WO 2013/186220 Al 19 December 2013 (19.12.2013) P O P C T

Total Page:16

File Type:pdf, Size:1020Kb

WO 2013/186220 Al 19 December 2013 (19.12.2013) P O P C T (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2013/186220 Al 19 December 2013 (19.12.2013) P O P C T (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, A61K 31/7048 (2006.01) A61P 25/20 (2006.01) BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, A61K 31/352 (2006.01) A61P 25/22 (2006.01) DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, A61P 25/00 (2006.01) A61K 45/06 (2006.01) HN, HR, HU, ID, IL, IN, IS, JP, KE, KG, KN, KP, KR, KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, (21) International Application Number: MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, PCT/EP20 13/062046 OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, (22) International Filing Date: SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, 11 June 2013 ( 11.06.2013) TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (25) Filing Language: English (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (26) Publication Language: English GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (30) Priority Data: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 1039666 11 June 2012 ( 11.06.2012) NL TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, 1218 1673.0 24 August 2012 (24.08.2012) EP EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, LT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (71) Applicant: BIOACTOR B.V. [NL/NL]; Oxfordlaan 70, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, NL-6229 EV Maastricht (NL). KM, ML, MR, NE, SN, TD, TG). (72) Inventors: POSSEMIERS, Sam; Oxfordlaan 70, NL- Published: 6229 EV Maastricht (NL). VAN DER SAAG, Antonie Jo¬ — with international search report (Art. 21(3)) hannes; Oxfordlaan 70, NL-6229 EV Maastricht (NL). — before the expiration of the time limit for amending the (74) Agent: ISHIGURO, Masaoki; IPecunia Patents B.V., claims and to be republished in the event of receipt of P.O. Box 593, NL-6160 AN Geleen (NL). amendments (Rule 48.2(h)) (81) Designated States (unless otherwise indicated, for every kind of national protection available): AE, AG, AL, AM, © (54) Title: COMPOSITIONS COMPRISING HESPERIDIN AND/OR APIGENIN LA. FOR MEDICAL USE OR FOR USE IN TREATMENT OF SLEEPING DISORDERS 2 (57) Abstract: The invention relates to a composition comprises hesperidin and apigenin. The invention also relates to a composi - tion comprises hesperidin, wherein the composition is in a form suitable for sublingual and/or buccal administration. The composi - tions may be a food or a beverage or a supplement composition for a food or a beverage, for example a chewing gum. Also, the com- positions may be used as a medicament. The compositions may be used for promoting sleep, for reducing stress, for increased relaxa- tion, for sedation, for tranquilization and/or in the treatment of anxiety disorders, for relieving anxiety, for improving the mood and/or for increasing relaxation in animals, preferably mammals, for example humans. COMPOSITIONS COMPRISING HESPERIDIN AND/OR APIGENIN LA. FOR MEDICAL USE OR FOR USE IN TREATMENT OF SLEEPING DISORDERS This present invention relates to compositions with sedative, sleep inducing and/or anxiolytic effects, more specifically using new application strategies of natural extracts, fractions and substances from orange peels, parsley, celery, dandelion roots, valerian and other potential botanic sources. The invention relates to a composition comprising hesperidin and/or apigenin, said composition for sublingual and/or buccal administration, said composition for use as a medicament, preferably for the treatment of sleeping disorders, for promoting sleep, for reducing stress, for increasing relaxation, as a sedative, as a tranquilizer and/or as an anxiolytic. For many years, sedative and anxiolytic properties have been attributed to natural extracts, usually from the roots of valerian and related plant species. The sleep enhancing quality of these plants has been known for thousands of years, valerian root preparations have been available as very mild sedatives and an online search for relevant scientific articles reveals more than 100 hits since the 1950s. More recently, studies have been carried out to identify the composition of valerian extracts and which substances in this composition may be responsible for the reported effects: in 2003, a method for fractioning the active compounds from valerian roots was described and patented (WO03061 678A1 ). In this description, the sedative effects were attributed to a number of flavonoids, especially Linarin, 6-methyl-Apigenin, and Hesperidin. Given the availability of Hesperidin, its documented safety and absence of induced tolerance, this compound is of particular interest. Several studies confirmed the sleep prolonging, sedative effects of a Hesperidin, both from Valerian and from citrus, and anxiolytic properties of valerian derived 6-methyl-Apigenin, each after intra-peritoneal injection in mice (Marder 2003, Pharm, Biochem Behav 2003, 75(3)). It was furthermore shown that intra-peritoneally administered Apigenin from C. Japonicum (Kim, Arch Pharm Res, 201 2, 35(2)) induced increased sleeping time in these animals, while the combination of intra-peritoneally administered Hesperidin from Valerian and 6-methyl-Apigenin from Valerian potentiated these effects (Marder, Pharm, Biochem Behav 2003, 75(3), Fernandez, Eur. J. Pharm. 2006, 539(3), WO03061678A1). Additionally, Marder and colleagues showed that the 2S-Hesperidin isomer was mostly responsible for these sedative effects, while the R-isoform was far less effective. While Hesperidin showed promising sleep prolonging and sedative effects in mice when administered intra-peritoneally, effects are absent when the substance is ingested orally. While the efficacy of Hesperidin and Apigenin in sleep management and its anxiolytic potential has been previously shown when injected intraperitoneal^ in mice, oral administration of citric flavonoids has not resulted in any meaningful effect on sleep and/or stress. The intraperitoneal route of administration diminishes Hesperidin's and Apigenin's usefulness as a sleep management compound in humans, since injections of any kind pose an additional risk as well as discomfort that is not acceptable to most individuals and regulative bodies. Thereby, the absence of a non-invasive formulation of Hesperidin and/or Apigenin has severely limited the applicability of Hesperidin in food and over the counter medicaments and supplements. It is therefore the object of the invention to provide compositions comprising hesperidin that can be orally administered, while maintaining their sedative, sleep enhancing and/or anxiolytic effects. This object has been achieved by a composition comprising hesperidin and/or apigenin. It was surprisingly found that specific compositions with Hesperidin are capable to induce sedative, sleep enhancing and/or anxiolytic effects, despite the fact that such formulations are orally administered. Here, new means of oral administration and specifically designed compositions yield an orally administered product that can be used as an anxiolytic as well as for sleep management. Modes of administration include: - Sub-lingual films, tablets, or lozenges (tablets that slowly dissolve in the mouth) that ensure uptake of Hesperidin through the sublingual and/or buccal mucosa, bypassing the intestinal microflora and hepatic circulation. - specific combinations of Hesperidin and Apigenin, which are active as a sedative when taken orally. In particular, this object has been by a composition comprising hesperidin and apeginin. In particular, this object has also been achieved by a composition comprising hesperidin, wherein the composition is in a form suitable for sublingual and/or buccal administration. Surprisingly, it has been found that specific compositions with Hesperidin are capable of inducing sedative, sleep enhancing and/or anxiolytic effects, despite being orally administered. The present invention comprises novel specifically designed compositions and/or dosage forms that yield an orally effective product to be used as an anxiolytic or sedative, which may be used in e.g. sleep management. In the following description, for the purposes of explanations, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one of ordinary skill in the art that the present invention may be practiced without these specific details. The present invention is directed towards a composition for promoting sleep and/or reducing stress. The term 'sleep' for the purposes of the present invention is defined as a natural or artificially induced state of suspension of sensory and motor activity in an individual. It is herein understood that improvements in sleep may be of a quantitative nature e.g. an increase in the length of sleep, a decreased time in the time of sleep onset, and/or of a qualitative nature e.g. a deeper, more restful, more undisturbed period of sleep. Improvement of sleep may consist of any of the improvements mentioned herein, any combination thereof, and/or any other factor that is a scientifically accepted characteristic of sleep quantity and/or quality. It is further understood that improvement in sleep may also be both direct and indirect. For example, sleep will be directly improved by the administration of a substance, which is known to induce sleep or to reduce time to sleep onset. Sleep may be indirectly improved, for example, by the administration of a substance, which is known to result in feelings of relaxation and calmness. 'Stress' is defined as the mental or physical response to a mental of physical challenge, including all hormonal and mental responses.
Recommended publications
  • Graphical Abstract CG 18-1-MS
    Send Orders for Reprints to [email protected] 3 Current Genomics, 2017, 18, 3-26 REVIEW ARTICLE ISSN: 1389-2029 eISSN: 1875-5488 Impact Factor: 2.43 Established Human Cell Lines as Models to Study Anti-leukemic Effects of Flavonoids BENTHAM SCIENCE Katrin Sak* and Hele Everaus Department of Hematology and Oncology, University of Tartu, Tartu, Estonia Abstract: Despite the extensive work on pathological mechanisms and some recent advances in the treatment of different hematological malignancies, leukemia continues to present a significant challenge being frequently considered as incurable disease. Therefore, the development of novel therapeutic agents with high efficacy and low toxicity is urgently needed to improve the overall survival rate of pa- A R T I C L E H I S T O R Y tients. In this comprehensive review article, the current knowledge about the anticancer activities of Received: May 11, 2015 flavonoids as plant secondary polyphenolic metabolites in the most commonly used human established Revised: November 20, 2015 Accepted: November 27, 2015 leukemia cell lines (HL-60, NB4, KG1a, U937, THP-1, K562, Jurkat, CCRF- CEM, MOLT-3, and MOLT-4) is compiled, revealing clear anti-proliferative, pro-apoptotic, cell cycle arresting, and differ- DOI: 10.2174/138920291766616080316 entiation inducing effects for certain compounds. Considering the low toxicity of these substances in 5447 normal blood cells, the presented data show a great potential of flavonoids to be developed into novel anti-leukemia agents applicable also in the malignant cells resistant to the current conventional che- motherapeutic drugs. Keywords: Antiproliferation, Apoptosis, Cell cycle arrest, Cytotoxicity, Differentiation, Flavonoids, Leukemia, Human cell lines.
    [Show full text]
  • Cytotoxic Activities of Flavonoids from Centaurea Scoparia
    Hindawi Publishing Corporation e Scientific World Journal Volume 2014, Article ID 274207, 7 pages http://dx.doi.org/10.1155/2014/274207 Research Article Cytotoxic Activities of Flavonoids from Centaurea scoparia Sayed A. Ahmed and Emadeldin M. Kamel Chemistry Department, Faculty of Science, Beni Suef University, Salah Salem Street, P.O. Box 62514, Beni Suef 62514, Egypt Correspondence should be addressed to Sayed A. Ahmed; [email protected] Received 17 January 2014; Accepted 22 May 2014; Published 11 June 2014 Academic Editor: Diego Savoia Copyright © 2014 S. A. Ahmed and E. M. Kamel. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Phytochemical studies on the ethanolic extract of the aerial parts of Centaurea scoparia ledtotheisolationof two new flavonoids, 3 ,4 -dihydroxy-(3 ,4 -dihydro-3 -hydroxy-4 -acetoxy)-2 ,2 -dimethylpyrano-(5 ,6 :7,8)-flavone-3-O-- D-glucopyranoside (1)and3,3,4 -trihydroxy-(3 ,4 -dihydro-3 ,4 -dihydroxy)-2 ,2 -dimethylpyrano-(5 ,6 :7,8)-flavone (2), along with eight known flavonoids isolated for the first time from this plant, cynaroside (3), Apigetrin (4), centaureidin (5), oroxylin A(6), 5,7-dihydroxy-3 ,4 ,5 -trimethoxyflavone (7), atalantoflavone (8), 5-hydroxy-3 ,4 ,8-trimethoxy-2 ,2 -dimethylpyrano (5 ,6 :6,7)-flavone (9), and 3 ,4 ,5,8-tetramethoxy-2 ,2 -dimethylpyrano (5 ,6 :6,7)-flavone (10). The structures of the isolated compounds were elucidated by means of spectroscopic tools including 1D and 2D NMR, UV,IR, and mass spectroscopy.
    [Show full text]
  • WO 2012/159639 Al 29 November 2012 (29.11.2012)
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2012/159639 Al 29 November 2012 (29.11.2012) (51) International Patent Classification: AO, AT, AU, AZ, BA, BB, BG, BH, BR, BW, BY, BZ, A23L 1/30 (2006.01) A61K 36/48 (2006.01) CA, CH, CL, CN, CO, CR, CU, CZ, DE, DK, DM, DO, A61K 36/185 (2006.01) A61K 36/8962 (2006.01) DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, A61K 36/63 (2006.01) A61K 36/54 (2006.01) HR, HU, ID, IL, IN, IS, JP, KE, KG, KM, KN, KP, KR, A61K 36/23 (2006.01) A61K 36/71 (2006.01) KZ, LA, LC, LK, LR, LS, LT, LU, LY, MA, MD, ME, A61K 36/9066 (2006.01) A61K 36/886 (2006.01) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, A61K 36/28 (2006.01) A61K 36/53 (2006.01) OM, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SC, SD, A61K 36/82 (2006.01) A61K 36/64 (2006.01) SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, TR, A61K 36/67 (2006.01) TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (21) International Application Number: (84) Designated States (unless otherwise indicated, for every PCT/EG20 12/0000 18 kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, SZ, TZ, (22) International Filing Date: UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, 22 May 2012 (22.05.2012) TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, (25) Filing Language: English EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, SM, (26) Publication Language: English TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, (30) Priority Data: ML, MR, NE, SN, TD, TG).
    [Show full text]
  • Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin
    Review Potential Role of Flavonoids in Treating Chronic Inflammatory Diseases with a Special Focus on the Anti-Inflammatory Activity of Apigenin Rashida Ginwala, Raina Bhavsar, DeGaulle I. Chigbu, Pooja Jain and Zafar K. Khan * Department of Microbiology and Immunology, and Center for Molecular Virology and Neuroimmunology, Center for Cancer Biology, Institute for Molecular Medicine and Infectious Disease, Drexel University College of Medicine, Philadelphia, PA 19129, USA; [email protected] (R.G.); [email protected] (R.B.); [email protected] (D.I.C.); [email protected] (P.J.) * Correspondence: [email protected] Received: 28 November 2018; Accepted: 30 January 2019; Published: 5 February 2019 Abstract: Inflammation has been reported to be intimately linked to the development or worsening of several non-infectious diseases. A number of chronic conditions such as cancer, diabetes, cardiovascular disorders, autoimmune diseases, and neurodegenerative disorders emerge as a result of tissue injury and genomic changes induced by constant low-grade inflammation in and around the affected tissue or organ. The existing therapies for most of these chronic conditions sometimes leave more debilitating effects than the disease itself, warranting the advent of safer, less toxic, and more cost-effective therapeutic alternatives for the patients. For centuries, flavonoids and their preparations have been used to treat various human illnesses, and their continual use has persevered throughout the ages. This review focuses on the anti-inflammatory actions of flavonoids against chronic illnesses such as cancer, diabetes, cardiovascular diseases, and neuroinflammation with a special focus on apigenin, a relatively less toxic and non-mutagenic flavonoid with remarkable pharmacodynamics. Additionally, inflammation in the central nervous system (CNS) due to diseases such as multiple sclerosis (MS) gives ready access to circulating lymphocytes, monocytes/macrophages, and dendritic cells (DCs), causing edema, further inflammation, and demyelination.
    [Show full text]
  • Huxie Huaji Ointment Induced Apoptosis of Liver Cancer Cells in Vivo and in Vitro by Activating the Mitochondrial Pathway
    Hindawi Evidence-Based Complementary and Alternative Medicine Volume 2021, Article ID 9922059, 13 pages https://doi.org/10.1155/2021/9922059 Research Article Huxie Huaji Ointment Induced Apoptosis of Liver Cancer Cells In Vivo and In Vitro by Activating the Mitochondrial Pathway Yuan Cai ,1 Qing Du ,1 Tian-Hao Deng ,1 Bing-Bing Shen ,1 Yan-Mei Peng ,1 Pu-Hua Zeng ,1 and Song-Ren Yu 2 1Institute of Traditional Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha 410006, China 2Jiangxi University of Chinese Medicine, Nanchang, Jiangxi 330006, China Correspondence should be addressed to Pu-Hua Zeng; [email protected] and Song-Ren Yu; [email protected] Received 9 March 2021; Revised 28 May 2021; Accepted 6 July 2021; Published 15 July 2021 Academic Editor: Yu CAI Copyright © 2021 Yuan Cai et al. 0is is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Huxie Huaji (HXHJ) Ointment is a famous traditional Chinese medicinal prescription and is commonly used for the clinical treatment of hepatocellular carcinoma by boosting immunity and detoxification. However, the scientific evidence for the effect of HXHJ Ointment on hepatocellular carcinoma and the underlying molecular mechanism are lacking. 0e present study aimed to identify the effects of HXHJ Ointment on hepatocellular carcinoma in vitro and in vivo as well as investigating the mechanistic basis for the anticancer effect of HXHJ ointment. First, liquid chromatography-mass spectrometry was used to verify the composition of HXHJ Ointment and quality control.
    [Show full text]
  • Flavonoids: Structure–Function and Mechanisms of Action and Opportunities for Drug Development
    Toxicological Research Toxicol Res. eISSN 2234-2753 https://doi.org/10.1007/s43188-020-00080-z pISSN 1976-8257 INVITED REVIEW Flavonoids: structure–function and mechanisms of action and opportunities for drug development Stephen Safe1 · Arul Jayaraman2 · Robert S. Chapkin3 · Marcell Howard1 · Kumaravel Mohankumar1 · Rupesh Shrestha4 Received: 10 November 2020 / Accepted: 4 December 2020 © Korean Society of Toxicology 2021 Abstract Flavonoids are polyphenolic phytochemicals produced in fruits, nuts and vegetables and dietary consumption of these structurally diverse compounds is associated with multiple health benefts including increased lifespan, decreased cardio- vascular problems and low rates of metabolic diseases. Preclinical studies with individual favonoids demonstrate that these compounds exhibit anti-infammatory and anticancer activities and they enhance the immune system. Their efectiveness in both chemoprevention and chemotherapy is associated with their targeting of multiple genes/pathways including nuclear receptors, the aryl hydrocarbon receptor (AhR), kinases, receptor tyrosine kinases and G protein-coupled receptors. However, despite the remarkable preclinical activities of favonoids, their clinical applications have been limited and this is due, in part, to problems in drug delivery and poor bioavailability and these problems are being addressed. Further improvements that will expand clinical applications of favonoids include mechanism-based precision medicine approaches which will identify critical mechanisms of action
    [Show full text]
  • WO 2018/002916 Al O
    (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2018/002916 Al 04 January 2018 (04.01.2018) W !P O PCT (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every C08F2/32 (2006.01) C08J 9/00 (2006.01) kind of national protection available): AE, AG, AL, AM, C08G 18/08 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, DO, (21) International Application Number: DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, HN, PCT/IL20 17/050706 HR, HU, ID, IL, IN, IR, IS, JO, JP, KE, KG, KH, KN, KP, (22) International Filing Date: KR, KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 26 June 2017 (26.06.2017) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, TN, (26) Publication Language: English TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: (84) Designated States (unless otherwise indicated, for every 246468 26 June 2016 (26.06.2016) IL kind of regional protection available): ARIPO (BW, GH, GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TZ, (71) Applicant: TECHNION RESEARCH & DEVEL¬ UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, TJ, OPMENT FOUNDATION LIMITED [IL/IL]; Senate TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, House, Technion City, 3200004 Haifa (IL).
    [Show full text]
  • Iridin Induces G2/M Phase Cell Cycle Arrest and Extrinsic Apoptotic Cell Death Through PI3K/AKT Signaling Pathway in AGS Gastric Cancer Cells
    molecules Article Iridin Induces G2/M Phase Cell Cycle Arrest and Extrinsic Apoptotic Cell Death through PI3K/AKT Signaling Pathway in AGS Gastric Cancer Cells Pritam-Bhagwan Bhosale 1 , Preethi Vetrivel 1, Sang-Eun Ha 1, Hun-Hwan Kim 1, Jeong-Doo Heo 2, Chung-Kil Won 1, Seong-Min Kim 1,* and Gon-Sup Kim 1,* 1 Research Institute of Life Science and College of Veterinary Medicine, Gyeongsang National University, Gazwa, Jinju 52828, Korea; [email protected] (P.-B.B.); [email protected] (P.V.); [email protected] (S.-E.H.); [email protected] (H.-H.K.); [email protected] (C.-K.W.) 2 Biological Resources Research Group, Bioenvironmental Science & Toxicology Division, Korea Institute of Toxicology (KIT), 17 Jeigok-gil, Jinju 52834, Korea; [email protected] * Correspondence: [email protected] (S.-M.K.); [email protected] (G.-S.K.); Tel.: +82-10-3834-5823 (G.-S.K.) Abstract: Iridin is a natural flavonoid found in Belamcanda chinensis documented for its broad spectrum of biological activities like antioxidant, antitumor, and antiproliferative effects. In the present study, we have investigated the antitumor potential of iridin in AGS gastric cancer cells. Iridin treatment decreases AGS cell growth and promotes G2/M phase cell cycle arrest by attenuating the expression of Cdc25C, CDK1, and Cyclin B1 proteins. Iridin-treatment also triggered apoptotic cell death in AGS cells, which was verified by cleaved Caspase-3 (Cl- Caspase-3) and poly ADP-ribose Citation: Bhosale, P.-B.; Vetrivel, P.; polymerase (PARP) protein expression. Further apoptotic cell death was confirmed by increased Ha, S.-E.; Kim, H.-H.; Heo, J.-D.; apoptotic cell death fraction shown in allophycocyanin (APC)/Annexin V and propidium iodide Won, C.-K.; Kim, S.-M.; Kim, G.-S.
    [Show full text]
  • ( 12 ) United States Patent
    US010722444B2 (12 ) United States Patent ( 10 ) Patent No.: US 10,722,444 B2 Gousse et al. (45 ) Date of Patent : Jul. 28 , 2020 (54 ) STABLE HYDROGEL COMPOSITIONS 4,605,691 A 8/1986 Balazs et al . 4,636,524 A 1/1987 Balazs et al . INCLUDING ADDITIVES 4,642,117 A 2/1987 Nguyen et al. 4,657,553 A 4/1987 Taylor (71 ) Applicant: Allergan Industrie , SAS , Pringy (FR ) 4,713,448 A 12/1987 Balazs et al . 4,716,154 A 12/1987 Malson et al. ( 72 ) 4,772,419 A 9/1988 Malson et al. Inventors: Cécile Gousse , Dingy St. Clair ( FR ) ; 4,803,075 A 2/1989 Wallace et al . Sébastien Pierre, Annecy ( FR ) ; Pierre 4,886,787 A 12/1989 De Belder et al . F. Lebreton , Annecy ( FR ) 4,896,787 A 1/1990 Delamour et al. 5,009,013 A 4/1991 Wiklund ( 73 ) Assignee : Allergan Industrie , SAS , Pringy (FR ) 5,087,446 A 2/1992 Suzuki et al. 5,091,171 A 2/1992 Yu et al. 5,143,724 A 9/1992 Leshchiner ( * ) Notice : Subject to any disclaimer , the term of this 5,246,698 A 9/1993 Leshchiner et al . patent is extended or adjusted under 35 5,314,874 A 5/1994 Miyata et al . U.S.C. 154 (b ) by 0 days. 5,328,955 A 7/1994 Rhee et al . 5,356,883 A 10/1994 Kuo et al . (21 ) Appl . No.: 15 /514,329 5,399,351 A 3/1995 Leshchiner et al . 5,428,024 A 6/1995 Chu et al .
    [Show full text]
  • Analysis of the Erythroid Differentiation Effect of Flavonoid Apigenin On
    View metadata, citation and similar papers at core.ac.uk brought to you by CORE provided by Elsevier - Publisher Connector Chemico-Biological Interactions 220 (2014) 269–277 Contents lists available at ScienceDirect Chemico-Biological Interactions journal homepage: www.elsevier.com/locate/chembioint Analysis of the erythroid differentiation effect of flavonoid apigenin on K562 human chronic leukemia cells ⇑ Hiroko Isoda a,b, , Hideko Motojima b, Shoko Onaga b, Imen Samet c, Myra O. Villareal a,b, Junkyu Han a,b a Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan b Alliance for Research on North Africa (ARENA), University of Tsukuba, Tsukuba, Ibaraki, Japan c Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba City, Ibaraki, Japan article info abstract Article history: The erythroid differentiation-inducing effect of apigenin and its derivatives on human chronic myeloid Received 9 January 2014 leukemia K562 has been reported but the functional group in its structure responsible for the effect Received in revised form 5 June 2014 has not yet been elucidated. Here, we determined the moiety responsible for the erythroid differentiation Accepted 15 July 2014 induction effect of apigenin by using different flavonoids to represent the functional groups in its struc- Available online 21 July 2014 ture. In addition, we compared apigenin and apigetrin, a flavonoid similar in structure to apigenin except for the glycoside in its structure. Morphological changes as well as expressions of specific markers in Keywords: K562 cells treated with apigenin were compared with those treated with apigetrin, flavone, 7-hydroxyf- Erythroid differentiation lavone, chrysin, luteolin, or naringenin.
    [Show full text]
  • Citrus Flavonoids As Promising Phytochemicals Targeting Diabetes and Related Complications: a Systematic Review of in Vitro and in Vivo Studies
    nutrients Review Citrus Flavonoids as Promising Phytochemicals Targeting Diabetes and Related Complications: A Systematic Review of In Vitro and In Vivo Studies Gopalsamy Rajiv Gandhi 1,2,3, Alan Bruno Silva Vasconcelos 4 , Ding-Tao Wu 5 , Hua-Bin Li 6 , Poovathumkal James Antony 7, Hang Li 1,2 , Fang Geng 8 , Ricardo Queiroz Gurgel 3, Narendra Narain 9 and Ren-You Gan 1,2,8,* 1 Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu 600103, China; [email protected] (G.R.G.); [email protected] (H.L.) 2 Chengdu National Agricultural Science and Technology Center, Chengdu 600103, China 3 Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Prof. João Cardoso Nascimento Campus, Aracaju, Sergipe 49060-108, Brazil; [email protected] 4 Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), Campus São Cristóvão, São Cristóvão, Sergipe 49100-000, Brazil; [email protected] 5 Institute of Food Processing and Safety, College of Food Science, Sichuan Agricultural University, Ya’an 625014, China; [email protected] 6 Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Department of Nutrition, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; [email protected] 7 Department of Microbiology, St. Xavier’s College, Kathmandu 44600, Nepal; [email protected] 8 Key Laboratory of Coarse Cereal Processing (Ministry of Agriculture and Rural Affairs),
    [Show full text]
  • Analytical Methods Accepted Manuscript
    Analytical Methods Accepted Manuscript This is an Accepted Manuscript, which has been through the Royal Society of Chemistry peer review process and has been accepted for publication. Accepted Manuscripts are published online shortly after acceptance, before technical editing, formatting and proof reading. Using this free service, authors can make their results available to the community, in citable form, before we publish the edited article. We will replace this Accepted Manuscript with the edited and formatted Advance Article as soon as it is available. You can find more information about Accepted Manuscripts in the Information for Authors. Please note that technical editing may introduce minor changes to the text and/or graphics, which may alter content. The journal’s standard Terms & Conditions and the Ethical guidelines still apply. In no event shall the Royal Society of Chemistry be held responsible for any errors or omissions in this Accepted Manuscript or any consequences arising from the use of any information it contains. www.rsc.org/methods Page 1 of 42 Analytical Methods 1 2 3 4 HPLC-LTQ-Orbitrap MSn profiling method to comprehensively characterize 5 6 7 multiple chemical constituents in Xiao-er-qing-jie granules 8 9 Yun Lia, Ying Liub, Rongrong Liua, Siyi Liua, Xiuping Zhanga, Zijian Wangab, Jiayu Zhangb*, 10 11 12 Jianqiu Lub* 13 14 15 16 17 18 19 20 Manuscript 21 22 23 24 25 26 27 28 29 30 31 32 33 34 Accepted 35 36 37 38 39 40 41 42 43 44 45 Methods 46 47 Correspondence to: J. Zhang, Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 48 49 100029, China.
    [Show full text]