The Bigger Picture: Why Oral Mucosa Heals Better Than Skin

Total Page:16

File Type:pdf, Size:1020Kb

The Bigger Picture: Why Oral Mucosa Heals Better Than Skin biomolecules Review The Bigger Picture: Why Oral Mucosa Heals Better Than Skin Maaike Waasdorp 1,* , Bastiaan P. Krom 2 , Floris J. Bikker 3 , Paul P. M. van Zuijlen 4,5,6, Frank B. Niessen 5 and Susan Gibbs 1,7 1 Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ Amsterdam, The Netherlands; [email protected] 2 Department of Preventive Dentistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] 3 Department of Oral Biochemistry, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands; [email protected] 4 Burn Centre, and Department of Plastic, Reconstructive and Hand Surgery, Red Cross Hospital, Vondellaan 13, 1942 LE Beverwijk, The Netherlands; [email protected] 5 Department of Plastic, Reconstructive and Hand Surgery, Amsterdam Movement Sciences, Amsterdam University Medical Centers, Vrije Universiteit Amsterdam, De Boelelaan 1117, 1007 MB Amsterdam, The Netherlands; [email protected] 6 Department of Pediatric Surgery, Amsterdam University Medical Centers, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands 7 Department of Oral Cell Biology, Academic Center for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands * Correspondence: [email protected] Abstract: Wound healing is an essential process to restore tissue integrity after trauma. Large Citation: Waasdorp, M.; Krom, B.P.; skin wounds such as burns often heal with hypertrophic scarring and contractures, resulting in Bikker, F.J.; van Zuijlen, P.P.M.; disfigurements and reduced joint mobility. Such adverse healing outcomes are less common in Niessen, F.B.; Gibbs, S. The Bigger the oral mucosa, which generally heals faster compared to skin. Several studies have identified Picture: Why Oral Mucosa Heals differences between oral and skin wound healing. Most of these studies however focus only on Better Than Skin. Biomolecules 2021, 11, 1165. https://doi.org/ a single stage of wound healing or a single cell type. The aim of this review is to provide an 10.3390/biom11081165 extensive overview of wound healing in skin versus oral mucosa during all stages of wound healing and including all cell types and molecules involved in the process and also taking into account Academic Editors: Ryan Moseley, environmental specific factors such as exposure to saliva and the microbiome. Next to intrinsic Robert Steadman and Adam C. properties of resident cells and differential expression of cytokines and growth factors, multiple Midgley external factors have been identified that contribute to oral wound healing. It can be concluded that faster wound closure, the presence of saliva, a more rapid immune response, and increased Received: 11 June 2021 extracellular matrix remodeling all contribute to the superior wound healing and reduced scar Accepted: 2 August 2021 formation in oral mucosa, compared to skin. Published: 6 August 2021 Keywords: wound healing; skin; oral; saliva; microbiome; scar; cytokines; growth factors Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affil- iations. 1. Introduction Wound healing is a tightly regulated process aiming to restore tissues upon damage. Irrespective of the type of wounded tissue, the process of wound healing follows four partially overlapping phases: hemostasis, inflammation, proliferation, and remodeling. Copyright: © 2021 by the authors. Each stage specifically involves unique cell types and (signaling) molecules. Dysregulation Licensee MDPI, Basel, Switzerland. at any phase, for example wound infection, may result in delayed wound healing, hyper- This article is an open access article distributed under the terms and trophic scar formation, and contractures [1]. Hypertrophic scars are red, raised, painful, conditions of the Creative Commons and itchy. Contractures are very stiff and often cause reduced joint mobility, thus requiring Attribution (CC BY) license (https:// multiple corrective surgeries. Up to 90% of (deep) burn wounds and 30% of surgical creativecommons.org/licenses/by/ wounds heal with hypertrophic scarring [2,3]. Hypertrophic scar formation is associated 4.0/). with increased angiogenesis and a suppressed and delayed inflammatory response [4,5]. Biomolecules 2021, 11, 1165. https://doi.org/10.3390/biom11081165 https://www.mdpi.com/journal/biomolecules Biomolecules 2021, 11, x FOR PEER REVIEW 2 of 23 Biomolecules 2021, 11, 1165 2 of 22 surgical wounds heal with hypertrophic scarring [2,3]. Hypertrophic scar formation is as- sociated with increased angiogenesis and a suppressed and delayed inflammatory re- In general, wounds in the oral mucosa heal relatively fast and with little scarring, despite sponse [4,5]. In general, wounds in the oral mucosa heal relatively fast and with little scar- being continuously exposed to motion, tension, mechanical abrasion, and a great variety ring, despite being continuously exposed to motion, tension, mechanical abrasion, and a of microbes. In recent literature, it has been suggested that certain microbes may have a great variety of microbes. In recent literature, it has been suggested that certain microbes positivemay have effect a positive on wound effect healing, on wound for healing, example for by example training by or training alerting or the alerting immune the systemim- andmune thereby system influencing and thereby the influencing wound-healing the woun cascaded-healing [6–9 ].cascade Similar [6–9]. to skin, Similar complications to skin, duringcomplications oral wound during healing oral wound and healing underlying and underlying (autoimmune) (autoimmune) diseases diseases such as such cicatricial as pemphigoid,cicatricial pemphigoid, pemphigus pemphigus vulgaris, or vulgaris, diabetes or cause diabetes delayed cause wound delayed healing wound and healing scarring inand the scarring oral mucosa in the [10 oral,11 ].mucosa External [10,11]. factors External such as factors alcohol such and as cigarette alcohol smoke and cigarette have been shownsmoke tohave impair been oral shown wound to impair healing oral as wound well [12 healing]. Figure as1 wellillustrates [12]. Figure clinical 1 illustrates examples of humanclinical skinexamples and oral of human wounds skin and and healing oral wounds outcome. and healing outcome. FigureFigure 1.1. ComparisonComparison of of human human skin skin and and or oralal mucosal mucosal wounds wounds and and scars. scars. (a) Clinical (a) Clinical example example of a of aburn burn wound wound in inskin skin (upper (upper pictur picture)e) and andan oral an oralwound wound from fromschisis schisis corrective corrective surgery surgery (lower pic- (lower picture);ture); (b) ( clinicalb) clinical example example of a skin of a scar skin after scar burn after injury burn ( injuryupper picture (upper) pictureand an oral) and scar an after oral schisis scar after schisiscorrective corrective surgery surgery (lower (picturelower). picture ). ByBy understandingunderstanding the mechanisms mechanisms behind behind oral oral wound wound healing healing leading leading to acceptable to acceptable scarscar formation, formation, it it may may be be possible possible toto getget insightsinsights intointo howhow toto achieveachieve reducedreduced scarringscarring ofof the skinthe skin or even or even complete complete tissue tissue regeneration regeneration after after wound wound healing. healing. Several Several studies studies examinedexam- theined differences the differences between between skin and skin oral and wound oral wound healing healing that maythat explainmay explain the superior the superior healing outcomehealing outcome in oral mucosa. in oral mucosa. Most of Most these of studies these studies however however focus onlyfocus ononly a singleon a single stage of woundstage of healing wound orhealing a single or cella single type cell and type do notand takedo not into take account into account the presence the presence of saliva of or thesaliva site-specific or the site-specific microbiome. microbiome. The aim The of this aim review of this isreview therefore is therefore to compare to compare oral and oral skin woundand skin healing wound during healing the during entire the healing entire healing process, process, including including all cells all cells participating participating in the healingin the healing process process as well as as well the effectas theof effect environmental of environmental factors factors suchas such the as presence the presence of saliva andof saliva the oral and microbiome. the oral microbiome. 2. The Intrinsic Differences between Skin and Oral Mucosa When comparing the general tissue architecture, healthy skin and oral mucosa share many features, as well as have intrinsic histological differences, as illustrated in Figure2. Both tissues comprise stratified epithelia, containing keratinocytes, melanocytes, Merkel cells, and Langerhans cells, which provide protection against body fluid loss, exposure to toxins, and microbial invasion [13,14]. Although skin and oral mucosa are generally alike Biomolecules 2021, 11, 1165 3 of 22 in morphology and functions, there are differences already in homeostatic conditions
Recommended publications
  • Oral Absorption of Peptides and Nanoparticles Across the Human Intestine: Opportunities, Limitations and Studies in Human Tissues☆
    Advanced Drug Delivery Reviews 106 (2016) 256–276 Contents lists available at ScienceDirect Advanced Drug Delivery Reviews journal homepage: www.elsevier.com/locate/addr Oral absorption of peptides and nanoparticles across the human intestine: Opportunities, limitations and studies in human tissues☆ P. Lundquist, P. Artursson ⁎ Department of Pharmacy, Uppsala University, Box 580, SE-752 37 Uppsala, Sweden article info abstract Article history: In this contribution, we review the molecular and physiological barriers to oral delivery of peptides and nanopar- Received 2 May 2016 ticles. We discuss the opportunities and predictivity of various in vitro systems with special emphasis on human Received in revised form 2 July 2016 intestine in Ussing chambers. First, the molecular constraints to peptide absorption are discussed. Then the phys- Accepted 8 July 2016 iological barriers to peptide delivery are examined. These include the gastric and intestinal environment, the Available online 3 August 2016 mucus barrier, tight junctions between epithelial cells, the enterocytes of the intestinal epithelium, and the Keywords: subepithelial tissue. Recent data from human proteome studies are used to provide information about the protein fi Oral drug delivery expression pro les of the different physiological barriers to peptide and nanoparticle absorption. Strategies that Peptide drugs have been employed to increase peptide absorption across each of the barriers are discussed. Special consider- Nanoparticles ation is given to attempts at utilizing endogenous transcytotic pathways. To reliably translate in vitro data on Ussing chamber peptide or nanoparticle permeability to the in vivo situation in a human subject, the in vitro experimental system Peptide permeability needs to realistically capture the central aspects of the mentioned barriers.
    [Show full text]
  • Propranolol-Mediated Attenuation of MMP-9 Excretion in Infants with Hemangiomas
    Supplementary Online Content Thaivalappil S, Bauman N, Saieg A, Movius E, Brown KJ, Preciado D. Propranolol-mediated attenuation of MMP-9 excretion in infants with hemangiomas. JAMA Otolaryngol Head Neck Surg. doi:10.1001/jamaoto.2013.4773 eTable. List of All of the Proteins Identified by Proteomics This supplementary material has been provided by the authors to give readers additional information about their work. © 2013 American Medical Association. All rights reserved. Downloaded From: https://jamanetwork.com/ on 10/01/2021 eTable. List of All of the Proteins Identified by Proteomics Protein Name Prop 12 mo/4 Pred 12 mo/4 Δ Prop to Pred mo mo Myeloperoxidase OS=Homo sapiens GN=MPO 26.00 143.00 ‐117.00 Lactotransferrin OS=Homo sapiens GN=LTF 114.00 205.50 ‐91.50 Matrix metalloproteinase‐9 OS=Homo sapiens GN=MMP9 5.00 36.00 ‐31.00 Neutrophil elastase OS=Homo sapiens GN=ELANE 24.00 48.00 ‐24.00 Bleomycin hydrolase OS=Homo sapiens GN=BLMH 3.00 25.00 ‐22.00 CAP7_HUMAN Azurocidin OS=Homo sapiens GN=AZU1 PE=1 SV=3 4.00 26.00 ‐22.00 S10A8_HUMAN Protein S100‐A8 OS=Homo sapiens GN=S100A8 PE=1 14.67 30.50 ‐15.83 SV=1 IL1F9_HUMAN Interleukin‐1 family member 9 OS=Homo sapiens 1.00 15.00 ‐14.00 GN=IL1F9 PE=1 SV=1 MUC5B_HUMAN Mucin‐5B OS=Homo sapiens GN=MUC5B PE=1 SV=3 2.00 14.00 ‐12.00 MUC4_HUMAN Mucin‐4 OS=Homo sapiens GN=MUC4 PE=1 SV=3 1.00 12.00 ‐11.00 HRG_HUMAN Histidine‐rich glycoprotein OS=Homo sapiens GN=HRG 1.00 12.00 ‐11.00 PE=1 SV=1 TKT_HUMAN Transketolase OS=Homo sapiens GN=TKT PE=1 SV=3 17.00 28.00 ‐11.00 CATG_HUMAN Cathepsin G OS=Homo
    [Show full text]
  • Isolated Nigral Degeneration Without Pathological Protein Aggregation In
    Takanashi et al. Acta Neuropathologica Communications (2018) 6:105 https://doi.org/10.1186/s40478-018-0617-y RESEARCH Open Access Isolated nigral degeneration without pathological protein aggregation in autopsied brains with LRRK2 p.R1441H homozygous and heterozygous mutations Masashi Takanashi1*† , Manabu Funayama2,3,4†, Eiji Matsuura5, Hiroyo Yoshino2, Yuanzhe Li4, Sho Tsuyama6, Hiroshi Takashima5, Kenya Nishioka4 and Nobutaka Hattori2,3,4* Abstract Leucine-rich repeat kinase 2 (LRRK2) is the most common causative gene for autosomal dominant Parkinson’s disease (PD) and is also known to be a susceptibility gene for sporadic PD. Although clinical symptoms with LRRK2 mutations are similar to those in sporadic PD, their pathologies are heterogeneous and include nigral degeneration with abnormal inclusions containing alpha-synuclein, tau, TAR DNA-binding protein 43, and ubiquitin, or pure nigral degeneration with no protein aggregation pathologies. We discovered two families harboring heterozygous and homozygous c.4332 G > A; p.R1441H in LRRK2 with consanguinity, sharing a common founder. They lived in the city of Makurazaki, located in a rural area of the southern region, the Kagoshima prefecture, in Kyushu, Japan. All patients presented late-onset parkinsonism without apparent cognitive decline and demonstrated a good response to levodopa. We obtained three autopsied cases that all presented with isolated nigral degeneration with no alpha- synuclein or other protein inclusions. This is the first report of neuropathological findings in patients with LRRK2 p.R1441H mutations that includes both homozygous and heterozygous mutations. Our findings in this study suggest that isolated nigral degeneration is the primary pathology in patients with LRRK2 p.R1441H mutations, and that protein aggregation of alpha-synuclein or tau might be secondary changes.
    [Show full text]
  • Mucin Family Genes Are Downregulated in Colorectal
    ooggeenneessii iinn ss && rrcc aa MM CC uu tt ff aa Journal ofJournal of oo gg Aziz et al., J Carcinogene Mutagene 2014, S10 ll ee ee aa aa nn nn nn nn ee ee rr rr ss ss uu uu ii ii ss ss oo oo DOI: 4172/2157-2518.S10-009 JJ JJ ISSN: 2157-2518 CarCarcinogenesiscinogenesis & Mutagenesis Research Article Article OpenOpen Access Access Mucin Family Genes are Downregulated in Colorectal Cancer Patients Mohammad Azhar Aziz*, Majed AlOtaibi, Abdulkareem AlAbdulrahman, Mohammed AlDrees and Ibrahim AlAbdulkarim Department of Medical Genomics, KIng Abdullah Intl. Med. Res. Ctr., King Saud Bin Abdul Aziz University for Health Sciences, Riyadh, Saudi Arabia Abstract Mucins are very well known to be associated with different types of cancer. Their role in colorectal cancer has been extensively studied without direct correlation with their change in expression levels. In the present study we employed the human exon array from Affymetrix to provide evidence that mucin family genes are downregulated in colorectal cancer tumor samples. We analyzed 92 samples taken from normal and tumor tissues. All mucin family genes except MUCL1 were downregulated with the fold change value ranging from -3.53 to 1.78 as calculated using AltAnalyze software. Maximum drop in RNA transcripts were observed for MUC2 with a fold change of -3.53. Further, we carried out Integromics analysis to analyze mucin genes using hierarchical clustering. MUC1 and MUC4 were found to be potential biomarkers for human colorectal cancer. Top upstream regulators were identified for mucin genes. Network analyses were carried out to further our understanding about potential mechanisms by which mucins can be involved in causing colorectal cancer.
    [Show full text]
  • Investigation of the Underlying Hub Genes and Molexular Pathogensis in Gastric Cancer by Integrated Bioinformatic Analyses
    bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Investigation of the underlying hub genes and molexular pathogensis in gastric cancer by integrated bioinformatic analyses Basavaraj Vastrad1, Chanabasayya Vastrad*2 1. Department of Biochemistry, Basaveshwar College of Pharmacy, Gadag, Karnataka 582103, India. 2. Biostatistics and Bioinformatics, Chanabasava Nilaya, Bharthinagar, Dharwad 580001, Karanataka, India. * Chanabasayya Vastrad [email protected] Ph: +919480073398 Chanabasava Nilaya, Bharthinagar, Dharwad 580001 , Karanataka, India bioRxiv preprint doi: https://doi.org/10.1101/2020.12.20.423656; this version posted December 22, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. Abstract The high mortality rate of gastric cancer (GC) is in part due to the absence of initial disclosure of its biomarkers. The recognition of important genes associated in GC is therefore recommended to advance clinical prognosis, diagnosis and and treatment outcomes. The current investigation used the microarray dataset GSE113255 RNA seq data from the Gene Expression Omnibus database to diagnose differentially expressed genes (DEGs). Pathway and gene ontology enrichment analyses were performed, and a proteinprotein interaction network, modules, target genes - miRNA regulatory network and target genes - TF regulatory network were constructed and analyzed. Finally, validation of hub genes was performed. The 1008 DEGs identified consisted of 505 up regulated genes and 503 down regulated genes.
    [Show full text]
  • Supplementary Table S4. FGA Co-Expressed Gene List in LUAD
    Supplementary Table S4. FGA co-expressed gene list in LUAD tumors Symbol R Locus Description FGG 0.919 4q28 fibrinogen gamma chain FGL1 0.635 8p22 fibrinogen-like 1 SLC7A2 0.536 8p22 solute carrier family 7 (cationic amino acid transporter, y+ system), member 2 DUSP4 0.521 8p12-p11 dual specificity phosphatase 4 HAL 0.51 12q22-q24.1histidine ammonia-lyase PDE4D 0.499 5q12 phosphodiesterase 4D, cAMP-specific FURIN 0.497 15q26.1 furin (paired basic amino acid cleaving enzyme) CPS1 0.49 2q35 carbamoyl-phosphate synthase 1, mitochondrial TESC 0.478 12q24.22 tescalcin INHA 0.465 2q35 inhibin, alpha S100P 0.461 4p16 S100 calcium binding protein P VPS37A 0.447 8p22 vacuolar protein sorting 37 homolog A (S. cerevisiae) SLC16A14 0.447 2q36.3 solute carrier family 16, member 14 PPARGC1A 0.443 4p15.1 peroxisome proliferator-activated receptor gamma, coactivator 1 alpha SIK1 0.435 21q22.3 salt-inducible kinase 1 IRS2 0.434 13q34 insulin receptor substrate 2 RND1 0.433 12q12 Rho family GTPase 1 HGD 0.433 3q13.33 homogentisate 1,2-dioxygenase PTP4A1 0.432 6q12 protein tyrosine phosphatase type IVA, member 1 C8orf4 0.428 8p11.2 chromosome 8 open reading frame 4 DDC 0.427 7p12.2 dopa decarboxylase (aromatic L-amino acid decarboxylase) TACC2 0.427 10q26 transforming, acidic coiled-coil containing protein 2 MUC13 0.422 3q21.2 mucin 13, cell surface associated C5 0.412 9q33-q34 complement component 5 NR4A2 0.412 2q22-q23 nuclear receptor subfamily 4, group A, member 2 EYS 0.411 6q12 eyes shut homolog (Drosophila) GPX2 0.406 14q24.1 glutathione peroxidase
    [Show full text]
  • Comparative Salivary Proteomics Analysis of Children with and Without Dental Caries Using the Itraq/MRM Approach
    Wang et al. J Transl Med (2018) 16:11 https://doi.org/10.1186/s12967-018-1388-8 Journal of Translational Medicine RESEARCH Open Access Comparative salivary proteomics analysis of children with and without dental caries using the iTRAQ/MRM approach Kun Wang1,2,3, Yufei Wang1,2,3, Xiuqing Wang1,2,3, Qian Ren1,2,3, Sili Han1,2,3, Longjiang Ding1,2,3, Zhongcheng Li1,2,3, Xuedong Zhou1,2,3, Wei Li1,2,3 and Linglin Zhang1,2,3* Abstract Background: Dental caries is a major worldwide oral disease aficting a large proportion of children. As an important host factor of caries susceptibility, saliva plays a signifcant role in the occurrence and development of caries. The aim of the present study was to characterize the healthy and cariogenic salivary proteome and determine the changes in salivary protein expression of children with varying degrees of active caries, also to establish salivary proteome profles with a potential therapeutic use against dental caries. Methods: In this study, unstimulated saliva samples were collected from 30 children (age 10–12 years) with no den- tal caries (NDC, n 10), low dental caries (LDC, n 10), and high dental caries (HDC, n 10). Salivary proteins were extracted, reduced,= alkylated, trypsin digested and= labeled with isobaric tags for relative= and absolute quantitation, and then they were analyzed with GO annotation, biological pathway analysis, hierarchical clustering analysis, and protein–protein interaction analysis. Targeted verifcations were then performed using multiple reaction monitoring mass spectrometry. Results: A total of 244 diferentially expressed proteins annotated with GO annotation in biological processes, cellu- lar component and molecular function were identifed in comparisons among children with varying degrees of active caries.
    [Show full text]
  • Appendix 2. Significantly Differentially Regulated Genes in Term Compared with Second Trimester Amniotic Fluid Supernatant
    Appendix 2. Significantly Differentially Regulated Genes in Term Compared With Second Trimester Amniotic Fluid Supernatant Fold Change in term vs second trimester Amniotic Affymetrix Duplicate Fluid Probe ID probes Symbol Entrez Gene Name 1019.9 217059_at D MUC7 mucin 7, secreted 424.5 211735_x_at D SFTPC surfactant protein C 416.2 206835_at STATH statherin 363.4 214387_x_at D SFTPC surfactant protein C 295.5 205982_x_at D SFTPC surfactant protein C 288.7 1553454_at RPTN repetin solute carrier family 34 (sodium 251.3 204124_at SLC34A2 phosphate), member 2 238.9 206786_at HTN3 histatin 3 161.5 220191_at GKN1 gastrokine 1 152.7 223678_s_at D SFTPA2 surfactant protein A2 130.9 207430_s_at D MSMB microseminoprotein, beta- 99.0 214199_at SFTPD surfactant protein D major histocompatibility complex, class II, 96.5 210982_s_at D HLA-DRA DR alpha 96.5 221133_s_at D CLDN18 claudin 18 94.4 238222_at GKN2 gastrokine 2 93.7 1557961_s_at D LOC100127983 uncharacterized LOC100127983 93.1 229584_at LRRK2 leucine-rich repeat kinase 2 HOXD cluster antisense RNA 1 (non- 88.6 242042_s_at D HOXD-AS1 protein coding) 86.0 205569_at LAMP3 lysosomal-associated membrane protein 3 85.4 232698_at BPIFB2 BPI fold containing family B, member 2 84.4 205979_at SCGB2A1 secretoglobin, family 2A, member 1 84.3 230469_at RTKN2 rhotekin 2 82.2 204130_at HSD11B2 hydroxysteroid (11-beta) dehydrogenase 2 81.9 222242_s_at KLK5 kallikrein-related peptidase 5 77.0 237281_at AKAP14 A kinase (PRKA) anchor protein 14 76.7 1553602_at MUCL1 mucin-like 1 76.3 216359_at D MUC7 mucin 7,
    [Show full text]
  • MUC7 Antibody / Mucin 7 (RQ4430)
    MUC7 Antibody / Mucin 7 (RQ4430) Catalog No. Formulation Size RQ4430 0.5mg/ml if reconstituted with 0.2ml sterile DI water 100 ug Bulk quote request Availability 1-3 business days Species Reactivity Human Format Antigen affinity purified Clonality Polyclonal (rabbit origin) Isotype Rabbit IgG Purity Antigen affinity purified Buffer Lyophilized from 1X PBS with 2% Trehalose and 0.025% sodium azide UniProt Q8TAX7 Applications Western blot : 0.5-1ug/ml Limitations This MUC7 antibody is available for research use only. Western blot testing of human 1) SW620 and 2) HepG2 lysate with MUC7 antibody at 0.5ug/ml. Predicted molecular weight ~39 kDa. Description Mucin-7 is a protein that in humans is encoded by the MUC7 gene. This gene encodes a small salivary mucin, which is thought to play a role in facilitating the clearance of bacteria in the oral cavity and to aid in mastication, speech, and swallowing. The central domain of this glycoprotein contains tandem repeats, each composed of 23 amino acids. This antimicrobial protein has antibacterial and antifungal activity. The most common allele contains 6 repeats, and some alleles may be associated with susceptibility to asthma. Alternatively spliced transcript variants with different 5' UTR, but encoding the same protein, have been found for this gene. Application Notes Optimal dilution of the MUC7 antibody should be determined by the researcher. Immunogen Amino acids QNKISRFLLYMKNLLNRIIDDMVEQ from the human protein were used as the immunogen for the MUC7 antibody. Storage After reconstitution, the MUC7 antibody can be stored for up to one month at 4oC. For long-term, aliquot and store at -20oC.
    [Show full text]
  • ( 12 ) United States Patent
    US010428349B2 (12 ) United States Patent ( 10 ) Patent No. : US 10 , 428 ,349 B2 DeRosa et al . (45 ) Date of Patent: Oct . 1 , 2019 ( 54 ) MULTIMERIC CODING NUCLEIC ACID C12N 2830 / 50 ; C12N 9 / 1018 ; A61K AND USES THEREOF 38 / 1816 ; A61K 38 /45 ; A61K 38/ 44 ; ( 71 ) Applicant: Translate Bio , Inc ., Lexington , MA A61K 38 / 177 ; A61K 48 /005 (US ) See application file for complete search history . (72 ) Inventors : Frank DeRosa , Lexington , MA (US ) ; Michael Heartlein , Lexington , MA (56 ) References Cited (US ) ; Daniel Crawford , Lexington , U . S . PATENT DOCUMENTS MA (US ) ; Shrirang Karve , Lexington , 5 , 705 , 385 A 1 / 1998 Bally et al. MA (US ) 5 ,976 , 567 A 11/ 1999 Wheeler ( 73 ) Assignee : Translate Bio , Inc ., Lexington , MA 5 , 981, 501 A 11/ 1999 Wheeler et al. 6 ,489 ,464 B1 12 /2002 Agrawal et al. (US ) 6 ,534 ,484 B13 / 2003 Wheeler et al. ( * ) Notice : Subject to any disclaimer , the term of this 6 , 815 ,432 B2 11/ 2004 Wheeler et al. patent is extended or adjusted under 35 7 , 422 , 902 B1 9 /2008 Wheeler et al . 7 , 745 ,651 B2 6 / 2010 Heyes et al . U . S . C . 154 ( b ) by 0 days. 7 , 799 , 565 B2 9 / 2010 MacLachlan et al. (21 ) Appl. No. : 16 / 280, 772 7 , 803 , 397 B2 9 / 2010 Heyes et al . 7 , 901, 708 B2 3 / 2011 MacLachlan et al. ( 22 ) Filed : Feb . 20 , 2019 8 , 101 ,741 B2 1 / 2012 MacLachlan et al . 8 , 188 , 263 B2 5 /2012 MacLachlan et al . (65 ) Prior Publication Data 8 , 236 , 943 B2 8 /2012 Lee et al .
    [Show full text]
  • Mucin 5B (A-3): Sc-393952
    SANTA CRUZ BIOTECHNOLOGY, INC. Mucin 5B (A-3): sc-393952 BACKGROUND RECOMMENDED SUPPORT REAGENTS Mucins are a group of high molecular weight glycoproteins consisting of a To ensure optimal results, the following support reagents are recommended: mucin core protein and O-linked carbohydrates. The Mucin 5B gene, which 1) Western Blotting: use m-IgGκ BP-HRP: sc-516102 or m-IgGκ BP-HRP (Cruz contains a 3' cis-element, is one of the four mucin genes mapped to human Marker): sc-516102-CM (dilution range: 1:1000-1:10000), Cruz Marker™ chromosome 11p15.5. Although Mucin 5B is the prominent human gallbladder Molecular Weight Standards: sc-2035, UltraCruz® Blocking Reagent: mucin, it is also expressed and secreted in the colon. In addition, Mucin 5B sc-516214 and Western Blotting Luminol Reagent: sc-2048. 2) Immunopre- is expressed in non-inflammed middle ears and normal esophagus, and is cipitation: use Protein A/G PLUS-Agarose: sc-2003 (0.5 ml agarose/2.0 ml). upregulated by chronic inflammation and highly secreted in the diseased mid- 3) Immunofluorescence: use m-IgGκ BP-FITC: sc-516140 or m-IgGκ BP-PE: dle ear. Mucin 5B is abnormally expressed in gastric carcinomatous tissues. sc-516141 (dilution range: 1:50-1:200) with UltraCruz® Mounting Medium: Its expression in gastric cancer cells is controlled by a highly active distal sc-24941 or UltraCruz® Hard-set Mounting Medium: sc-359850. promoter, which is upregulated by protein kinase C and repressed under the influence of methylation. Mucous differentiation and expression of Mucin 5B DATA is retinoic acid- (RA) or retinol-dependent.
    [Show full text]
  • Respiratory Syncytial Virus Activates Epidermal Growth Factor Receptor To
    ARTICLE Respiratory syncytial virus activates epidermal growth factor receptor to suppress interferon regulatory factor 1-dependent interferon-lambda and antiviral defense in airway epithelium A Kalinowski1, BT Galen1, IF Ueki2, Y Sun1, A Mulenos1, A Osafo-Addo1, B Clark1, J Joerns1, W Liu1, JA Nadel2, CS Dela Cruz1,3 and JL Koff1 Respiratory syncytial virus (RSV) persists as a significant human pathogen that continues to contribute to morbidity and mortality. In children, RSV is the leading cause of lower respiratory tract infections, and in adults RSV causes pneumonia and contributes to exacerbations of chronic lung diseases. RSV induces airway epithelial inflammation by activation of the epidermal growth factor receptor (EGFR), a tyrosine kinase receptor. Recently, EGFR inhibition was shown to decrease RSV infection, but the mechanism(s) for this effect are not known. Interferon (IFN) signaling is critical for innate antiviral responses, and recent experiments have implicated IFN-k (lambda), a type III IFN, as the most significant IFN for mucosal antiviral immune responses to RSV infection. However, a role for RSV-induced EGFR activation to suppress airway epithelial antiviral immunity has not been explored. Here, we show that RSV-induced EGFR activation suppresses IFN regulatory factor (IRF) 1-induced IFN-k production and increased viral infection, and we implicate RSV F protein to mediate this effect. EGFR inhibition, during viral infection, augmented IRF1, IFN-k, and decreased RSV titers. These results suggest a mechanism for EGFR inhibition to suppress RSV by activation of endogenous epithelial antiviral defenses, which may be a potential target for novel therapeutics. INTRODUCTION is recommended for the prevention of RSV infection in a small Respiratory syncytial virus (RSV), a member of the Para- fraction of infants (e.g., born premature, or who have serious myxoviridae family, persists as a significant human pathogen.
    [Show full text]