit copyright permission requests at: http://www.aai.org/About/Publications/JI/copyright.html http://www.jimmunol.org/content/suppl/2016/07/01/jimmunol.160058 9.DCSupplemental This article http://www.jimmunol.org/content/197/4/1477.full#ref-list-1 Information about subscribing to The JI No Triage! Fast Publication! Rapid Reviews! 30 days* Why • • • Material References Permissions Email Alerts Subscription Supplementary The Journal of Immunology The American Association of Immunologists, Inc., 1451 Rockville Pike, Suite 650, Rockville, MD 20852 Copyright © 2016 by The American Association of Immunologists, Inc. All rights reserved. Print ISSN: 0022-1767 Online ISSN: 1550-6606. This information is current as of September 25, 2021. The Journal of Immunology Molecular Profile of Tumor-Specific CD8+ T Cell Hypofunction in a Transplantable Murine Cancer Model Katherine A.
    [Show full text]
  • Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins
    Technical note Compression of Large Sets of Sequence Data Reveals Fine Diversification of Functional Profiles in Multigene Families of Proteins: A Study for Peptidyl-Prolyl cis/trans Isomerases (PPIase) Andrzej Galat Retired from: Service d’Ingénierie Moléculaire des Protéines (SIMOPRO), CEA-Université Paris-Saclay, France; [email protected]; Tel.: +33-0164465072 Received: 21 December 2018; Accepted: 21 January 2019; Published: 11 February 2019 Abstract: In this technical note, we describe analyses of more than 15,000 sequences of FK506- binding proteins (FKBP) and cyclophilins, also known as peptidyl-prolyl cis/trans isomerases (PPIases). We have developed a novel way of displaying relative changes of amino acid (AA)- residues at a given sequence position by using heat-maps. This type of representation allows simultaneous estimation of conservation level in a given sequence position in the entire group of functionally-related paralogues (multigene family of proteins). We have also proposed that at least two FKBPs, namely FKBP36, encoded by the Fkbp6 gene and FKBP51, encoded by the Fkbp5 gene, can form dimers bound via a disulfide bridge in the nucleus. This type of dimer may have some crucial function in the regulation of some nuclear complexes at different stages of the cell cycle. Keywords: FKBP; cyclophilin; PPIase; heat-map; immunophilin 1 Introduction About 30 years ago, an exciting adventure began in finding some correlations between pharmacological activities of macrocyclic hydrophobic drugs, namely the cyclic peptide cyclosporine A (CsA), and two macrolides, namely FK506 and rapamycin, which have profound and clinically useful immunosuppressive effects, especially in organ transplantations and in combating some immune disorders.
    [Show full text]
  • Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin
    cells Review Modes of Interaction of KMT2 Histone H3 Lysine 4 Methyltransferase/COMPASS Complexes with Chromatin Agnieszka Bochy ´nska,Juliane Lüscher-Firzlaff and Bernhard Lüscher * ID Institute of Biochemistry and Molecular Biology, Medical School, RWTH Aachen University, Pauwelsstrasse 30, 52057 Aachen, Germany; [email protected] (A.B.); jluescher-fi[email protected] (J.L.-F.) * Correspondence: [email protected]; Tel.: +49-241-8088850; Fax: +49-241-8082427 Received: 18 January 2018; Accepted: 27 February 2018; Published: 2 March 2018 Abstract: Regulation of gene expression is achieved by sequence-specific transcriptional regulators, which convey the information that is contained in the sequence of DNA into RNA polymerase activity. This is achieved by the recruitment of transcriptional co-factors. One of the consequences of co-factor recruitment is the control of specific properties of nucleosomes, the basic units of chromatin, and their protein components, the core histones. The main principles are to regulate the position and the characteristics of nucleosomes. The latter includes modulating the composition of core histones and their variants that are integrated into nucleosomes, and the post-translational modification of these histones referred to as histone marks. One of these marks is the methylation of lysine 4 of the core histone H3 (H3K4). While mono-methylation of H3K4 (H3K4me1) is located preferentially at active enhancers, tri-methylation (H3K4me3) is a mark found at open and potentially active promoters. Thus, H3K4 methylation is typically associated with gene transcription. The class 2 lysine methyltransferases (KMTs) are the main enzymes that methylate H3K4. KMT2 enzymes function in complexes that contain a necessary core complex composed of WDR5, RBBP5, ASH2L, and DPY30, the so-called WRAD complex.
    [Show full text]
  • Histone-Binding of DPF2 Mediates Its Repressive Role in Myeloid Differentiation
    Histone-binding of DPF2 mediates its repressive role in myeloid differentiation Ferdinand M. Hubera,1, Sarah M. Greenblattb,1, Andrew M. Davenporta,1, Concepcion Martinezb,YeXub,LyP.Vuc, Stephen D. Nimerb,2, and André Hoelza,2 aDivision of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125; bSylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL 33136; and cMolecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065 Edited by Douglas C. Rees, Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA, and approved April 26, 2017 (received for review January 6, 2017) Double plant homeodomain finger 2 (DPF2) is a highly evolution- RUNX1 form a methylation-dependent repressive complex in arily conserved member of the d4 protein family that is ubiqui- AML, although it remains unclear whether the two proteins bind tously expressed in human tissues and was recently shown to each other directly or act concertedly as part of a larger complex. inhibit the myeloid differentiation of hematopoietic stem/progen- Here, we present the crystal structure of the human DPF2 itor and acute myelogenous leukemia cells. Here, we present the tandem PHD finger domain at a 1.6-Å resolution. We demon- crystal structure of the tandem plant homeodomain finger domain strate that the DPF2 tandem PHD finger domain binds acetylated of human DPF2 at 1.6-Å resolution. We show that DPF2 interacts H3 and H4 histone tails, identify the primary determinants of with the acetylated tails of both histones 3 and 4 via bipartite histone recognition, and confirm these interactions in vivo.
    [Show full text]
  • Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of C-Myb
    doi:10.1016/j.jmb.2004.01.038 J. Mol. Biol. (2004) 337, 521–534 Solution Structure of the KIX Domain of CBP Bound to the Transactivation Domain of c-Myb Tsaffrir Zor, Roberto N. De Guzman, H. Jane Dyson and Peter E. Wright* Department of Molecular The hematopoietic transcription factor c-Myb activates transcription of Biology and the Skaggs target genes through direct interactions with the KIX domain of the Institute for Chemical Biology co-activator CBP. The solution structure of the KIX domain in complex The Scripps Research Institute with the activation domain of c-Myb reveals a helical structure very simi- 10550 N. Torrey Pines Road, La lar to that adopted by KIX in complex with the phosphorylated kinase Jolla, CA 92037, USA inducible domain (pKID) of CREB. While pKID contains two helices, aA and aB, which interact with KIX, the structure of bound c-Myb reveals a single bent amphipathic helix that binds in the same hydrophobic groove as the aB helix of pKID. The affinity of c-Myb for KIX is lower than that of pKID, and relies more heavily on optimal interactions of the single helix of c-Myb with residues in the hydrophobic groove. In particular, a deep hydrophobic pocket in KIX accounts for more than half the inter- actions with c-Myb observed by NMR. A bend in the a-helix of c-Myb enables a critical leucine side-chain to penetrate into this pocket more deeply than the equivalent leucine residue of pKID. The components that mediate the higher affinity of pKID for KIX, i.e.
    [Show full text]
  • A Computational Approach for Defining a Signature of Β-Cell Golgi Stress in Diabetes Mellitus
    Page 1 of 781 Diabetes A Computational Approach for Defining a Signature of β-Cell Golgi Stress in Diabetes Mellitus Robert N. Bone1,6,7, Olufunmilola Oyebamiji2, Sayali Talware2, Sharmila Selvaraj2, Preethi Krishnan3,6, Farooq Syed1,6,7, Huanmei Wu2, Carmella Evans-Molina 1,3,4,5,6,7,8* Departments of 1Pediatrics, 3Medicine, 4Anatomy, Cell Biology & Physiology, 5Biochemistry & Molecular Biology, the 6Center for Diabetes & Metabolic Diseases, and the 7Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN 46202; 2Department of BioHealth Informatics, Indiana University-Purdue University Indianapolis, Indianapolis, IN, 46202; 8Roudebush VA Medical Center, Indianapolis, IN 46202. *Corresponding Author(s): Carmella Evans-Molina, MD, PhD ([email protected]) Indiana University School of Medicine, 635 Barnhill Drive, MS 2031A, Indianapolis, IN 46202, Telephone: (317) 274-4145, Fax (317) 274-4107 Running Title: Golgi Stress Response in Diabetes Word Count: 4358 Number of Figures: 6 Keywords: Golgi apparatus stress, Islets, β cell, Type 1 diabetes, Type 2 diabetes 1 Diabetes Publish Ahead of Print, published online August 20, 2020 Diabetes Page 2 of 781 ABSTRACT The Golgi apparatus (GA) is an important site of insulin processing and granule maturation, but whether GA organelle dysfunction and GA stress are present in the diabetic β-cell has not been tested. We utilized an informatics-based approach to develop a transcriptional signature of β-cell GA stress using existing RNA sequencing and microarray datasets generated using human islets from donors with diabetes and islets where type 1(T1D) and type 2 diabetes (T2D) had been modeled ex vivo. To narrow our results to GA-specific genes, we applied a filter set of 1,030 genes accepted as GA associated.
    [Show full text]
  • A Long Noncoding RNA Maintains Active Chromatin to Coordinate Homeotic Gene Expression
    LETTER doi:10.1038/nature09819 A long noncoding RNA maintains active chromatin to coordinate homeotic gene expression Kevin C. Wang1,2, Yul W. Yang1*, Bo Liu3*, Amartya Sanyal4, Ryan Corces-Zimmerman1, Yong Chen5, Bryan R. Lajoie4, Angeline Protacio1, Ryan A. Flynn1, Rajnish A. Gupta1, Joanna Wysocka6, Ming Lei5, Job Dekker4, Jill A. Helms3 & Howard Y. Chang1 The genome is extensively transcribed into long intergenic non- we suggest the name HOTTIP for ‘HOXA transcript at the distal tip’, coding RNAs (lincRNAs), many of which are implicated in gene exhibits bivalent H3K4me3 and H3K27me3, a histone modification silencing1,2. Potential roles of lincRNAs in gene activation are pattern associated with poised regulatory sequences16. Comparison much less understood3–5. Development and homeostasis require with RNA polymerase II occupancy and RNA expression showed that coordinate regulation of neighbouring genes through a process the bivalent H3K4me3 and H3K27me3 modifications on HOTTIP gene termed locus control6. Some locus control elements and enhancers do not require HOTTIP transcription, but transcription of HOTTIP is transcribe lincRNAs7–10, hinting at possible roles in long-range associated with increased H3K4me3 and decreased H3K27me3 (Fig. 1a, control. In vertebrates, 39 Hox genes, encoding homeodomain left). Chromatin immunoprecipitation (ChIP) analysis confirmed that transcription factors critical for positional identity, are clustered the HOTTIP gene is occupied by both polycomb repressive complex 2 in four chromosomal loci; the Hox genes are expressed in nested (PRC2) and MLL complex, consistent with the bivalent histone marks anterior-posterior and proximal-distal patterns colinear with their (Supplementary Fig. 1a). genomic position from 39 to 59of the cluster11.
    [Show full text]