WO 2017/079676 Al O

Total Page:16

File Type:pdf, Size:1020Kb

WO 2017/079676 Al O (12) INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT) (19) World Intellectual Property Organization International Bureau (10) International Publication Number (43) International Publication Date WO 2017/079676 Al 11 May 2017 (11.05.2017) W P O P C T (51) International Patent Classification: (81) Designated States (unless otherwise indicated, for every B82Y 15/00 (201 1.01) A O1H 3/00 (2006.01) kind of national protection available): AE, AG, AL, AM, G01N 21/76 (2006.01) A01H 5/00 (2006.01) AO, AT, AU, AZ, BA, BB, BG, BH, BN, BR, BW, BY, BZ, CA, CH, CL, CN, CO, CR, CU, CZ, DE, DJ, DK, DM, (21) International Application Number: DO, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, GT, PCT/US20 16/060704 HN, HR, HU, ID, IL, IN, IR, IS, JP, KE, KG, KN, KP, KR, (22) International Filing Date: KW, KZ, LA, LC, LK, LR, LS, LU, LY, MA, MD, ME, 4 November 2016 (04.1 1.2016) MG, MK, MN, MW, MX, MY, MZ, NA, NG, NI, NO, NZ, OM, PA, PE, PG, PH, PL, PT, QA, RO, RS, RU, RW, SA, (25) Filing Language: English SC, SD, SE, SG, SK, SL, SM, ST, SV, SY, TH, TJ, TM, (26) Publication Language: English TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, ZA, ZM, ZW. (30) Priority Data: 62/25 1,071 4 November 2015 (04. 11.2015) US (84) Designated States (unless otherwise indicated, for every kind of regional protection available): ARIPO (BW, GH, (71) Applicant: MASSACHUSETTS INSTITUTE OF GM, KE, LR, LS, MW, MZ, NA, RW, SD, SL, ST, SZ, TECHNOLOGY [US/US]; 77 Massachusetts Avenue, TZ, UG, ZM, ZW), Eurasian (AM, AZ, BY, KG, KZ, RU, Cambridge, MA 02139-4307 (US). TJ, TM), European (AL, AT, BE, BG, CH, CY, CZ, DE, DK, EE, ES, FI, FR, GB, GR, HR, HU, IE, IS, IT, LT, LU, (72) Inventors: STRANO, Michael, S.; 4 Paul Revere Road, LV, MC, MK, MT, NL, NO, PL, PT, RO, RS, SE, SI, SK, Lexington, MA 02421 (US). KWAK, Seongyeon; 10 SM, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, Magazine Street, Cambridge, MA 02139 (US). GOMEZ, GW, KM, ML, MR, NE, SN, TD, TG). Juan Pablo, Giraldo; 3868 Shelter Grove Drive, Clare- mont CA 9171 1 (GB). WONG, Min, Hao; 184 Third Published: Street, Cambridge, MA 02141 (US). — with international search report (Art. 21(3)) (74) Agents: FOX, Harold, H. et al; Steptoe & Johnson LLP, — before the expiration of the time limit for amending the 1330 Connecticut Avenue, NW, Washington, DC 20036 claims and to be republished in the event of receipt of (US). amendments (Rule 48.2(h)) (54) Title: NANOBIONIC LIGHT EMITTING PLANTS SNP-Luc Firefly Luciferase β ~PEG · ¾ . - L - e-i firs ATP + 0 + g P © A - H Oxy e ri + PP * A * CO, PVA P GA Dark reaction . - Regenerate S v s (LAMP) V Coenzyme^ Chitosan ·TPP C A CS A o FIG. A - (57) Abstract: A plant nanobionic approach can utilize a system of four nanoparticle types, including luciferase conjugated silica, o luciferin releasing poly(lactic-co-glycolic acid), coenzyme A functionalized chitosan, and semiconductor nanocrystal phosphors for wavelength modulation. NANOBIONIC LIGHT EMITTING PLANTS CLAIM OF PRIORITY This application claims the benefit of prior U.S. Provisional Application No. 62/251,071 filed on November 4, 2015, which is incorporated by reference in its entirety. FIELD OF INVENTION This invention relates to nanobionic engineering of photosynthetic organisms. FEDERAL SPONSORSHIP This invention was made with Government support under Grant No. DE-FG02- 08ER46488 awarded by the U.S. Department of Energy. The Government has certain rights in the invention BACKGROUND As independent energy sources, plants are adapted for persistence and self-repair in harsh environments with negative carbon footprints. See Giraldo, J . P. et al. Plant nanobionics approach to augment photosynthesis and biochemical sensing. Nat Mater 13, 400-408, doi:10.1038/nmat3890 (2014), which is incorporated by reference in its entirety. A eukaryotic cell is a cell that contains membrane-bound organelles, most notably a nucleus. An organelle is a specialized subunit within a cell that has a specific function, and can be separately enclosed within its own lipid bilayer. Examples of organelles include mitochondria, chloroplasts, Golgi apparatus, endoplasmic reticulum, and as previously mentioned, the nucleus. Organelles are found within the cell cytoplasm, an intracellular fluid that is separated from extracellular fluid by the plasma membrane. The plasma membrane is a double layer {i.e., a bilayer) of phospholipids that permits only certain substances to move in and out of the cell. In addition to these features, plant cells include specialized organelles that are not generally found in animal cells. For example, plant cells include a rigid cell wall. Plant cells also include chloroplasts. Chloroplasts are chlorophyll-containing double-membrane bound organelles that perform photosynthesis. Chloroplasts are believed to be descendants of prokaryotic cells {e.g., cyanobacteria) that were engulfed by a eukaryotic cell. SUMMARY OF THE INVENTION A method of delivering a composition into a plant can include submerging the plant in an chamber, wherein the chamber contains water and the composition; and applying an external pressure to the chamber, thereby generating an inward flow through stomata pores of a plant leaf and infiltrating the composition into the plant. The method can further include localizing the composition in an organelle, a cell, or a tissue of the plant. The organelle can be selected from the group consisting of a nucleus, endoplasmic reticulum, Golgi apparatus, chloroplast, chromoplast, gerontoplast, leucoplast, lysosome, peroxisome, glyoxysome, endosome and vacuole. The cell can be a stomata guard cell. The tissue can be mesophyll. The external pressure can be no less than 1.8 bar. A water contact angle on a surface of the plant can be less than 113°. The external pressure can be applied at a velocity less than 0.4 bar/s. The composition can include particles having a size of less than 20 nm, or less than 10 nm. The composition can include a nanoparticle. A light emitting compound can be immobilized on the nanoparticle. The light emitting compound can be luciferase. The nanoparticle can include a nanotube. The nanoparticle can include a carbon nanotube. The nanoparticle can include a single-walled carbon nanotube. The nanoparticle can include a polymer. The polymer can include a polynucleotide. The polynucleotide can include poly(AT). The polymer includes a polysaccharide. The olysaccharide can be selected from the group consisting of dextran, pectin, hyaluronic acid, chitosan, and hydroxyethylcellulose. The polymer can include poly(ethylene glycol). The nanoparticle can be photoluminescent. The nanoparticle can emit near-infrared radiation. The nanoparticle can be photoluminescent and the photoluminescence emission of the photoluminescent nanoparticle can be altered by a change in a stimulus within the plant. The stimulus can be a concentration of an analyte. The analyte can be a reactive oxygen species. The analyte can be nitric oxide, carbon dioxide, adenosine triphosphate, nicotinamide adenine dinucleotide phosphate, oxygen, or a hazardous gas, such as methane. The stimulus can be a pH of an organelle of the plant. The nanoparticle can be a semiconductor. The composition can include a dye. The composition can include an enzyme. The composition can include a nutrient. The composition can include a gene. A green plant can include a composition including a nanoparticle, a silane conjugated with the nanoparticle, and a dye conjugated with the nanoparticle. The silane can be (3- glycidyloxypropyl)trimethoxysilane. The nanoparticles can include silica. A green plant can include a composition including a nanoparticle, a polymer conjugated with the nanoparticle, and a light-emitting compound immobilized on the nanoparticle via the polymer. The polymer can include poly(ethylene glycol). The light- emitting compound can be luciferase. A green plant can include a composition including a nanoparticle encapsulated by a light-emitting compound. The light-emitting compound can be luciferin. A green plant can include a composition including a plurality of nanoparticles and a polysaccharide conjugated with each of the plurality of nanoparticles, wherein a chemical compound is encapsulated by the plurality of nanoparticles. The polysaccharide can be chitosan. The chemical compound can be coenzyme A . A green plant can include a composition including a nanoparticle, a polymer conjugated with the nanoparticle, and a enzyme immobilized on the nanoparticle via the polymer. The polymer can include poly(ethylene glycol). The enzyme can be luciferase. Other aspects, embodiments, and features will be apparent from the following description, the drawings, and the claims BRIEF DESCRIPTION OF THE DRAWINGS Non-limiting embodiments of the present invention will be described by way of example with reference to the accompanying figures, which are schematic and are not intended to be drawn to scale. In the figures, each identical or nearly identical component illustrated is typically represented by a single numeral. For purposes of clarity, not every component is labeled in every figure, nor is every component of each embodiment of the invention shown where illustration is not necessary to allow those of ordinary skill in the art to understand the invention. In the figures: FIGS. 1A-1H show nanoparticles for light emitting plant and light production in vitro. FIG. lA-1 shows reaction mechanism of light production by firefly luciferase using nanoparticles. FIG. 1A-2 shows simplified structure of nanoparticles to study localization of nanoparticles (SNP-AF) and to create light emitting plants (SNP-Luc, PLGA-LH and CS- CoA). FIG. IB shows schematic illustration of infusion and localization of nanoparticles in plant tissues. FIG. 1C shows micrographs of nanoparticles. Transmission electron microscopy (TEM) image of SNP-Luc (left), and scanning electron microscopy (SEM) images of CS-CoA (middle) and PLGA-LH2 (right).
Recommended publications
  • Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
    Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A).
    [Show full text]
  • Protein Import Into Isolated Pea Root Leucoplasts
    ORIGINAL RESEARCH published: 04 September 2015 doi: 10.3389/fpls.2015.00690 Protein import into isolated pea root leucoplasts Chiung-Chih Chu and Hsou-min Li* Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates Edited by: for delivering transgenic proteins into leucoplasts and for analyzing motifs important for Bo Liu, University of California, Davis, USA leucoplast import. Reviewed by: Keywords: leucoplasts, plastid, root, protein import, translocon Kentaro Inoue, University of California, Davis, USA Danny Schnell, Introduction University of Massachusetts, USA *Correspondence: Plastids are essential plant organelles responsible for functions ranging from photosynthesis and Hsou-min Li, biosynthesis of amino acids and fatty acids to assimilation of nitrogen and sulfur (Leister, 2003; Institute of Molecular Biology, Sakamoto et al., 2008).
    [Show full text]
  • The Structure and Function of Grana-Free Thylakoid Membranes in Gerontoplasts of Senescent Leaves of Vicia Faba L
    The Structure and Function of Grana-Free Thylakoid Membranes in Gerontoplasts of Senescent Leaves of Vicia faba L. H. Oskar Schmidt Zentralinstitut für Genetik und Kulturpflanzenforschung der AdW der DDR, 4325 Gatersleben Z. Naturforsch. 43c, 149-154 (1988); received March 11/September 7, 1987 Senescence, Chloroplast, Gerontoplast, Thylakoid Membrane Proteins, Electronmicroscopy, Photosynthesis In the course of yellowing (senescence) the leaves of Vicia faba L. lose 95% of their chlorophyll. Gerontoplasts develop from chloroplasts and aggregate with the pycnotic mitochon- dria and the cell nucleus in the senescent cells (organelle aggregation). The gerontoplasts contain only a few, unstacked thylakoid membranes but a large number of carotinoid-containing plasto- globuli, which after the degration of chlorophyll presumably assume the light protection of the cells. The thylakoid membranes of the gerontoplasts were isolated by means of a flotation method. Their polypeptide composition is characterized by a high proportion of light-harvesting complex. Evidence of relatively high photochemical activity shows that functional thylakoid mem- branes are present in the premortal senescence state of leaves and this suggests that there is functional compartmentation of the hydrolytic processes in this stage of the leaves' development. Introduction sequently degradation of the thylakoid membranes During the senescence (yellowing) of leaves, and of chlorophyll commences. Lipids and Caroti- genetically programmed hydrolytic processes reg- noids released in the process collect, at least to some ulated by hormones take place. These lead to the extent, in globulare osmiophilic droplets designated degradation of the cell organelles and chloroplasts as plastoglobuli according to Lichtenthaler and Sprey and finally to lysis of the cells [1,2].
    [Show full text]
  • Microscope Studies on the Morphogenesis of Plastids V
    Bot. Mag. Tokyo 84: 123-136 (March 25, 1971) Electron Microscope Studies on the Morphogenesis of Plastids V. Concerning One-dimensional Metamorphosis of the Plastids in Cryptomeriac Leaves* by Susumu TOYAMA** and Kazuo FUNAZAKIS** Received November 25, 1970 Abstract To know about the mechanism of interconversion of plastids, electron micro- scopic observations were made on Cryptomeria leaves which aquire a reddish brown color in winter and recover their green color in coming spring to summer. In normal green leaves, two different kinds of plastids have been observed, viz, the chloroplasts having well organized grana structure in mesophyll cells and those completely lacking grana lamellae in bundle sheath cells. General feature of plastids in reddish brown leaves, may be summarized as follows : (1) The presence of red granules of rhodoxanthin (a carotenoid), and a well developed lamellar system involving grana- and intergrana-lamellae. (2) The plastoglobules, osmio- philic granules in plastids, increase in number and size as compared with the chloroplasts in normal green leaves. (3) Shrinkage which is one of the character- istic features of senescent plastids is not observed. (4) RNA content in plastid stroma is almost unchanged throughout an entire leaf stage ranging from normal green to subsequent regreening. Basic structure of the plastids in regreened leaves is quite similar to that in winter leaves, except for some increase of thylakoid membrane and decrease of osmiophilic granules. Accordingly, it is presumed that the plastids appearing in reddish brown leaves are not mere chro- moplasts but those having an incipient nature of the chloroplast, since real chromoplasts can not be converted into the chloroplasts.
    [Show full text]
  • Malate- and Pyruvate-Dependent Fattyacid Synthesis In
    Plant Physiol. (1992) 98, 1233-1238 Received for publication July 9, 1991 0032-0889/92/98/1 233/06/$01 .00/0 Accepted October 10, 1991 Malate- and Pyruvate-Dependent Fatty Acid Synthesis in Leucoplasts from Developing Castor Endosperm' Ronald G. Smith*2, David A. Gauthier, David T. Dennis3, and David H. Turpin Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 ABSTRACT or leucoplast glycolytic enzymes are more than adequate to endosperm Leucoplasts were isolated from the endosperm of developing account for the triacylglycerol synthesis of castor castor (Ricinis communis) endosperm using a discontinuous Per- (17). However, glycolytic intermediates have not been well coil gradient. The rate of fatty acid synthesis was highest when characterized as carbon sources for fatty acid synthesis (18). malate was the precursor, at 155 nanomoles acetyl-CoA equiva- In this study, we present data regarding the kinetics and lents per milligram protein per hour. Pyruvate and acetate also exogenous cofactor requirements for fatty acid synthesis in were precursors of fatty acid synthesis, but the rates were ap- isolated leucoplast preparations using pyruvate, malate, and proximately 4.5 and 120 times less, respectively, than when acetate as carbon sources. We show that malate and pyruvate malate was the precursor. When acetate was supplied to leuco- support much higher rates of fatty acid synthesis than does plasts, exogenous ATP, NADH, and NADPH were required to acetate and the metabolism of both these substrates alleviates obtain maximal rates of fatty acid synthesis. In contrast, the any requirement for externally added reductant. Based on the incorporation of malate and pyruvate into fatty acids did not measurement of leucoplast-associated NADP+-malic enzyme require a supply of exogenous reductant.
    [Show full text]
  • The Structure and Function of Plastids
    The Structure and Function of Plastids Edited by Robert R. Wise University of Wisconsin, Oshkosh WI, USA and J. Kenneth Hoober Arizona State University, Tempe AZ, USA Contents From the Series Editor v Contents xi Preface xix A Dedication to Pioneers of Research on Chloroplast Structure xxi Color Plates xxxiii Section I Plastid Origin and Development 1 The Diversity of Plastid Form and Function 3–25 Robert R. Wise Summary 3 I. Introduction 4 II. The Plastid Family 5 III. Chloroplasts and their Specializations 13 IV. Concluding Remarks 20 Acknowledgements 21 References 21 2 Chloroplast Development: Whence and Whither 27–51 J. Kenneth Hoober Summary 27 I. Introduction 28 II. Brief Review of Plastid Evolution 28 III. Development of the Chloroplast 32 IV. Overview of Photosynthesis 43 References 46 3 Protein Import Into Chloroplasts: Who, When, and How? 53–74 Ute C. Vothknecht and J¨urgen Soll Summary 53 I. Introduction 54 II. On the Road to the Chloroplast 56 III. Protein Translocation via Toc and Tic 58 IV. Variations on Toc and Tic Translocation 63 V. Protein Translocation and Chloroplast Biogenesis 64 VI. The Evolutionary Origin of Toc and Tic 66 VII. Intraplastidal Transport 66 VIII. Protein Translocation into Complex Plastids 69 References 70 xi 4 Origin and Evolution of Plastids: Genomic View on the Unification and Diversity of Plastids 75–102 Naoki Sato Summary 76 I. Introduction: Unification and Diversity 76 II. Endosymbiotic Origin of Plastids: The Major Unifying Principle 78 III. Origin and Evolution of Plastid Diversity 85 IV. Conclusion: Opposing Principles in the Evolution of Plastids 97 Acknowledgements 98 References 98 5 The Mechanism of Plastid Division: The Structure and Origin of The Plastid Division Apparatus 103–121 Shin-ya Miyagishima and Tsuneyoshi Kuroiwa Summary 104 I.
    [Show full text]
  • Molecular Plant Physiology
    2019 Molecular plant physiology LECTURE NOTES UNIVERSITY OF SZEGED www.u-szeged.hu EFOP-3.4.3-16-2016-00014 This teaching material has been made at the University of Szeged, and supported by the European Union. Project identity number: EFOP-3.4.3-16-2016-00014 MOLECULAR PLANT PHYSIOLOGY lecture notes Edited by: Prof. Dr. Attila Fehér Written by: Prof. Dr. Attila Fehér Dr. Jolán Csiszár Dr. Ágnes Szepesi Dr. Ágnes Gallé Dr. Attila Ördög © 2019 Prof. Dr. Attila Fehér, Dr. Jolán Csiszár, Dr. Ágnes Szepesi, Dr. Ágnes Gallé, Dr. Attila Ördög The text can be freely used for research and education purposes but its distribution in any form requires written approval by the authors. University of Szeged 13. Dugonics sq., 6720 Szeged www.u-szeged.hu www.szechenyi2020. Content Preface ..................................................................................................................................................... 5 Expected learning outputs ...................................................................................................................... 6 Chapter 1. The organization and expression of the plant genome ......................................................... 7 1.1. Organization of plant genomes .................................................................................................... 8 1.2.2. Structure of the chromatin .................................................................................................... 9 1.2. The plant genes .........................................................................................................................
    [Show full text]
  • Dynamic Metabolic Solutions to the Sessile Life Style of Plants Natural Product Reports
    Volume 35 Number 11 November 2018 Pages 1113–1230 Natural Product Reports rsc.li/npr Themed issue: Understanding Biosynthetic Protein-Protein Interactions – Part 2 Guest Editors: David Ackerley, Gregory Challis and Max Cryle ISSN 0265-0568 REVIEW ARTICLE Tomas Laursen et al. Dynamic metabolic solutions to the sessile life style of plants Natural Product Reports REVIEW View Article Online View Journal | View Issue Dynamic metabolic solutions to the sessile life style of plants Cite this: Nat. Prod. Rep.,2018,35, 1140 Camilla Knudsen, abc Nethaji Janeshawari Gallage, abc Cecilie Cetti Hansen, abc Birger Lindberg Møller abcd and Tomas Laursen *abc Covering: up to 2018 Plants are sessile organisms. To compensate for not being able to escape when challenged by unfavorable growth conditions, pests or herbivores, plants have perfected their metabolic plasticity by having developed the capacity for on demand synthesis of a plethora of phytochemicals to specifically respond to the challenges arising during plant ontogeny. Key steps in the biosynthesis of phytochemicals are catalyzed by membrane-bound cytochrome P450 enzymes which in plants constitute a superfamily. In planta, the P450s may be organized in dynamic fi Creative Commons Attribution-NonCommercial 3.0 Unported Licence. enzyme clusters (metabolons) and the genes encoding the P450s and other enzymes in a speci cpathway may be clustered. Metabolon formation facilitates transfer of substrates between sequential enzymes and therefore enables the plant to channel the flux of general metabolites towards biosynthesis of specific phytochemicals. In the plant cell, compartmentalization of the operation of specific biosynthetic pathways in specialized plastids serves to avoid undesired metabolic cross-talk and offersdistinctstoragesitesformolar concentrations of specific phytochemicals.
    [Show full text]
  • Identifying Regions of Conserved Synteny Between
    IDENTIFYING REGIONS OF CONSERVED SYNTENY BETWEEN PEA (PISUM SPP.), LENTIL (LENS SPP.), AND BEAN (PHASEOLUS SPP.) by Matthew Durwin Moffet A thesis submitted in partial fulfillment of the requirements for the degree of Master of Science in Plant Sciences MONTANA STATE UNIVERSITY Bozeman, Montana August 2006 © COPYRIGHT by Matthew Durwin Moffet 2006 All Rights Reserved ii APPROVAL of a thesis submitted by Matthew Durwin Moffet This thesis has been read by each member of the thesis committee and has been found to be satisfactory regarding content, English usage, format, citations, bibliographic style, and consistency, and is ready for submission to the Division of Graduate Education. Dr. Norman Weeden Approved for the Department of Plant Sciences and Plant Pathology Dr. John Sherwood Approved for the Division of Graduate Education Dr. Carl A. Fox iii STATEMENT OF PERMISSION TO USE In presenting this thesis in partial fulfillment of the requirements for a master’s degree at Montana State University, I agree that the Library shall make it available to borrowers under rules of the Library. If I have indicated my intention to copyright this thesis by including a copyright notice page, copying is allowable only for scholarly purposes, consistent with “fair use” as prescribed in the U.S. Copyright Law. Requests for permission for extended quotation from or reproduction of this thesis in whole or in parts may be granted only by the copyright holder. Matthew Durwin Moffet August 2006 iv ACKNOWLEDGEMENTS I would like to acknowledge and thank the following individuals: my past and present academic advisors Dr. Dan Bergey, Dr.
    [Show full text]
  • Revised ST.26 – 26/Oct/2016 ANNEX I
    Revised ST.26 – 26/Oct/2016 ANNEX I ST.26 - ANNEX I CONTROLLED VOCABULARY Final Draft TABLE OF CONTENTS SECTION 1: LIST OF NUCLEOTIDES ................................................................................................................................. 2 SECTION 2: LIST OF MODIFIED NUCLEOTIDES .............................................................................................................. 2 SECTION 3: LIST OF AMINO ACIDS ................................................................................................................................... 4 SECTION 4: LIST OF MODIFIED AND UNUSUAL AMINO ACIDS ..................................................................................... 5 SECTION 5: FEATURE KEYS FOR NUCLEIC SEQUENCES ............................................................................................ 6 SECTION 6: QUALIFIERS FOR NUCLEIC SEQUENCES ................................................................................................ 21 SECTION 7: FEATURE KEYS FOR AMINO ACID SEQUENCES ..................................................................................... 40 SECTION 8: QUALIFIERS FOR AMINO ACID SEQUENCES ........................................................................................... 47 SECTION 9: GENETIC CODE TABLES ............................................................................................................................. 48 Revised ST.26 – 26/Oct/2016 ANNEX I SECTION 1: LIST OF NUCLEOTIDES The nucleotide base codes to be used in sequence
    [Show full text]
  • Stromule Biogenesis in Maize Chloroplasts 192 6.1 Introduction 192
    Plastid Tubules in Higher Plants: An Analysis of Form and Function Mark T. Waters, BA (Oxon) A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, September 2004 ABSTRACT Besides photosynthesis, plastids are responsible for starch storage, fatty acid biosynthe- sis and nitrate metabolism. Our understanding of plastids can be improved with obser- vation by microscopy, but this has been hampered by the invisibility of many plastid types. By targeting green fluorescent protein (GFP) to the plastid in transgenic plants, the visualisation of plastids has become routinely possible. Using GFP, motile, tubular protrusions can be observed to emanate from the plastid envelope into the surrounding cytoplasm. These structures, called stromules, vary considerably in frequency and length between different plastid types, but their function is poorly understood. During tomato fruit ripening, chloroplasts in the pericarp cells differentiate into chro- moplasts. As chlorophyll degrades and carotenoids accumulate, plastid and stromule morphology change dramatically. Stromules become significantly more abundant upon chromoplast differentiation, but only in one cell type where plastids are large and sparsely distributed within the cell. Ectopic chloroplast components inhibit stromule formation, whereas preventing chloroplast development leads to increased numbers of stromules. Together, these findings imply that stromule function is closely related to the differentiation status, and thus role, of the plastid in question. In tobacco seedlings, stromules in hypocotyl epidermal cells become longer as plastids become more widely distributed within the cell, implying a plastid density-dependent regulation of stromules. Co-expression of fluorescent proteins targeted to plastids, mi- tochondria and peroxisomes revealed a close spatio-temporal relationship between stromules and other organelles.
    [Show full text]
  • Plastoglobuli
    PP68CH10-Kessler ARI 6 April 2017 9:9 Plastoglobuli: Plastid Microcompartments with ANNUAL REVIEWS Further Click here to view this article's online features: Integrated Functions in • Download figures as PPT slides • Navigate linked references • Download citations • Explore related articles Metabolism, Plastid • Search keywords Developmental Transitions, and Environmental Adaptation Klaas J. van Wijk1 and Felix Kessler2 1Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853; email: [email protected] 2Laboratory of Plant Physiology, University of Neuchatel,ˆ 2000 Neuchatel,ˆ Switzerland; email: [email protected] Annu. Rev. Plant Biol. 2017. 68:253–89 Keywords First published online as a Review in Advance on lipoprotein particle, membrane lipid monolayer, prenyl lipids, tocopherol, January 25, 2017 quinones, ABC1 kinases, chromoplast, elaioplast, leucoplast, gerontoplast, The Annual Review of Plant Biology is online at chloroplast, thylakoid plant.annualreviews.org https://doi.org/10.1146/annurev-arplant-043015- Abstract 111737 Plastoglobuli (PGs) are plastid lipoprotein particles surrounded by a mem- Copyright c 2017 by Annual Reviews. brane lipid monolayer. PGs contain small specialized proteomes and All rights reserved metabolomes. They are present in different plastid types (e.g., chloroplasts, chromoplasts, and elaioplasts) and are dynamic in size and shape in re- sponse to abiotic stress or developmental transitions. PGs in chromoplasts are highly enriched in carotenoid esters and enzymes involved in carotenoid metabolism. PGs in chloroplasts are associated with thylakoids and contain ∼30 core proteins (including six ABC1 kinases) as well as additional pro- Annu. Rev. Plant Biol. 2017.68:253-289. Downloaded from www.annualreviews.org teins recruited under specific conditions.
    [Show full text]