How Did the Swiss Cheese Plant Get Its Holes? Author(S): Christopher D

Total Page:16

File Type:pdf, Size:1020Kb

How Did the Swiss Cheese Plant Get Its Holes? Author(S): Christopher D The University of Chicago How Did the Swiss Cheese Plant Get Its Holes? Author(s): Christopher D. Muir Reviewed work(s): Source: The American Naturalist, Vol. 181, No. 2 (February 2013), pp. 273-281 Published by: The University of Chicago Press for The American Society of Naturalists Stable URL: http://www.jstor.org/stable/10.1086/668819 . Accessed: 28/01/2013 20:45 Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at . http://www.jstor.org/page/info/about/policies/terms.jsp . JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact [email protected]. The University of Chicago Press, The American Society of Naturalists, The University of Chicago are collaborating with JSTOR to digitize, preserve and extend access to The American Naturalist. http://www.jstor.org This content downloaded on Mon, 28 Jan 2013 20:45:51 PM All use subject to JSTOR Terms and Conditions vol. 181, no. 2 the american naturalist february 2013 Note How Did the Swiss Cheese Plant Get Its Holes? Christopher D. Muir* Department of Biology, Indiana University, Bloomington, Indiana 47405 Submitted November 30, 2011; Accepted September 3, 2012; Electronically published December 26, 2012 emerged as an important determinant of leaf shape abstract: Adult leaf fenestration in “Swiss cheese” plants (Monstera (Zwieniecki et al. 2004). Because a large fraction of hy- Adans.) is an unusual leaf shape trait lacking a convincing evolu- tionary explanation. Monstera are secondary hemiepiphytes that in- draulic resistance occurs in the leaf (Sack and Holbrook habit the understory of tropical rainforests, where photosynthesis 2006), leaf shape may be important in preventing water from sunflecks often makes up a large proportion of daily carbon stress, especially in hot, sunny conditions. assimilation. Here I present a simple model of leaf-level photosyn- Many shape variations, like lobing or compound leaves, thesis and whole-plant canopy dynamics in a stochastic light envi- have evolved independently many times, in some cases ronment. The model demonstrates that leaf fenestration can reduce convergently in response to similar selective pressures. Un- the variance in plant growth and thereby increase geometric mean usual shapes that have evolved once or a few times are fitness. This growth-variance hypothesis also suggests explanations for conspicuous ontogenetic changes in leaf morphology (hetero- more difficult to study with comparative methods and thus blasty) in Monstera, as well as the absence of leaf fenestration in co- require alternative approaches. Window-like perforations, occurring juvenile tree species. The model provides a testable hy- termed leaf fenestration, are perplexing and found pre- pothesis of the adaptive significance of a unique leaf shape and dominantly in the adult leaves of Monstera Adans. (Ara- illustrates how variance in growth rate could be an important factor ceae). Although leaf fenestration in Monstera was described shaping plant morphology and physiology. by European botanists as early as 1693 (Madison 1977a), Keywords: adaptation, leaf fenestration, leaf shape, Monstera, sun- few hypotheses for its evolutionary origin exist. After re- fleck. viewing these hypotheses, I present and analyze a novel model demonstrating that leaf fenestration may reduce variance in canopy growth rate in understory environ- Introduction ments where a large fraction of carbon gain comes from Compared to other aspects of leaf morphology such as brief, intermittent periods of direct light (sunflecks) that size, little is known about the adaptive significance of leaf are unpredictably distributed in the forest. shape variation in terrestrial plants (Nicotra et al. 2011). Despite the ubiquity of Monstera in tropical understories However, it is generally thought that shape might serve and ornamental settings in the North Atlantic, the adaptive some of the same functions as other aspects of leaf mor- significance of its leaf fenestration has received little at- phology, such as thermoregulation (Parkhurst and Loucks tention from biologists. Madison (1977a) refers to a “fan- 1972; Givnish and Vermeij 1976), light interception (Horn ciful interpretation with no basis in reality” put forth by 1971), and deterring herbivory (Brown and Lawton 1991). early post-Darwinian author H. W. King (1892), who con- Deep lobing, or other shapes that reduce the effective leaf jectured that holes allow water to drip through to the size in hot and dry environments, is the best-studied ex- ground. Madison (1977a) himself suggested that fenestra- ample. Smaller effective leaf size, approximately the di- tion, like other forms of leaf dissection, would be advan- ameter of the largest circle encompassed by the leaf lamina, tageous in portions of the canopy with higher irradiance decreases the boundary layer resistance (Gates 1968). De- by reducing boundary layer resistance and permitting creased boundary layer resistance prevents overheating greater convective leaf cooling. He cited work demonstrat- and increased transpiration in hot, sunny environments, ing reduced leaf temperature in lacerated leaves of Musa. selecting for small and deeply lobed leaves (e.g., McDonald However, this might be an inappropriate comparison, as et al. 2003). More recently, leaf hydraulic architecture has Musa are pioneer species of canopy gaps in full sun, whereas Monstera are found in shade (Madison 1977a). * E-mail: [email protected]. Gunawardena and Dengler (2006) reiterate Madison’s Am. Nat. 2013. Vol. 181, pp. 273–281. ᭧ 2012 by The University of Chicago. thermoregulation argument but also conjecture that fen- 0003-0147/2013/18102-53485$15.00. All rights reserved. estration could act akin to mottling in understory herbs, DOI: 10.1086/668819 which has been ascribed to camouflage from vertebrate This content downloaded on Mon, 28 Jan 2013 20:45:51 PM All use subject to JSTOR Terms and Conditions 274 The American Naturalist herbivores (Givnish 1990). However, the camouflage hy- product of the ground area covered by a leaf and the daily pothesis is applicable for plants very near the forest floor, rate of sunflecks: not climbers several meters above. This hypothesis also p fails to explain why juvenile leaves of the same species lack N lA ground.(2) fenestration. However, more highly dissected leaves will be unable to utilize the fraction of irradiance that falls between the The Growth-Variance Hypothesis for Leaf Fenestration lamina (i.e., into the leaf “holes”). For simplicity, rather This study explores whether leaf fenestration might serve than treat holes as discreet units, I assume that holes in another function altogether, reducing variance in growth leaf lamina are infinitesimally small and uniformly dis- rate and, hence, fitness. I term this the growth-variance persed over the ground area occupied by the leaf. There- hypothesis. In Monstera habitat, tropical rainforest un- fore, the daily carbon assimilation of a leaf (Pleaf)isthe derstories, sunflecks can contribute 150% of carbon gain, product of number of sunflecks intercepted, the assimi- but their distribution is unpredictable in space and time lation per fleck, and the ratio of leaf to ground area: (Chazdon 1988). The patchy distribution of sunflecks may p r lead to high variance in canopy growth rate. Population PleafNP f leck.(3) genetic theory demonstrates that selection maximizes the geometric mean fitness (Gillespie 1973), which is sensitive This assumption is valid if sunflecks are sufficiently large, to both the arithmetic mean and variance. Consequently, such that there is not much variation introduced by some traits, such as leaf shape, that decrease variance in resource falling entirely on lamina or entirely in holes. The as- acquisition and fitness can lead to higher geometric mean sumption is also unaffected if sunflecks are large (on the fitness (Frank 2011 and references therein). In the next order of Aground) because more dissected leaves will partially section, I analyze a model that demonstrates that leaf fen- intercept a large sunfleck that would have been missed by estration and other forms of leaf dissection affect the var- a less dissected leaf. By substitution from equations (1) iance in, but not the mean, canopy growth rate. Assuming and (2), it is evident that daily carbon assimilation in this that canopy growth rate contributes to fitness, the model model is not dependent on r: predicts that leaf fenestration increases fitness when a large A portion of carbon gain depends on stochastic sources of P p (lA )P leaf leaf ground f leck A light (sunflecks). ground (4) p lPAfleck leaf. Model If leaf dissection does not alter mean daily carbon assim- A glossary of symbols used in the model is given in table ilation, how can it affect plant growth and fitness? When 1. The amount of ground area (Aground) covered by a given the light environment is stochastic, and the number of leaf area (Aleaf), assuming constant total leaf mass and leaf sunflecks incident on a leaf is treated as a random variable, mass per area, depends on the amount of leaf dissection. the variance in growth rate is a function of r.Toarrive For leaves with entire margins, the ratio of leaf to ground at this result, I scale up from leaf-level photosynthesis to area is unity. For dissected leaves, this ratio will be less. whole-plant canopy dynamics in a phase of exponential The ratio of leaf area to ground is a dimensionless unit r: growth with a stochastic rate of increase dependent on the number of sunflecks. Let A be the whole plant canopy area at time t. The A t r p leaf ,(1)number of leaves in the canopy at t (L) is the canopy area A ground divided by the leaf area: where r varies from 0 (completely dissected) to 1 (entire) and is analogous to the leaf area index for a single leaf.
Recommended publications
  • Assessing Bird Species Richness Within Shade-Grown Coffee Farms in Chiapas, Mexico / Project ID: 0251711
    Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / Project ID: 0251711 Daniel Camilo Thompson Poo, Daniela Valle León, Alberto Martínez Fernández and Jennifer Siobhan Lowry San Cristóbal de las Casas, Chiapas, México. C.P. 29200 / [email protected] 10 July, 2012. Revised December 2014 Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / ID: 0251711 Overall Aim The goal of this project was to identify mechanisms and conservation strategies across agro-forestry systems in the El Triunfo Biosphere Reserve in Chiapas, Mexico. In particular we analyzed key biodiversity, economic, and social components that impact land-use change and ecosystem services in coffee production areas, focusing on how to improve sustainable production and conservation of nature. 2 Assessing Bird Species Richness within Shade-Grown Coffee Farms in Chiapas, Mexico / ID: 0251711 Section 1 Summary The agroforestry systems with coffee at the Sierra Madre of Chiapas, as a part of the Mesoamerican Biological Corridor region, are important for bird species. Agroforestry ecosystems also represent sustainable livelihoods for indigenous groups on the region. Sustainable coffee farming system represents a less human impact on the ecosystem. However, not all coffee producers on the region produce on the same way. Not all the inhabitants are aware of the importance of birds, as a part of the great natural capital of la Sierra Madre, but they either are prepared for the climate change risks and impacts. In this sense, this project seeks to understand, generate and communicate information useful for coffee farmers and their families. The goal is to understand social and economic factors to maintain and increase agroforestry systems with sustainable coffee.
    [Show full text]
  • Riqueza, Composición Florística Y Distribución De Las Epífitas Vasculares De La Reserva Ecológica “Sierra De Otontepec”, Veracruz
    UNIVERSIDAD VERACRUZANA FACULTAD DE CIENCIAS BIOLÓGICAS Y AGROPECUARIAS Región Poza Rica Tuxpan MAESTRÍA EN CIENCIAS DEL AMBIENTE Riqueza, composición florística y distribución de las epífitas vasculares de la Reserva Ecológica “Sierra de Otontepec”, Veracruz Que para obtener el título de Maestra en Ciencias del Ambiente Presenta Biól. Elia Reyna Pérez Lugo Director de Tesis: Dr. José Luis Alanís Méndez Co-Director de Tesis: Dr. Thorsten Krömer Asesor de Tesis: Rodrigo de Andrade Kersten Tuxpan, Ver. Enero 2016 i i AGRADECIMIENTOS A la Facultad de Ciencias Biológicas y Agropecuarias Región Poza Rica Tuxpan, por darme la oportunidad de formar parte de sus alumnos de posgrado y a su cuerpo académico que participo en mi formación profesional. Al CONACyT por proporcionar el financiamiento para la ejecución de este proyecto. A la fundación Pedro y Elena, a la Asociación Regional de Silvicultores de la Sierra de Otontepec y al Dr. Jorge Luis Chagoya, quienes facilitaron mi estancia en la reserva durante el trabajo de campo. A los colaboradores del Herbario de CITRO; Dra. Amparo Acebey, Mtro. Cesar, Mtra. Daniela, quienes ayudaron en la identificación taxonómica de epífitas. A la Pontificia Universidad Católica de Paraná, por facilitar mi estancia académica en su institución. A la madre naturaleza, por permitirme la vida y por proporcionarme los medios para que realice mis sueños. A mi madre y mis hermanas que han sido una parte fundamental en el logro de mis metas, apoyándome económicamente y emocionalmente en todo momento. A todas las personas que han colaborado ya sea como asesores o revisores de este proyecto; Dr. Alanís, Dr.
    [Show full text]
  • Plant Names Catalog 2013 1
    Plant Names Catalog 2013 NAME COMMON NAME FAMILY PLOT Abildgaardia ovata flatspike sedge CYPERACEAE Plot 97b Acacia choriophylla cinnecord FABACEAE Plot 199:Plot 19b:Plot 50 Acacia cornigera bull-horn acacia FABACEAE Plot 50 Acacia farnesiana sweet acacia FABACEAE Plot 153a Acacia huarango FABACEAE Plot 153b Acacia macracantha steel acacia FABACEAE Plot 164 Plot 176a:Plot 176b:Plot 3a:Plot Acacia pinetorum pineland acacia FABACEAE 97b Acacia sp. FABACEAE Plot 57a Acacia tortuosa poponax FABACEAE Plot 3a Acalypha hispida chenille plant EUPHORBIACEAE Plot 4:Plot 41a Acalypha hispida 'Alba' white chenille plant EUPHORBIACEAE Plot 4 Acalypha 'Inferno' EUPHORBIACEAE Plot 41a Acalypha siamensis EUPHORBIACEAE Plot 50 'Firestorm' Acalypha siamensis EUPHORBIACEAE Plot 50 'Kilauea' Acalypha sp. EUPHORBIACEAE Plot 138b Acanthocereus sp. CACTACEAE Plot 138a:Plot 164 Acanthocereus barbed wire cereus CACTACEAE Plot 199 tetragonus Acanthophoenix rubra ARECACEAE Plot 149:Plot 71c Acanthus sp. ACANTHACEAE Plot 50 Acer rubrum red maple ACERACEAE Plot 64 Acnistus arborescens wild tree tobacco SOLANACEAE Plot 128a:Plot 143 1 Plant Names Catalog 2013 NAME COMMON NAME FAMILY PLOT Plot 121:Plot 161:Plot 204:Plot paurotis 61:Plot 62:Plot 67:Plot 69:Plot Acoelorrhaphe wrightii ARECACEAE palm:Everglades palm 71a:Plot 72:Plot 76:Plot 78:Plot 81 Acrocarpus fraxinifolius shingle tree:pink cedar FABACEAE Plot 131:Plot 133:Plot 152 Acrocomia aculeata gru-gru ARECACEAE Plot 102:Plot 169 Acrocomia crispa ARECACEAE Plot 101b:Plot 102 Acrostichum aureum golden leather fern ADIANTACEAE Plot 203 Acrostichum Plot 195:Plot 204:Plot 3b:Plot leather fern ADIANTACEAE danaeifolium 63:Plot 69 Actephila ovalis PHYLLANTHACEAE Plot 151 Actinorhytis calapparia calappa palm ARECACEAE Plot 132:Plot 71c Adansonia digitata baobab MALVACEAE Plot 112:Plot 153b:Plot 3b Adansonia fony var.
    [Show full text]
  • 2016 Plant Names Catalog Alphabetical by Common Name
    2016 Plant Names Catalog Alphabetical by Common Name LOCATION(S) IN COMMON NAME(S) BOTANICAL NAME FAMILY GARDEN abaca Musa textilis MUSACEAE Plot 76 abiu Pouteria caimito 'Whitman' SAPOTACEAE Plot 128a Abraham- bush:hardhead:scipio- Phyllanthus epiphyllanthus PHYLLANTHACEAE Plot 164 bush:sword-bush African iris Dietes iridioides IRIDACEAE Plot 143 Plot 131:Plot 19a:Plot African Mahogany Khaya nyasica MELIACEAE 58 African moringa Moringa stenopetala MORINGACEAE Plot 32a Plot 71a:Plot 83:Plot African oil palm Elaeis guineensis ARECACEAE 84a:Plot 96 African spiral flag Costus lucanusianus COSTACEAE Plot 76 African tulip-tree Spathodea campanulata BIGNONIACEAE Plot 29 alligator flag Thalia geniculata MARANTACEAE Royal Palm Lake Plot 158:Plot 45:Plot allspice Pimenta dioica MYRTACEAE 46 Amazon lily Eucharis x grandiflora AMARYLLIDACEAE Plot 131 Plot 131:Plot 151:Plot Amazon-lily Eucharis amazonica AMARYLLIDACEAE 152 Plot 176a:Plot American beauty Callicarpa americana LAMIACEAE 176b:Plot 19b:Plot berry 3a:Plot 51 anaqua Ehretia anacua BORAGINACEAE Plot 52 anchovy pear Grias cauliflora LECYTHIDACEAE Plot 112:Plot 32b andiroba:bastard Carapa guianensis MELIACEAE Plot 133:Plot 158 mahogany Plot 17:Plot 18:Plot angel's trumpet Brugmansia aurea SOLANACEAE 27d:Plot 50 angel's trumpet Brugmansia aurea x SOLANACEAE Plot 32b angel's trumpet Brugmansia 'Ecuador Pink' SOLANACEAE RPH-B4 angel's trumpet Brugmansia sp. SOLANACEAE Plot 133 Plot 143:Plot 27d:Plot angel's trumpet Brugmansia suaveolens SOLANACEAE 32b:Plot 3a:Plot 49:Plot 50 Brugmansia suaveolens
    [Show full text]
  • Common Epiphytes and Lithophytes of BELIZE 1 Bruce K
    Common Epiphytes and Lithophytes of BELIZE 1 Bruce K. Holst, Sally Chambers, Elizabeth Gandy & Marilynn Shelley1 David Amaya, Ella Baron, Marvin Paredes, Pascual Garcia & Sayuri Tzul2 1Marie Selby Botanical Gardens, 2 Ian Anderson’s Caves Branch Botanical Garden © Marie Selby Bot. Gard. ([email protected]), Ian Anderson’s Caves Branch Bot. Gard. ([email protected]). Photos by David Amaya (DA), Ella Baron (EB), Sally Chambers (SC), Wade Coller (WC), Pascual Garcia (PG), Elizabeth Gandy (EG), Bruce Holst (BH), Elma Kay (EK), Elizabeth Mallory (EM), Jan Meerman (JM), Marvin Paredes (MP), Dan Perales (DP), Phil Nelson (PN), David Troxell (DT) Support from the Marie Selby Botanical Gardens, Ian Anderson’s Caves Branch Jungle Lodge, and many more listed in the Acknowledgments [fieldguides.fieldmuseum.org] [1179] version 1 11/2019 TABLE OF CONTENTS long the eastern slopes of the Andes and in Brazil’s Atlantic P. 1 ............. Epiphyte Overview Forest biome. In these places where conditions are favorable, epiphytes account for up to half of the total vascular plant P. 2 .............. Epiphyte Adaptive Strategies species. Worldwide, epiphytes account for nearly 10 percent P. 3 ............. Overview of major epiphytic plant families of all vascular plant species. Epiphytism (the ability to grow P. 6 .............. Lesser known epiphytic plant families as an epiphyte) has arisen many times in the plant kingdom P. 7 ............. Common epiphytic plant families and species around the world. (Pteridophytes, p. 7; Araceae, p. 9; Bromeliaceae, p. In Belize, epiphytes are represented by 34 vascular plant 11; Cactaceae, p. 15; p. Gesneriaceae, p. 17; Orchida- families which grow abundantly in many shrublands and for- ceae, p.
    [Show full text]
  • Full Article
    See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/232693421 Epiphytic Growth Habits of Chilean Gesneriaceae And the Evolution of Epiphytes Within the Tribe Coronanthereae1 Article in Annals of the Missouri Botanical Garden · March 2010 DOI: 10.3417/2006210 CITATIONS READS 12 193 3 authors: Fernanda Salinas Mary Kalin Pontificia Universidad Católica de Chile University of Chile 6 PUBLICATIONS 29 CITATIONS 210 PUBLICATIONS 7,470 CITATIONS SEE PROFILE SEE PROFILE J.J. Armesto Pontificia Universidad Católica de Chile 351 PUBLICATIONS 18,988 CITATIONS SEE PROFILE Some of the authors of this publication are also working on these related projects: Instantaneous speciation in a sympatric cactus mediated by hybridization and the establishment of reproductive barriers in coastal central Chile. View project LTSER-Chile Network View project All content following this page was uploaded by Fernanda Salinas on 23 June 2017. The user has requested enhancement of the downloaded file. EPIPHYTIC GROWTH HABITS OF M. Fernanda Salinas,2,3 Mary T. K. Arroyo,3 and , CHILEAN GESNERIACEAE AND Juan J. Armesto2 3 THE EVOLUTION OF EPIPHYTES WITHIN THE TRIBE CORONANTHEREAE1 ABSTRACT Three monotypic and endemic genera of epiphytic Gesneriaceae (Gesnerioideae, Coronanthereae) occur in temperate rainforests of southern South America. In this article, intraspecific differences in rooted substrate and interspecific variation in epiphytic growth habits among these three Gesneriaceae species were assessed. The presence or absence of plants on the ground and main rooted substrate when growing epiphytically on trees were used to characterize epiphytic growth habits in two old-growth temperate rainforests of northern Chiloe´ Island (42u309S) in Chile.
    [Show full text]
  • Aerial Root Hydraulic Conductivity Increases with Plant Size for the Aroid Vine Rhodospatha Oblongata (Araceae)
    Journal of Plant Hydraulics 4: e-006 Aerial root hydraulic conductivity increases with plant size for the aroid vine Rhodospatha oblongata (Araceae) Arinawa L. Filartiga1, Ricardo C. Vieira2,4, and André Mantovani3 1 Universidade Federal do Rio de Janeiro, Museu Nacional, Rio de Janeiro, RJ, Brasil; 2 Universidade Federal do Rio de Janeiro, Instituto de Biologia, Departamento de Botânica, Laboratório de Morfologia Vegetal, Bloco A, sala A1 108, CCS, Cidade Universitária, Rio de Janeiro, RJ, Brasil; 3 Instituto de Pesquisas Jardim Botânico do Rio de Janeiro, Rua Pacheco Leão 915, Jardim Botânico, 22460-030 Rio de Janeiro, Brasil. Corresponding author: André Mantovani, [email protected] Date of submission: December 11th 2017 Date of publication: May 26th 2018 Abstract Rhodospatha oblongata (Araceae) is an aroid vine which reaches maturity at tree canopies. The beginning of its ascension towards the canopy occurs when one of the branches reaches the stem of a host, thenceforward reaching eight to ten meters in height. Throughout this ascendant path, R. oblongata develops two types of aerial roots: anchor roots, which are shorter and adhere to the host, never reaching the soil, and feeder roots, which are longer and also adhere to the host, but connect the vine to the forest soil. The morphological, anatomical and physiological aspects of both root types are herein compared in relation to the efficiency of axial hydraulic conductivity. It is hypothesized that i) the two root types present distinct xylem hydraulic conductivity and ii) hydraulic conductivity of both roots varies with plant size. Root characterization was based on growing R.
    [Show full text]
  • Instituto Nacional De Pesquisas Da Amazônia Programa De Pós-Graduação Em Botânica
    INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA COMPOSIÇÃO, PADRÕES DE DISTRIBUIÇÃO VERTICAL E FORMAS DE MARIANAVIDA EPIFÍTICAS VICTÓRIA DE IRUME PHILODENDRON SCHOTT (ARACEAE JUSS.) NA AMAZÔNIA CENTRAL MARIANA VICTÓRIA IRUME Manaus, Amazonas Novembro, 2019. INSTITUTO NACIONAL DE PESQUISAS DA AMAZÔNIA PROGRAMA DE PÓS-GRADUAÇÃO EM BOTÂNICA MARIANA VICTÓRIA IRUME COMPOSIÇÃO, PADRÕES DE DISTRIBUIÇÃO VERTICAL E FORMAS DE VIDA EPIFÍTICAS DE PHILODENDRON SCHOTT (ARACEAE JUSS.) NA AMAZÔNIA CENTRAL Orientador: Dr. Michael John Gilbert Hopkins Co-orientadores: Dr. Pedro Aurélio Costa Lima Pequeno, Dr. Charles Eugene Zartmann & Dr. William Ernest Magnusson Coorientação no Programa de Doutorado Sanduíche no Exterior – PDSE/CAPES (Processo nº 88881.134007/2016-01): Dra. Sylvia Mota de Oliveira & Dr. Hans ter Steege Instituto no exterior: Naturalis Biodiversity Center, Herbarium Leiden (NL) Netherlands Tese apresentada ao Instituto Nacional de Pesquisas da Amazônia (INPA) como parte dos requisitos para obtenção do Título de Doutor em Ciências Biológicas, área de concentração em Botânica. Manaus, Amazonas Novembro, 2019. Bancas examinadoras Plano de Pesquisa Dr. Marcos Nadruz Coelho Dra. Ana Maria Benavides Dra. Carolina Castilho Aula de Qualificação Dra. Veridiana Scudeller Dr. Valdely Ferreira Kinupp Dr. José Luis Camargo Dr. Mike Hopkins Dr. Gil Vieira Defesa pública Dr. Flavio Nunes Ramos Dra. Veridiana Vizoni Scudeller Dr. Valdely Ferreira Kinupp Dra. Juliana Hipólito de Sousa Dra. Maria Anália Duarte de Souza FICHA CATALOGRÁFICA Sinopse: Este estudo avaliou a composição florística, as variações no epifitismo e a distribuição vertical de Philodendron Schott em uma floresta de planície na região de Manaus-AM, na Amazônia Central. Aspectos como a distribuição vertical, formas de vida epifíticas, variações nas fases ontogenéticas, composição florística (riqueza e abundância) e taxonomia foram analisados.
    [Show full text]
  • Conocimiento Local E Introducción in Vitro De Araceae Útil En La Producción Del Mimbre En La Reserva De La Biósfera Volcán Tacaná
    El Colegio de la Frontera Sur Conocimiento local e introducción in vitro de Araceae útil en la producción del mimbre en la Reserva de la Biósfera Volcán Tacaná TESIS presentada como requisito parcial para optar al grado de Maestra en Ciencias en Recursos Naturales y Desarrollo Rural Con orientación en Manejo y Conservación de Recursos Naturales Por Nancy Mariel Casanova Palomeque 2017 El Colegio de la Frontera Sur Tapachula, Chiapas, ____ de __________ de 2017. Las personas abajo firmantes, miembros del jurado examinador de:_____________________________________________________________ hacemos constar que hemos revisado y aprobado la tesis titulada _______________________________________________________________ _______________________________________________________________ para obtener el grado de Maestro (a) en Ciencias en Recursos Naturales y Desarrollo Rural Nombre Firma Director/a Vincenzo Bertolini _______________________ Asesor /a Leobardo Iracheta Donjuan _______________________ Asesor /a Erín Ingrid Jane Estrada Lugo _______________________ Sinodal adicional Dulce María Infante Mata ________________________ Sinodal adicional Ailsa Margaret Anne Winton ________________________ Sinodal suplente Lislie Solís Montero ________________________ Con Amor A mi familia por su apoyo incondicional, cariño y paciencia A mis hermanos Cassandra y Jorge, quienes son mi principal motivación A las comunidades mam del Soconusco Agradecimientos A los informantes y guías de las comunidades de estudio Guadalupe, Benito Juárez El Plan, Aguacaliente, Chiquihuites y Fracción Barrio Nuevo, por su confianza, colabora- ción, enseñanza y compromiso durante la realización del trabajo de campo. Al Colegio de la Frontera Sur (ECOSUR), Unidad Tapachula y San Cristóbal de las Ca- sas, por haberme abierto las puertas y otorgado esta gran oportunidad. Al Consejo Nacional de Ciencia y Tecnología (CONACYT; No. De becario: 709898), por proporcionarme el apoyo financiero necesario durante estos últimos dos años que me permitieron culminar en buen término mi Maestría.
    [Show full text]
  • El Mimbre: Una Oportunidad De Diversificación Y Desarrollo En Las Comunidades Mam Del Soconusco, Chiapas, México
    El mimbre: una oportunidad de diversificación y desarrollo en las comunidades mam del Soconusco, Chiapas, México Wicker: an opportunity for diversification and development in the mam communities of Soconusco, Chiapas, Mexico Nancy Mariel Casanova Palomeque*, Vincenzo Bertolini**, Erín Ingrid Jane Estrada Lugo*** y Fredy Archila Morales**** Resumen El artículo presenta la determinación taxonómica de las plantas nativas empleadas en la produc- ción del mimbre (fibra vegetal) y el conocimiento local (uso/manejo) del recurso en cinco comunida- des del volcán Tacaná en la región Soconusco de Chiapas, México. La determinación taxonómica de las plantas se hizo con la revisión fotográfica del Dr. Thomas B. Croat, especialista en la taxonomía de Araceae. Se realizaron entrevistas semiestructuradas y a profundidad en las comunidades de estudio, y los datos se analizaron cuantitativa y cualitativamente. Las plantas útiles identificadas fueron Monstera acuminata K. Koch y Monstera deliciosa Liebm. El 22.4% de los informantes re- portó conocimiento actual del mimbre y describen la fibra como un recurso nativo con valor cultu- ral. Las plantas no tienen un manejo agronómico en las comunidades de estudio, sin embargo exis- te potencial para establecer un manejo diversificado con los cafetales locales.Monstera deliciosa es la especie con mayor posibilidad de éxito para volver a usarla y conservarla en tres comunidades, y resultó ser la especie más conocida por los entrevistados. Se concluye que el mimbre es un recurso natural potencial para el desarrollo económico de las comunidades mam. * Estudiante de maestría en Ciencias en Recursos Naturales y Desarrollo Rural por El Colegio de la Frontera Sur, Tapachula-Chiapas, México.
    [Show full text]
  • Monstera Guzmanjacobiae (Araceae), a New Species from Mexico with Notes on Its Reproductive Biology
    Phytotaxa 437 (1): 039–046 ISSN 1179-3155 (print edition) https://www.mapress.com/j/pt/ PHYTOTAXA Copyright © 2020 Magnolia Press Article ISSN 1179-3163 (online edition) https://doi.org/10.11646/phytotaxa.437.1.5 Monstera guzmanjacobiae (Araceae), a new species from Mexico with notes on its reproductive biology PEDRO DÍAZ JIMÉNEZ1, PEDRO A. AGUILAR-RODRÍGUEZ1,2*, MARCO CEDEÑO-FONSECA3, ALEJANDRO ZULUAGA4, THOMAS B. CROAT5, MARTIN ALARCÓN MONTANO1, MARIO JIMÉNEZ-SEGURA6, MARCO LÓPEZ-MORA7, M. CRISTINA MACSWINEY G.1 & YOSSI YOVEL2 1Centro de Investigaciones Tropicales, Universidad Veracruzana, José María Morelos No. 44 y 45. Col. Centro, C.P. 91000, Xalapa, Veracruz, Mexico. 2Department of Zoology, Tel Aviv University, 6007801, Tel Aviv, Israel. 3Programa de Posgrado en Biología and Herbario Luis Fournier Origgi (USJ), Universidad de Costa Rica, San Jose, Costa Rica. 4Departamento de Biología, Universidad del Valle, Calle 13 #100-00, Cali, Colombia. 5Missouri Botanical Garden, 4344 Shaw Blvd., St. Louis, Missouri 63110, U.S.A. 6Macaw Recovery Network, Escazú, Costa Rica, 10203. 7Universidad de Costa Rica, Recinto Golfito, Puntarenas, Costa Rica. *Corresponding author: [email protected] Abstract The genus Monstera is represented in Mexico by nine species, of which five are reported for the region of Los Tuxtlas, Veracruz. During fieldwork between 2014 and 2019 in Los Tuxtlas, we discovered a previously undescribed species belonging to Sect. Marcgraviopsis and consisting of a third species from Mexico with a pendent habit. The new species Monstera guzmanjacobiae, is described taxonomically and illustrated, using color photographs of vegetative and reproductive features in living material. The behavior of flowering coincides with that observed in other species of Monstera.
    [Show full text]
  • An Ethnobiological Investigation of Q'eqchi' Maya and Cree of Eeyou Istchee Immunomodulatory Therapies
    An Ethnobiological Investigation of Q’eqchi’ Maya and Cree of Eeyou Istchee Immunomodulatory Therapies Brendan Walshe-Roussel Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfillment of the requirements for the Doctorate in Philosophy degree in Biology Department of Biology Faculty of Science University of Ottawa © Brendan Walshe-Roussel, Ottawa, Canada 2014 Abstract This thesis investigated the phytochemistry and pharmacology of immunomodulatory medicinal plant species used traditionally by the Q’eqchi’ Maya Healers Association (QMHA) of Belize, and the Cree of Eeyou Istchee (CEI) of northern Quebec. Using quantitative ethnobotanical methodology, we identified 107 plant species belonging to 49 families used by Q’eqchi’ healers in the treatment of symptoms from 14 usage categories related to inflammation. Regression analysis revealed that the Piperaceae, Araceae, and Begoniaceae are preferentially selected by the Maya. Healer consensus for plant species was high, with 56 species (52%) being used by all the healers, and consensus for usage categories was also high, as informant consensus factor (FIC) values for each category were greater than 0.4. Fifty-two Belizean species were evaluated for their TNF-α inhibitory activity in an LPS-stimulated THP-1 monocyte model. Twenty-one species (40%) demonstrated significant TNF-α inhibition when assayed at 100 µg/mL, 8 of which had greater than 50% of the activity of the parthenolide positive control (10 µg/mL). Significant regressions were found between the anti-inflammatory activity and total healer frequency of use (Fuse) and the use reports for 3 usage categories, which indicated that ethnobotanical parameters can in part predict the activity of traditionally used species.
    [Show full text]