Microscope Studies on the Morphogenesis of Plastids V

Total Page:16

File Type:pdf, Size:1020Kb

Microscope Studies on the Morphogenesis of Plastids V Bot. Mag. Tokyo 84: 123-136 (March 25, 1971) Electron Microscope Studies on the Morphogenesis of Plastids V. Concerning One-dimensional Metamorphosis of the Plastids in Cryptomeriac Leaves* by Susumu TOYAMA** and Kazuo FUNAZAKIS** Received November 25, 1970 Abstract To know about the mechanism of interconversion of plastids, electron micro- scopic observations were made on Cryptomeria leaves which aquire a reddish brown color in winter and recover their green color in coming spring to summer. In normal green leaves, two different kinds of plastids have been observed, viz, the chloroplasts having well organized grana structure in mesophyll cells and those completely lacking grana lamellae in bundle sheath cells. General feature of plastids in reddish brown leaves, may be summarized as follows : (1) The presence of red granules of rhodoxanthin (a carotenoid), and a well developed lamellar system involving grana- and intergrana-lamellae. (2) The plastoglobules, osmio- philic granules in plastids, increase in number and size as compared with the chloroplasts in normal green leaves. (3) Shrinkage which is one of the character- istic features of senescent plastids is not observed. (4) RNA content in plastid stroma is almost unchanged throughout an entire leaf stage ranging from normal green to subsequent regreening. Basic structure of the plastids in regreened leaves is quite similar to that in winter leaves, except for some increase of thylakoid membrane and decrease of osmiophilic granules. Accordingly, it is presumed that the plastids appearing in reddish brown leaves are not mere chro- moplasts but those having an incipient nature of the chloroplast, since real chromoplasts can not be converted into the chloroplasts. It seems that monotrope Plastiden-Metamorphose " is plausible in this case. Until now, two controversial opinions have been presented as regards the metamorphosis of the plastids. According to Schimperl', three kinds of plastids, chloroplast, chromoplast and leucoplast, are capable of interconversion from one to another. However, Frey-Wyssling et al.2' are of the opinion that the metamorphosis of plastids proceeds only in a linear fashion. Recently, Toyama and Ueda3' have shown that the reversion of chromoplast into active chloroplast does not occur in autumn leaves of Ginkgo biloba. On the other hand, Thomson et al4' have demonst- rated the reversion of chromoplast into chloroplast in pericarp cells of Valencia orange (Citrus sinensis L.), whose color is orange in winter and green in the next spring to summer. Similar color change may also be observed in Cryptomeria * This work was presented at the 33 rd Annual Meeting of the Botanical Society of Japan held at Kumamoto on Nov. 1-3, 1968. ** Department of Botany , Faculty of Science, Tokyo Kyoiku University, Otsuka, Tokyo, Japan (Present address: Department of Botany, University of California, Davis, California 95616) *** Biological Laboratory , Jissen Joshi-Gakuen, Shibuya, Tokyo, Japan. 124 TOYAMA, S. and FUNAZAKI, K. Vol. 84 leaves, which become reddish brown in winter and undergo regreening in spring. Two mechanisms may be conceivable in the analysis of regreening phenomena in these plants. The one is a reversion of the chromoplasts into the chloroplasts, and the other is the de novo formation of chloroplasts from the proplastids replacing Fig. 1 Scheme of reversible meta- the collapsing chromoplasts. Using Crypto- morphosis of the plastids proposed by meria leaves, the present experiment was Schimper (1885). carried out in order to clarify the process, of plastid metamorphosis in detail and to determine the alternative of both mechanisms mentioned above. Fig. 2. Scheme of monotrope Plastiden-Metamorphose " proposed by Frey-Wyssling et at. (1955). Materials and Methods Leaves of Cryptomeria japonica were collected at two different locations,, at Yunoyama in Mie Prefecture on March, 1965 and at Higashimatsuyama in Saitama Prefecture on February, 1968. Some of the fresh leaf samples were used immediately for electron microscopic observation, and the other leaves were cultured in tap water under continuous illumination (fluorescent light, 25001ux) at ca. 20°. In order to examine the membrane system within the plastids, small leaf pieces were fixedd with 1 solution of KMnO4 for 2 hours at 4° . For the observation of granules and fine structure in the stroma, samples were prefixed with 3.5°Q solution of glutaral- dehyde for 1 hour and post-fixed with 2°o aqueous 0504 for 2 hours at 4° . Thenn the fixed materials were dehydrated with acetone series, embedded in epoxy-resin - and polymerized at 50-60 ° . Sections were cut with an ultramicrotome (Porter-Blum, . Type MT-P, and examined with an electron microscope (Type JEM-7). Sections were stained withh a saturated solution of uranyl acetate for 2 hours and then with Millonig's solutions' for 30 minutes. Cytochemical examination on the senescence of plastids was made by the use of light microscope. For this purpose, several sections of fresh materials were stained with azure-B for the discrimination of RNA, and with fast green at pH 2 for the evaluation of total protein (Shaw et al.)6'. The sections to be stained with azure-B were treated in advance with DNA-ase to remove DNA. The staining with fast green was carreid out after removal of both DNA and RNA by pretreatment with 5% trichloroacetic acid. March, 1971 Electron Microscope Studies on the Morphogenesis of Plastids 125 Results 1. Plastids in normal green leaves In green leaves of Cryptomeria japonica, two different kinds of chloroplast were observed. The chloroplasts in mesophyll cells such as seen in photo 1, are typical ones with respect to their size and internal structure. These chloroplasts possess not only well-developed grana stacks connected with intergrana-lamellae but also plastoglobules and other fine granules. Another sort of chloroplast is shown in photo 2. The most remarkable feature in this chloroplast is a lack of grana structure. The internal lamellae are composed in general of a series of uninter- rupted membrane running in parallel along the long axis of the chloroplasts. In common to both kinds of chloroplast, starch grains, plastoglobules and ribosome like granules are contained, irrespective of the conspicuous difference in lamellar system. All leaves of Cryptomeria do not always attain a reddish brown color in winter. The leaves in the shade remain to be green as before. In these leaves, all plastids possess well-developed membrane structure together with a small number of plastoglobules (photo 3). 2. Plastids in reddish brown leaves Typical plastids appearing in the course of leaf color change, from green to reddish brown, are shown in photo 4. These plastids are characterized by gradual increase in number and size of plastoglobules and formation of small vacuoles in a periphery of stroma region. All plastids in reddish brown leaves possess more or less complicated lamellar system involving typical grana- and intergrana-lamellae, whose size is almost same as that in the normal green leaves (Table 1). Upon fixation with a solution of KMnO4, plastids usually retain their membrane system in an intact state (photo 5), but in some cases they are devoid of fine structure in the stroma. The most distinctive feature in the plastids of reddish brown leaves consists in an existence of numerous plastoglobules in the stroma. As a rule, 40- 80 globules of 0.1-0.5, t in size may be seen in one section of a plastid (photo 6 and 15). These globules are arranged among thylakoids often in a row along a longi- tudial axis of each plastid (photo 3, 15 and 18). Upon KMnO4 fixation spherical globules are disrupted into irregular, star-shaped bodies (photo 5, 7 and 16). In reddish brown leaves obtained from Yunoyama, most of the membrane systems in plastids have been disrupted into many discrete vesicles of ca. 0.05 i in Table 1. Some charcteristic features of the plastids in Cryptomeria leaves from summer to spring. 126 TOYAMA, S. and FUNAZAKI,K. Vol. 84 size. These minute bodies may be regarded as a constituent of the thylakoid (photo 11). The vesicles are enveloped with double membrane and seem to be for- med from thylakoids one after another by successive constriction of its terminal part. Accordingly, it may be that the collapse of thylakoid membrane is a coun- terpart of the process of lamellar formation (Toyama et al .)3. Osmiophilic globules are also observed in the matrix of cytoplasm. They are larger in size (1-2~€ in diameter), smaller in number than the plastoglobules, and found often in contact with the plastids (photo 13). Reddish brown leaves, which had been stored in an ice-box for 4 months after collection, were gradually brought into regreening upon culture in the light at 20 ° . Plastids in such leaves contain a large number of plastoglobules together with a few membrane system (photo 15). Abnormal lamellar systems were also observed in the plastids, which seems to be derived from the plastids in bundle sheath cells (photo 14). In some plastids, many vacuoles have been formed seemingly due to the swelling of the thylakoid membrane (photo 16). By the examinations under the light microscope, red granules of carotenoids (mainly rhodoxanthin)7' were observed, 6-12 pieces in a single plastid of reddish brown leaves (Table 1). However, electron micrographs have shown that they were lost during the course of dehydration with acetone. The presence of grana is dif- ficult to confirm under the light microscope because of the concurrence of carotenoid granules within the plastids, while it is discernible with ease under the electron microscope. Throughout the whole process from normal green to regreening of leaves, the changes in size and number of plastoglobules are shown in Fig. 3. 3. Plastids in the leaves undergone regreening Reddish brown leaves of Cryptomeria recover their capacity of greening during the culture for 4-5 days under 2500 lux at 20° .
Recommended publications
  • Daylily Genetics Part 3 Variegated Or Broken Flower Colors: Jumping Genes?
    ~1~ Summer 11 DJ Science ‘Pink Stripes’ (Derrow, 2006) ‘Peppermint Ice’ (Lovell, 2004) — Photo courtesy of the hybridizer The unabridged version — Kyle Billadeau photo Daylily Genetics Part 3 Variegated or broken flower colors: Jumping genes? clonal and non-clonal patterns may be genet- some compound which affects pigmentation ic involving a change in DNA sequence or diffuses between cells By Maurice A. Dow, Ph.D. non-genetic. However, non-clonal patterns Region 4, Ontario, Canada are somewhat more likely to be environmen- Patterns help to identify possible causes Any characteristic can be variegated but tal or non-genetic. By looking at the patterns of pigmentation usually we think of variegated leaves or flow- Clonal sectors (see glossary) can provide in individual cells we can get general clues ers and of differences in color. However, var- some information about when during devel- about the causes of the variegation. For iegation can be present in both plants and opment the event occurred. Large sectors example a pattern on the upper epidermis of animals and in any tissue and affect any char- indicate the event occurred early during a variegated flower or leaf which is repeated acteristic. Variegation does not need to be development of the tissue or organ. Small and very similar to a pattern on its lower epi- obvious to the unaided human eye. It can be sectors indicate that the event occurred late dermis is unlikely to be genetic2. defined as any visible differences in the during development1. Few sectors indicate appearance or phenotype of the cells in a tis- that the event is infrequent or rare.
    [Show full text]
  • Synthetic Conversion of Leaf Chloroplasts Into Carotenoid-Rich Plastids Reveals Mechanistic Basis of Natural Chromoplast Development
    Synthetic conversion of leaf chloroplasts into carotenoid-rich plastids reveals mechanistic basis of natural chromoplast development Briardo Llorentea,b,c,1, Salvador Torres-Montillaa, Luca Morellia, Igor Florez-Sarasaa, José Tomás Matusa,d, Miguel Ezquerroa, Lucio D’Andreaa,e, Fakhreddine Houhouf, Eszter Majerf, Belén Picóg, Jaime Cebollag, Adrian Troncosoh, Alisdair R. Ferniee, José-Antonio Daròsf, and Manuel Rodriguez-Concepciona,f,1 aCentre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Campus UAB Bellaterra, 08193 Barcelona, Spain; bARC Center of Excellence in Synthetic Biology, Department of Molecular Sciences, Macquarie University, Sydney NSW 2109, Australia; cCSIRO Synthetic Biology Future Science Platform, Sydney NSW 2109, Australia; dInstitute for Integrative Systems Biology (I2SysBio), Universitat de Valencia-CSIC, 46908 Paterna, Valencia, Spain; eMax-Planck-Institut für Molekulare Pflanzenphysiologie, 14476 Potsdam-Golm, Germany; fInstituto de Biología Molecular y Celular de Plantas, CSIC-Universitat Politècnica de València, 46022 Valencia, Spain; gInstituto de Conservación y Mejora de la Agrodiversidad, Universitat Politècnica de València, 46022 Valencia, Spain; and hSorbonne Universités, Université de Technologie de Compiègne, Génie Enzymatique et Cellulaire, UMR-CNRS 7025, CS 60319, 60203 Compiègne Cedex, France Edited by Krishna K. Niyogi, University of California, Berkeley, CA, and approved July 29, 2020 (received for review March 9, 2020) Plastids, the defining organelles of plant cells, undergo physiological chromoplasts but into a completely different type of plastids and morphological changes to fulfill distinct biological functions. In named gerontoplasts (1, 2). particular, the differentiation of chloroplasts into chromoplasts The most prominent changes during chloroplast-to-chromo- results in an enhanced storage capacity for carotenoids with indus- plast differentiation are the reorganization of the internal plastid trial and nutritional value such as beta-carotene (provitamin A).
    [Show full text]
  • Protein Import Into Isolated Pea Root Leucoplasts
    ORIGINAL RESEARCH published: 04 September 2015 doi: 10.3389/fpls.2015.00690 Protein import into isolated pea root leucoplasts Chiung-Chih Chu and Hsou-min Li* Institute of Molecular Biology, Academia Sinica, Taipei, Taiwan Leucoplasts are important organelles for the synthesis and storage of starch, lipids and proteins. However, molecular mechanism of protein import into leucoplasts and how it differs from that of import into chloroplasts remain unknown. We used pea seedlings for both chloroplast and leucoplast isolations to compare within the same species. We further optimized the isolation and import conditions to improve import efficiency and to permit a quantitative comparison between the two plastid types. The authenticity of the import was verified using a mitochondrial precursor protein. Our results show that, when normalized to Toc75, most translocon proteins are less abundant in leucoplasts than in chloroplasts. A precursor shown to prefer the receptor Toc132 indeed had relatively more similar import efficiencies between chloroplasts and leucoplasts compared to precursors that prefer Toc159. Furthermore we found two precursors that exhibited very high import efficiency into leucoplasts. Their transit peptides may be candidates Edited by: for delivering transgenic proteins into leucoplasts and for analyzing motifs important for Bo Liu, University of California, Davis, USA leucoplast import. Reviewed by: Keywords: leucoplasts, plastid, root, protein import, translocon Kentaro Inoue, University of California, Davis, USA Danny Schnell, Introduction University of Massachusetts, USA *Correspondence: Plastids are essential plant organelles responsible for functions ranging from photosynthesis and Hsou-min Li, biosynthesis of amino acids and fatty acids to assimilation of nitrogen and sulfur (Leister, 2003; Institute of Molecular Biology, Sakamoto et al., 2008).
    [Show full text]
  • Identification and Isolation of Genetic Elements Conferring Increased
    The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Plant Physiology IDENTIFICATION AND ISOLATION OF GENETIC ELEMENTS CONFERRING INCREASED TOMATO FRUIT LYCOPENE CONTENT A Dissertation in Plant Physiology by Matthew Kinkade © 2010 Matthew Kinkade Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The dissertation of Matthew Kinkade was reviewed and approved* by the following: Majid R. Foolad Professor of Plant Genetics Dissertation Advisor and Chair of Committee David M. Braun Associate Professor of Biological Sciences University of Missouri-Columbia John E. Carlson Professor of Molecular Genetics David R. Huff Associate Professor of Turfgrass Breeding and Genetics Yinong Yang Associate Professor of Plant Pathology Teh-hui Kao Professor of Biochemistry and Molecular Biology Program Chair, Intercollege Graduate Degree Program in Plant Biology *Signatures on file at the Graduate School. ii ABSTRACT The cultivated tomato (Solanum lycopersicum L.) is a vegetable crop produced and consumed around the world, and is a model system for the study of carotenoid accumulation. The dominant carotenoid in tomato is trans-lycopene, a powerful antioxidant that has been postulated to confer health benefits to humans and is responsible for the red appearance of ripe tomato fruits. Increasing lycopene content in tomato fruits represents an opportunity to increase market value for tomato crops, elevate the nutritional content of tomato for consumers, and to increase scientific understanding of carotenogenesis in plants. However, very few tomato alleles that cause increased lycopene accumulation in ripe fruits and are immediately useful for breeding purposes have been described in the literature. Given that little genetic variation exists within the cultivated tomato germplasm, wild Solanum species provide a unique opportunity to transfer new alleles into the cultigen.
    [Show full text]
  • Malate- and Pyruvate-Dependent Fattyacid Synthesis In
    Plant Physiol. (1992) 98, 1233-1238 Received for publication July 9, 1991 0032-0889/92/98/1 233/06/$01 .00/0 Accepted October 10, 1991 Malate- and Pyruvate-Dependent Fatty Acid Synthesis in Leucoplasts from Developing Castor Endosperm' Ronald G. Smith*2, David A. Gauthier, David T. Dennis3, and David H. Turpin Department of Botany, University of British Columbia, Vancouver, British Columbia, Canada V6T 1Z4 ABSTRACT or leucoplast glycolytic enzymes are more than adequate to endosperm Leucoplasts were isolated from the endosperm of developing account for the triacylglycerol synthesis of castor castor (Ricinis communis) endosperm using a discontinuous Per- (17). However, glycolytic intermediates have not been well coil gradient. The rate of fatty acid synthesis was highest when characterized as carbon sources for fatty acid synthesis (18). malate was the precursor, at 155 nanomoles acetyl-CoA equiva- In this study, we present data regarding the kinetics and lents per milligram protein per hour. Pyruvate and acetate also exogenous cofactor requirements for fatty acid synthesis in were precursors of fatty acid synthesis, but the rates were ap- isolated leucoplast preparations using pyruvate, malate, and proximately 4.5 and 120 times less, respectively, than when acetate as carbon sources. We show that malate and pyruvate malate was the precursor. When acetate was supplied to leuco- support much higher rates of fatty acid synthesis than does plasts, exogenous ATP, NADH, and NADPH were required to acetate and the metabolism of both these substrates alleviates obtain maximal rates of fatty acid synthesis. In contrast, the any requirement for externally added reductant. Based on the incorporation of malate and pyruvate into fatty acids did not measurement of leucoplast-associated NADP+-malic enzyme require a supply of exogenous reductant.
    [Show full text]
  • Revised ST.26 – 26/Oct/2016 ANNEX I
    Revised ST.26 – 26/Oct/2016 ANNEX I ST.26 - ANNEX I CONTROLLED VOCABULARY Final Draft TABLE OF CONTENTS SECTION 1: LIST OF NUCLEOTIDES ................................................................................................................................. 2 SECTION 2: LIST OF MODIFIED NUCLEOTIDES .............................................................................................................. 2 SECTION 3: LIST OF AMINO ACIDS ................................................................................................................................... 4 SECTION 4: LIST OF MODIFIED AND UNUSUAL AMINO ACIDS ..................................................................................... 5 SECTION 5: FEATURE KEYS FOR NUCLEIC SEQUENCES ............................................................................................ 6 SECTION 6: QUALIFIERS FOR NUCLEIC SEQUENCES ................................................................................................ 21 SECTION 7: FEATURE KEYS FOR AMINO ACID SEQUENCES ..................................................................................... 40 SECTION 8: QUALIFIERS FOR AMINO ACID SEQUENCES ........................................................................................... 47 SECTION 9: GENETIC CODE TABLES ............................................................................................................................. 48 Revised ST.26 – 26/Oct/2016 ANNEX I SECTION 1: LIST OF NUCLEOTIDES The nucleotide base codes to be used in sequence
    [Show full text]
  • Stromule Biogenesis in Maize Chloroplasts 192 6.1 Introduction 192
    Plastid Tubules in Higher Plants: An Analysis of Form and Function Mark T. Waters, BA (Oxon) A thesis submitted to the University of Nottingham for the degree of Doctor of Philosophy, September 2004 ABSTRACT Besides photosynthesis, plastids are responsible for starch storage, fatty acid biosynthe- sis and nitrate metabolism. Our understanding of plastids can be improved with obser- vation by microscopy, but this has been hampered by the invisibility of many plastid types. By targeting green fluorescent protein (GFP) to the plastid in transgenic plants, the visualisation of plastids has become routinely possible. Using GFP, motile, tubular protrusions can be observed to emanate from the plastid envelope into the surrounding cytoplasm. These structures, called stromules, vary considerably in frequency and length between different plastid types, but their function is poorly understood. During tomato fruit ripening, chloroplasts in the pericarp cells differentiate into chro- moplasts. As chlorophyll degrades and carotenoids accumulate, plastid and stromule morphology change dramatically. Stromules become significantly more abundant upon chromoplast differentiation, but only in one cell type where plastids are large and sparsely distributed within the cell. Ectopic chloroplast components inhibit stromule formation, whereas preventing chloroplast development leads to increased numbers of stromules. Together, these findings imply that stromule function is closely related to the differentiation status, and thus role, of the plastid in question. In tobacco seedlings, stromules in hypocotyl epidermal cells become longer as plastids become more widely distributed within the cell, implying a plastid density-dependent regulation of stromules. Co-expression of fluorescent proteins targeted to plastids, mi- tochondria and peroxisomes revealed a close spatio-temporal relationship between stromules and other organelles.
    [Show full text]
  • Chromoplasts - the Last Stages in Plastid Development
    Int..I. Dev.l!iol. 35: 251-258 (1991) 251 Chromoplasts - the last stages in plastid development NIKOLA LJUBESIC', MERCEDES WRISCHER and ZVONIMIR DEVIDE Ruder Boskovic Institute, Zagreb, Republic of Croatia, Yugoslavia ABSTRACT The results of investigations on the development of chromoplast fine structures in various plants are reviewed. Emphasis is placed on the specific pigment-containing structures and their development during chromoplastformation. There is a large variety of these structures, although four fundamental types can be discerned. These are plastoglobules, membranes, crystals, and tubules. During chromoplast development, various types of structure follow one after the other, or they may even be present simultaneously in the same chrornoplast. Depending on the structures present in chromoplasts their pigment content also varies. It is still not clear whetherthe type of structure defines the pigment content of the chromoplast or vice-versa. Various possible ways of chromoplast devel- opment and dedifferentiation are discussed. KEY WORDS: chrolllnPlasts, rfpvelop1IIl'1II, I)igmer/f~("(/}/I(iillillg .\/rutlures Introduction 1980). Gerontoplasts appear only in senescent cells. They always develop from fully grown, i.e. old, chloroplasts and are unable to Plastids are specific organelles of plant cells. In higher plants multiply. In contrast, chromoplasts present in flower, fruit and root they exist in various forms and have manifold functions. Plastids cells have an active metabolism. They develop mostly from young develop from undifferentiated proplastids present in meristematic chloroplasts and seldom from proplastids, e.g. in some flower petals tissues. Depending on the plant organ and its functions these (Modrusan and Wrischer, 1988), in some fruits (Ljubesic, 1970) proplastids develop into various other plastid types.
    [Show full text]
  • Information to Users
    INFORMATION TO USERS This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer. The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion. Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps. Each original is also photographed in one exposure and is included in reduced form at the back of the book. Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality 6” x 9” black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order. A Bell & Howell Information Company 300 Nortn Z eeb Road. Ann Arbor. Ml 48106-1346 USA 313/761-4700 800/521-0600 EVOLUTIONARY CONSEQUENCES OF THE LOSS OF PHOTOSYNTHESIS IN THE NONPHOTOSYNTHETIC CHLOROPHYTE ALGA POLYTOMA. DISSERTATION Presented in Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in the Graduate School of The Ohio State University By Dawne Vernon, B.S.
    [Show full text]
  • Chromoplast Differentiation in Bell Pepper (Capsicum Annuum) Fruits
    bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.299313; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. RESOURCE Chromoplast differentiation in bell pepper (Capsicum annuum) fruits Anja Rödiger1, 2, Birgit Agne1, 2, Dirk Dobritzsch1, Stefan Helm1, Fränze Müller1, 3, Nina Pötzsch1 and Sacha Baginsky1, 2* 1Plant Biochemistry, Institute of Biochemistry and Biotechnology, Martin-Luther-Universität Halle-Wittenberg, Halle (Saale), Germany 2Biochemistry of Plants, Biology and Biotechnology, Ruhr-University Bochum, Bochum, Germany 3Biochemistry and Functional Proteomics, Institute of Biology II, University of Freiburg, Freiburg, Germany Keywords: quantitative proteomics, CN PAGE, plastid differentiation, chromorespiration Running Title: Proteomics of chromoplast differentiation * Correspondence: Sacha Baginsky, Biochemistry of Plants, ND3/126, Universitätsstrasse 150, 44801 Bochum, Germany, Email: [email protected] 1 bioRxiv preprint doi: https://doi.org/10.1101/2020.09.29.299313; this version posted September 30, 2020. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license. Abstract We report here a detailed analysis of the proteome adjustments that accompany chromoplast differentiation from chloroplasts during bell-pepper fruit ripening. While the two photosystems are disassembled and their constituents degraded, the cytochrome b6f complex, the ATPase complex as well as Calvin cycle enzymes are maintained at high levels up to fully mature chromoplasts.
    [Show full text]
  • Characterization of Cytoplasmic and Nuclear Genomes in the Colorless Alga Polytoma
    CHARACTERIZATION OF CYTOPLASMIC AND NUCLEAR GENOMES IN THE COLORLESS ALGA POLYTOMA III. Ribosomal RNA Cistrons of the Nucleus and Leucoplast CHI-HUNG SIU, KWEN-SHENG CHIANG, and HEWSON SWIFT From the Whitman Laboratory and the Department of Biophysics, University of Chicago, Chicago. Illinois 60637. Dr. Siu's present address is the Department of Immunopathology, Scripps Clinic and Research Foundation, La JollY, California 92037. ABSTRACT The colorless alga Polytorna obtusum has been found to possess leucoplasts, and two kinds of ribosomes with sedimentation values of 73S and 79S. The ribosomal RNA (rRNA) of the 73S but not the 79S ribosomes was shown to hybridize with the leucoplast DNA (p = 1.682 g/ml). Nuclear DNA of Polytoma (p = 1.711) showed specific hybridization with rRNA from the 79S ribosomes. Saturation hybridization indicated that only one copy of the rRNA cistrons was present per leucoplast genome, with an average buoyant density of p = 1.700. On the other hand, about 750 copies of the cytoplasmic rRNA cistrons were present per nuclear genome with a density of p = 1.709. Heterologous hybridization studies with Chlarnydomonas reinhardtii rRNAs showed an estimated 80% homology between the two cytoplasmic rRNAs, but only a 50% homology between chloroplast and leucoplast rRNAs of the two species. We conclude that the leucoplasts of Polytoma derive from chloroplasts of a Chlarnydomonas-like ancestor, but that the leucoplast rRNA cistrons have diverged in evolution more extensively than the cistrons for cytoplasmic rRNA. Polytoma obtusum, a colorless chloromonad, has Polytoma was found to contain two major DNA been shown to possess two distinct classes of species, a-DNA and B-DNA (10).
    [Show full text]
  • The-Plant-Cell.Pdf
    Levetin−McMahon: Plants II. Introduction to Plant 2. The Plant Cell © The McGraw−Hill and Society, Fifth Edition Life: Botanical Principles Companies, 2008 UNIT II CHAPTER OUTLINE Early Studies of Cells 20 The Cell Wall 22 The Protoplast 22 Membranes 22 Moving Into and Out of Cells 22 Organelles 23 A CLOSER LOOK 2.1 Origin of Chloroplasts and Mitochondria 25 The Nucleus 26 Cell Division 26 The Cell Cycle 26 Prophase 27 Metaphase 27 Anaphase 27 Telophase 27 Cytokinesis 27 Chapter Summary 30 Review Questions 30 Further Reading 30 KEY CONCEPTS 1. The Cell Theory establishes that the cell is the basic unit of life, that all living organisms are composed of cells, and that cells arise from preexisting cells. 2. Plant cells are eukaryotic, having an organized nucleus and membrane-bound organelles. 3. Substances can move into and out of cells by diffusion and osmosis. 4. Mitosis, followed by cytokinesis, results in two genetically identical daughter cells. Growth, replacement of cells, and asexual reproduction all depend on the process of cell division. CHAPTER 2 The Plant Cell Plantlets are produced by vegetative reproduction on the leaf margin of kalanchoe. Mitosis is the underlying cell division for vegetative or asexual reproduction. 19 Levetin−McMahon: Plants II. Introduction to Plant 2. The Plant Cell © The McGraw−Hill and Society, Fifth Edition Life: Botanical Principles Companies, 2008 20 UNIT II Introduction to Plant Life: Botanical Principles ll plants (and every other living organism) are com- posed of cells. In some algae and fungi, the whole A organism consists of a single cell, but angiosperms are complex multicellular organisms composed of many dif- ferent types of cells.
    [Show full text]