Squirrel Monkey

Total Page:16

File Type:pdf, Size:1020Kb

Squirrel Monkey Florida’s Introduced Monkey Populations Dr. Jane Anderson Postdoctoral Research Associate University of Florida Department of Wildlife Ecology & Conservation Non-Human Primate Introductions • Global introductions since the 1500s • Purposes: – Conservation – Research – Tourism Non-Human Primate Introductions • At least 10 NHP species introduced in U.S. • Three sp. with est. pops. in FL – Squirrel monkey (Saimiri sp.) – Vervet monkey (Chlorocebus sabaeus) – Rhesus macaque (Macaca mulatta) Squirrel Monkeys (Saimiri sp.) • Primarily insectivorous- frugivorous o Also small vertebrates, bird eggs, vegetation • Primarily arboreal • Habitat generalists • Introduced pop. in Brazilian Atlantic Forest Squirrel Monkeys in Florida Marion County Silver Springs State Park 1960s – 1970s Polk County Masterpiece Palm Beach County Gardens FL Atlantic University 1960s – 1980s 1970s Collier County Naples Broward County 1960s (?) – 2000s Bartlett Estate 1970s - Present Vervet Monkeys (Chlorocebus sabaeus) • Aka “green monkey” • Omnivorous • Primarily terrestrial • Introduced pops. in St. Kitts, Nevis, & Barbados Vervet Monkeys in Florida Broward • Released from small County Dania Beach research facility? 1950s-Present • 2017 census: 39 animals among 3 troops • Little reported pop change since 1990s Rhesus Macaques (Macaca mulatta) • Omnivorous – Primarily generalist herbivores • Arboreal & terrestrial • Sea level to 4,000m • Introduced pops. – South Carolina – Puerto Rico Rhesus Macaques in Florida Marion County Silver Springs 1930s-Present Ocklawaha / ONF 1970s - present Brevard County Titusville 1976 – 1990s Keys Key Lois & Raccoon Key 1970s – 2000 Rhesus Macaques in Florida • Potential impacts – Impact bird populations through nest predation Rhesus Macaques in Florida • Potential impacts – Dangerous for tourists • Aggressive behavior • Zoonotic disease Rhesus Macaques in Florida • Potential impacts – Population continuing to grow & expand Conclusions • Florida’s monkey populations vary in ability to establish and potential impacts • Squirrel monkeys likely not problematic • Vervet monkeys merit further monitoring • Rhesus macaques merit further research – Management intervention necessary to curtail population growth Questions? • Collaborators: – Steve Johnson, Mark Hostetler, Darryl Heard, Bill Pine, Michael Andreau, Madelon van de Kerk, Katherine Sayler, Carisa Boyce, Sam Wisely, Christina Romagosa www.ecojane.org.
Recommended publications
  • Rhesus Macaque Sequencing
    White Paper for Complete Sequencing of the Rhesus Macaque (Macaca mulatta) Genome Jeffrey Rogers1, Michael Katze 2, Roger Bumgarner2, Richard A. Gibbs 3 and George M. Weinstock3 I. Introduction Humans are members of the Order Primates and our closest evolutionary relatives are other primate species. This makes primate models of human disease particularly important, as the underlying physiology and metabolism, as well as genomic structure, are more similar to humans than are other mammals. Chimpanzees (Pan troglodytes) are the animals most similar to humans in overall DNA sequence, with interspecies sequence differences of approximately 1- 1.5% (Stewart and Disotell 1998, Page and Goodman 2001). The other apes, including gorillas and orangutans are nearly as similar to humans. The animals next most closely related to humans are Old World monkeys, superfamily Cercopithecoidea. This group includes the common laboratory species of rhesus macaque (Macaca mulatta), baboon (Papio hamadryas), pig-tailed macaque (Macaca nemestrina) and African green monkey (Chlorocebus aethiops). The human evolutionary lineage separated from the ancestors of chimpanzees about 6-7 million years ago (MYA), while the human/ape lineage diverged from Old World monkeys about 25 MYA (Stewart and Disotell 1998), and from another important primate group, the New World monkeys, more than 35-40 MYA. In comparison, humans diverged from mice and other non- primate mammals about 65-85 MYA (Kumar and Hedges 1998, Eizirik et al 2001). In the evaluation of primate candidates for genome sequencing there should be more to selection of an organism than evolutionary considerations. The chimpanzee’s status as Closest Relative To Human has earned it an exemption from this consideration.
    [Show full text]
  • The Behavioral Ecology of the Tibetan Macaque
    Fascinating Life Sciences Jin-Hua Li · Lixing Sun Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Fascinating Life Sciences This interdisciplinary series brings together the most essential and captivating topics in the life sciences. They range from the plant sciences to zoology, from the microbiome to macrobiome, and from basic biology to biotechnology. The series not only highlights fascinating research; it also discusses major challenges associ- ated with the life sciences and related disciplines and outlines future research directions. Individual volumes provide in-depth information, are richly illustrated with photographs, illustrations, and maps, and feature suggestions for further reading or glossaries where appropriate. Interested researchers in all areas of the life sciences, as well as biology enthu- siasts, will find the series’ interdisciplinary focus and highly readable volumes especially appealing. More information about this series at http://www.springer.com/series/15408 Jin-Hua Li • Lixing Sun • Peter M. Kappeler Editors The Behavioral Ecology of the Tibetan Macaque Editors Jin-Hua Li Lixing Sun School of Resources Department of Biological Sciences, Primate and Environmental Engineering Behavior and Ecology Program Anhui University Central Washington University Hefei, Anhui, China Ellensburg, WA, USA International Collaborative Research Center for Huangshan Biodiversity and Tibetan Macaque Behavioral Ecology Anhui, China School of Life Sciences Hefei Normal University Hefei, Anhui, China Peter M. Kappeler Behavioral Ecology and Sociobiology Unit, German Primate Center Leibniz Institute for Primate Research Göttingen, Germany Department of Anthropology/Sociobiology University of Göttingen Göttingen, Germany ISSN 2509-6745 ISSN 2509-6753 (electronic) Fascinating Life Sciences ISBN 978-3-030-27919-6 ISBN 978-3-030-27920-2 (eBook) https://doi.org/10.1007/978-3-030-27920-2 This book is an open access publication.
    [Show full text]
  • A Stepwise Male Introduction Procedure to Prevent Inbreeding in Naturalistic Macaque Breeding Groups
    animals Article A Stepwise Male Introduction Procedure to Prevent Inbreeding in Naturalistic Macaque Breeding Groups Astrid Rox 1,2, André H. van Vliet 1, Jan A. M. Langermans 1,3,* , Elisabeth H. M. Sterck 1,2 and Annet L. Louwerse 1 1 Biomedical Primate Research Centre, Animal Science Department, 2288 GJ Rijswijk, The Netherlands; [email protected] (A.R.); [email protected] (A.H.v.V.); [email protected] (E.H.M.S.); [email protected] (A.L.L.) 2 Animal Behaviour & Cognition (Formerly Animal Ecology), Department of Biology, Faculty of Science, Utrecht University, 3508 TB Utrecht, The Netherlands 3 Department Population Health Sciences, Division Animals in Science and Society, Faculty of Veterinary Medicine, Utrecht University, 3584 CM Utrecht, The Netherlands * Correspondence: [email protected]; Tel.: +31-152-842-620 Simple Summary: Housing of primates in groups increases animal welfare; however, this requires management to prevent inbreeding. To this end, males are introduced into captive macaque breeding groups, mimicking the natural migration patterns of these primates. However, such male introduc- tions can be risky and unsuccessful. The procedure developed by the Biomedical Primate Research Centre (BPRC), Rijswijk, the Netherlands, to introduce male rhesus macaques (Macaca mulatta) into naturalistic social groups without a breeding male achieves relatively high success rates. Males are stepwise familiarized with and introduced to their new group, while all interactions between the new male and the resident females are closely monitored. Monitoring the behaviour of the resident Citation: Rox, A.; van Vliet, A.H.; females and their new male during all stages of the introduction provides crucial information as to Langermans, J.A.M.; Sterck, E.H.M.; whether or not it is safe to proceed.
    [Show full text]
  • Rhesus Macaques (Macaca Mulatta) Recognize Group Membership Via Olfactory Cues Alone
    Behav Ecol Sociobiol (2015) 69:2019–2034 DOI 10.1007/s00265-015-2013-y ORIGINAL ARTICLE Rhesus macaques (Macaca mulatta) recognize group membership via olfactory cues alone Stefanie Henkel 1,2 & Angelina Ruiz Lambides1,3,4 & Anne Berger5 & Ruth Thomsen1,6,7 & Anja Widdig1,3 Received: 9 April 2015 /Revised: 18 September 2015 /Accepted: 21 September 2015 /Published online: 31 October 2015 # Springer-Verlag Berlin Heidelberg 2015 Abstract The ability to distinguish group members from con- paradigm to investigate whether rhesus macaques (Macaca specifics living in other groups is crucial for gregarious spe- mulatta) can discriminate between body odors of female cies. Olfaction is known to play a major role in group recog- group members and females from different social groups. nition and territorial defense in a wide range of mammalian We conducted the study on the research island Cayo Santiago, taxa. Although primates have been typically regarded as Puerto Rico, in the non-mating season and controlled for kin- microsmatic (having a poor sense of smell), increasing evi- ship and familiarity using extensive pedigree and demograph- dence suggests that olfaction may play a greater role in pri- ic data. Our results indicate that both males and females in- mates’ social life than previously assumed. In this study, we spect out-group odors significantly longer than in-group carried out behavioral bioassays using a signaler-receiver odors. Males licked odors more often than females, and older animals licked more often than younger ones. Furthermore, individuals tended to place their nose longer towards odors Communicated by E. Huchard when the odor donor’s group rank was higher than the rank of Electronic supplementary material The online version of this article their own group.
    [Show full text]
  • Links Between Habitat Degradation, and Social Group Size, Ranging, Fecundity, and Parasite Prevalence in the Tana River Mangabey (Cercocebus Galeritus) David N.M
    AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 140:562–571 (2009) Links Between Habitat Degradation, and Social Group Size, Ranging, Fecundity, and Parasite Prevalence in the Tana River Mangabey (Cercocebus galeritus) David N.M. Mbora,1* Julie Wieczkowski,2 and Elephas Munene3 1Department of Biological Sciences, Dartmouth College, Hanover, NH 03755 2Department of Anthropology, Buffalo State College, Buffalo, NY 14222 3Institute of Primate Research, Department of Tropical and Infectious Diseases, Nairobi, Kenya KEY WORDS endangered species; habitat fragmentation; habitat loss; Kenya; primates ABSTRACT We investigated the effects of anthropo- censused social groups over 12 months. We also analyzed genic habitat degradation on group size, ranging, fecun- fecal samples for gastrointestinal parasites from three of dity, and parasite dynamics in four groups of the Tana the groups. The disturbed forest had a lower abundance River mangabey (Cercocebus galeritus). Two groups occu- of food trees, and groups in this forest traveled longer pied a forest disturbed by human activities, while the distances, had larger home range sizes, were smaller, other two occupied a forest with no human disturbance. and had lower fecundity. The groups in the disturbed We predicted that the groups in the disturbed forest forest had higher, although not statistically significant, would be smaller, travel longer distances daily, and have parasite prevalence and richness. This study contributes larger home ranges due to low food tree abundance. Con- to a better understanding of how anthropogenic habitat sequently, these groups would have lower fecundity and change influences fecundity and parasite infections in higher parasite prevalence and richness (number of primates. Our results also emphasize the strong influ- parasite species).
    [Show full text]
  • Macaca Fascicularis) in Thailand
    The Natural History Journal of Chulalongkorn University 8(2): 185-204, October 2008 ©2008 by Chulalongkorn University Current Situation and Status of Long-tailed Macaques (Macaca fascicularis) in Thailand SUCHINDA MALAIVIJITNOND1* AND YUZURU HAMADA2 1Primate Research Unit, Department of Biology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand. 2Section of Morphology, Primate Research Institute, Kyoto University, Inuyama, Japan. ABSTRACT.– Long-tailed macaques (Macaca fascicularis) are the most frequently encountered primate in Thailand. They are currently considered at low risk for extinction, however, they are threatened by habitat fragmentation or loss, inbreeding or outbreeding depression and hybridization. At present, no management measures have been taken and updated information on their situation and status are urgently needed. We sent questionnaires throughout Thailand to a total of 7,410 sub-districts, and received 1,417 (19.12%) replies. We traveled to the sub-districts from which the positive replies to questionnaires on macaques were obtained, from December 2002 to December 2007 and found long-tailed macaques in 74 locations which ranged from the lower northern and northeastern (ca. 16° 30´ N) to the southernmost part (ca. 6° 30´ N) of Thailand. The distribution of long-tailed macaques at present is similar to that reported 30 years ago, but their habitats have changed from natural forests to temples or recreation parks. On average, 200 monkeys per location were counted and some populations had more than 1,000 individuals. In some locations they were regarded as pests. Local authorities took short-term management measures such as translocation and contraception. Although many troops of Thai long- tailed macaques have inflated population densities, some local troops exhibited morphological, genetic and behavioural uniqueness that may be important to conserve.
    [Show full text]
  • A Decade of Theory of Mind Research on Cayo Santiago: Insights Into Rhesus Macaque Social Cognition
    American Journal of Primatology REVIEW ARTICLE A Decade of Theory of Mind Research on Cayo Santiago: Insights Into Rhesus Macaque Social Cognition LINDSEY A. DRAYTON* AND LAURIE R. SANTOS Psychology Department, Yale University, New Haven, Connecticut Over the past several decades, researchers have become increasingly interested in understanding how primates understand the behavior of others. One open question concerns whether nonhuman primates think about others’ behavior in psychological terms, that is, whether they have a theory of mind. Over the last ten years, experiments conducted on the free-ranging rhesus monkeys (Macaca mulatta) living on Cayo Santiago have provided important insights into this question. In this review, we highlight what we think are some of the most exciting results of this body of work. Specifically we describe experiments suggesting that rhesus monkeys may understand some psychological states, such as what others see, hear, and know, but that they fail to demonstrate an understanding of others’ beliefs. Thus, while some aspects of theory of mind may be shared between humans and other primates, others capacities are likely to be uniquely human. We also discuss some of the broader debates surrounding comparative theory of mind research, as well as what we think may be productive lines for future research with the rhesus macaques of Cayo Santiago. Am. J. Primatol. © 2014 Wiley Periodicals, Inc. Key words: theory of mind; social cognition; rhesus macaques INTRODUCTION following a discussion of some of our own work, we Few people can observe nonhuman primates for examine some of the broader debates that surround any length of time without being struck by the this area of study and suggest what we believe will be richness of their social lives.
    [Show full text]
  • 4944941.Pdf (742.8Kb)
    Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa The Harvard community has made this article openly available. Please share how this access benefits you. Your story matters Citation McCarthy, Kevin R., Welkin E. Johnson, and Andrea Kirmaier. 2016. “Phylogeny and History of the Lost SIV from Crab- Eating Macaques: SIVmfa.” PLoS ONE 11 (7): e0159281. doi:10.1371/journal.pone.0159281. http://dx.doi.org/10.1371/ journal.pone.0159281. Published Version doi:10.1371/journal.pone.0159281 Citable link http://nrs.harvard.edu/urn-3:HUL.InstRepos:29002415 Terms of Use This article was downloaded from Harvard University’s DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of- use#LAA RESEARCH ARTICLE Phylogeny and History of the Lost SIV from Crab-Eating Macaques: SIVmfa Kevin R. McCarthy1,2☯¤, Welkin E. Johnson2, Andrea Kirmaier2☯* 1 Program in Virology, Harvard Medical School, Boston, MA, United States of America, 2 Biology Department, Boston College, Chestnut Hill, MA, United States of America ☯ These authors contributed equally to this work. ¤ Current address: Boston Children’s Hospital, Boston, MA, United States of America * [email protected] a11111 Abstract In the 20th century, thirteen distinct human immunodeficiency viruses emerged following independent cross-species transmission events involving simian immunodeficiency viruses (SIV) from African primates. In the late 1900s, pathogenic SIV strains also emerged in the United Sates among captive Asian macaque species following their unintentional infection OPEN ACCESS with SIV from African sooty mangabeys (SIVsmm).
    [Show full text]
  • An Introduced Primate Species, Chlorocebus Sabaeus, in Dania
    AN INTRODUCED PRIMATE SPECIES, CHLOROCEBUS SABAEUS, IN DANIA BEACH, FLORIDA: INVESTIGATING ORIGINS, DEMOGRAPHICS, AND ANTHROPOGENIC IMPLICATIONS OF AN ESTABLISHED POPULATION by Deborah M. Williams A Dissertation Submitted to the Faculty of The Charles E. Schmidt College of Science In Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy Florida Atlantic University Boca Raton, FL May 2019 Copyright 2019 by Deborah M. Williams ii AN INTRODUCED PRIMATE SPECIES, CHLOROCEBUS SABAEUS, IN DANIA BEACH, FLORIDA: INVESTIGATING ORIGINS, DEMOGRAPHICS, AND ANTHROPOGENIC IMPLICATIONS OF AN ESTABLISHED POPULATION by Deborah M. Williams This dissertation was prepared under the direction of the candidate's dissertation advisor, Dr. Kate Detwiler, Department of Biological Sciences, and has been approved by all members of the supervisory committee. It was submitted to the faculty of the Charles E. Schmidt College of Science and was accepted in partial fulfillment of the requirements for the degree of Doctor of Philosophy. SUPERVISORY COMMITTEE: ~ ~,'£-____ Colin Hughes, Ph.D. ~~ Marianne Porter, P6.D. I Sciences arajedini, Ph.D. Dean, Charles E. Schmidt College of Science ~__5~141'~ Khaled Sobhan, Ph.D. Interim Dean, Graduate College iii ACKNOWLEDGEMENTS There are so many people who made this possible. It truly takes a village. A big thank you to my husband, Roy, who was my rock during this journey. He offered a shoulder to lean on, an ear to listen, and a hand to hold. Also, thank you to my son, Blake, for tolerating the late pick-ups from school and always knew when a hug was needed. I could not have done it without them.
    [Show full text]
  • Rhesus Macaque Eradication to Restore the Ecological Integrity of Desecheo National Wildlife Refuge, Puerto Rico
    C.C. Hanson, T.J. Hall, A.J. DeNicola, S. Silander, B.S. Keitt and K.J. Campbell Hanson, C.C.; T.J. Hall, A.J. DeNicola, S. Silander, B.S. Keitt and K.J. Campbell. Rhesus macaque eradication to restore the ecological integrity of Desecheo National Wildlife Refuge, Puerto Rico Rhesus macaque eradication to restore the ecological integrity of Desecheo National Wildlife Refuge, Puerto Rico C.C. Hanson¹, T.J. Hall¹, A.J. DeNicola², S. Silander³, B.S. Keitt¹ and K.J. Campbell1,4 ¹Island Conservation, 2100 Delaware Ave. Suite 1, Santa Cruz, California, 95060, USA. <chad.hanson@ islandconservation.org>. ²White Buff alo Inc., Connecticut, USA. ³U.S. Fish and Wildlife Service, Caribbean Islands› NWR, P.O. Box 510 Boquerón, 00622, Puerto Rico. 4School of Geography, Planning & Environmental Management, The University of Queensland, St Lucia 4072, Australia. Abstract A non-native introduced population of rhesus macaques (Macaca mulatta) was targeted for removal from Desecheo Island (117 ha), Puerto Rico. Macaques were introduced in 1966 and contributed to several plant and animal extirpations. Since their release, three eradication campaigns were unsuccessful at removing the population; a fourth campaign that addressed potential causes for previous failures was declared successful in 2017. Key attributes that led to the success of this campaign included a robust partnership, adequate funding, and skilled fi eld staff with a strong eradication ethic that followed a plan based on eradication theory. Furthermore, the incorporation of modern technology including strategic use of remote camera traps, monitoring of radio-collared Judas animals, night hunting with night vision and thermal rifl e scopes, and the use of high-power semi-automatic fi rearms made eradication feasible due to an increase in the probability of detection and likelihood of removal.
    [Show full text]
  • Species, the Bonnet Macaque (Macaca Radiata)
    RESEARCH ARTICLE Losing its ground: A case study of fast declining populations of a `least-concern' species, the bonnet macaque (Macaca radiata) Joseph J. Erinjery1,2☯, Shanthala Kumar3☯, Honnavalli N. Kumara4☯*, K. Mohan1☯, Tejeshwar Dhananjaya1☯, P. Sundararaj3³, Rafi Kent2³, Mewa Singh1,5³ 1 Biopsychology Laboratory and Institute of Excellence, University of Mysore, Mysuru, India, 2 Department of Geography and Environment, Bar-Ilan University, Ramat Gan, Israel, 3 Department of Zoology, Bharathiar University, Coimbatore, India, 4 SaÂlim Ali Centre for Ornithology and Natural History, Coimbatore, India, a1111111111 5 Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore, India a1111111111 a1111111111 ☯ These authors contributed equally to this work. ³ These authors also contributed equally to this work. a1111111111 * [email protected] a1111111111 Abstract OPEN ACCESS The populations of many species that are widespread and commensal with humans have been drastically declining during the past few decades, but little attention has been paid to Citation: Erinjery JJ, Kumar S, Kumara HN, Mohan K, Dhananjaya T, Sundararaj P, et al. (2017) Losing their conservation. Here, we report the status of the bonnet macaque, a species that is con- its ground: A case study of fast declining sidered `least-concern' for conservation. We show that the widely ranging rhesus macaque populations of a `least-concern' species, the bonnet is expanding its range into the distributional range of the bonnet macaque, a species macaque (Macaca radiata). PLoS ONE 12(8): endemic only to southern India. Bonnet macaques have very low abundance in forests of all e0182140. https://doi.org/10.1371/journal. pone.0182140 types indicating that it is not a typically forest dwelling species.
    [Show full text]
  • Theropithecus Gelada) on an Intact Afro-Alpine Grassland at Guassa, Ethiopia ______
    LONG-TERM RANGING PATTERNS OF WILD GELADA MONKEYS (THEROPITHECUS GELADA) ON AN INTACT AFRO-ALPINE GRASSLAND AT GUASSA, ETHIOPIA ____________________________________ A Thesis Presented to the Faculty of California State University, Fullerton ____________________________________ In Partial Fulfillment of the Requirements for the Degree Master of Arts in Anthropology ____________________________________ By Cha Moua Thesis Committee Approval: Associate Professor Peter J. Fashing, Chair Associate Professor Nga Nguyen, Department of Anthropology Associate Professor Elizabeth G. Pillsworth, Department of Anthropology Fall, 2015 ABSTRACT Long-term studies of animal ranging ecology are critical to understanding how animals utilize their habitat across space and time. Although gelada monkeys (Theropithecus gelada) inhabit an unusual, high altitude habitat that presents unique ecological challenges, no long-term studies of their ranging behavior have been conducted. To close this gap, I investigated the daily path length (DPL), annual home ranges (95%), and annual core areas (50%) of a band of ~220 wild gelada monkeys at Guassa, Ethiopia, from January 2007 to December 2011 (for total of n = 785 full-day follows). I estimated annual home ranges and core area using the fixed kernel reference (FK REF) and smoothed cross-validation (FK SCV) bandwidths, and the minimum convex polygon (MCP) method. Both annual home range (MCP - 2007: 5.9 km2; 2008: 8.6 km2; 2009: 9.2 km2; 2010: 11.5 km2; 2011: 11.6 km2) and core area increased over the 5-year study period. The MCP and FK REF generated broadly consistent, though slightly larger estimates that contained areas in which the geladas were never observed. All three methods omitted one to 19 sleeping sites from the home range depending on the year.
    [Show full text]