Identification and Isolation of Genetic Elements Conferring Increased
Total Page:16
File Type:pdf, Size:1020Kb
The Pennsylvania State University The Graduate School Intercollege Graduate Degree Program in Plant Physiology IDENTIFICATION AND ISOLATION OF GENETIC ELEMENTS CONFERRING INCREASED TOMATO FRUIT LYCOPENE CONTENT A Dissertation in Plant Physiology by Matthew Kinkade © 2010 Matthew Kinkade Submitted in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy August 2010 The dissertation of Matthew Kinkade was reviewed and approved* by the following: Majid R. Foolad Professor of Plant Genetics Dissertation Advisor and Chair of Committee David M. Braun Associate Professor of Biological Sciences University of Missouri-Columbia John E. Carlson Professor of Molecular Genetics David R. Huff Associate Professor of Turfgrass Breeding and Genetics Yinong Yang Associate Professor of Plant Pathology Teh-hui Kao Professor of Biochemistry and Molecular Biology Program Chair, Intercollege Graduate Degree Program in Plant Biology *Signatures on file at the Graduate School. ii ABSTRACT The cultivated tomato (Solanum lycopersicum L.) is a vegetable crop produced and consumed around the world, and is a model system for the study of carotenoid accumulation. The dominant carotenoid in tomato is trans-lycopene, a powerful antioxidant that has been postulated to confer health benefits to humans and is responsible for the red appearance of ripe tomato fruits. Increasing lycopene content in tomato fruits represents an opportunity to increase market value for tomato crops, elevate the nutritional content of tomato for consumers, and to increase scientific understanding of carotenogenesis in plants. However, very few tomato alleles that cause increased lycopene accumulation in ripe fruits and are immediately useful for breeding purposes have been described in the literature. Given that little genetic variation exists within the cultivated tomato germplasm, wild Solanum species provide a unique opportunity to transfer new alleles into the cultigen. Using a recombinant inbred line (RIL) population derived from a cross between S. lycopersicum NCEBR-1, an advanced fresh market tomato breeding line with moderate lycopene content, and S. pimpinellifolium LA2093, a wild accession with exceptionally high lycopene content, the genetic architecture underlying lycopene accumulation is described. Quantitative trait locus (QTL) mapping over several years using lycopene data obtained via colorimetry, spectrophotometry, and high-performance liquid chromatography assays reveals a highly-significant three-QTL model which explains ~45% of the phenotypic variation in the RIL population. Two of these QTL, located on chromosomes 7 (lyc7.1) and 12 (lyc12.1), explain most of the phenotypic variation. A marker-assisted backcross program was subsequently initiated to verify QTL effects and isolate the QTLs in a uniform genetic background. Genotypes harboring lyc12.1 contained approximately 72% more lycopene than the recurrent parent, NCEBR-1. Near-isogenic lines for lyc12.1 were produced, the QTL was fine mapped to a 1.5 Mb region of tomato genome sequence, and candidate genes underlying the QTL were identified for further study. Future experimentation outlined in this dissertation will elucidate the gene’s role in carotenogenesis. This work represents a major advance in the search for new genes that affect lycopene accumulation in tomato, and, due to the plant material utilized, lyc12.1 is immediately useful for tomato breeding purposes. iii TABLE OF CONTENTS LIST OF TABLES .................................................................................................................................... VI LIST OF FIGURES .................................................................................................................................VII ACKNOWLEDGMENTS......................................................................................................................... IX CHAPTER I. INTRODUCTION ..............................................................................................................1 A SHORT HISTORY OF TOMATO (SOLANUM LYCOPERSICUM LINNAEUS).........................................................1 CURRENT ECONOMICS OF TOMATO........................................................................................................................2 CAROTENOIDS AND HUMANS...................................................................................................................................2 CAROTENOID BIOSYNTHESIS AND REGULATION IN TOMATO............................................................................4 QUANTITATIVE GENETICS AND TOMATO ........................................................................................................... 12 PROCESSES FOR QTL DETECTION AND ISOLATION.......................................................................................... 15 QTL mapping........................................................................................................................................................ 15 NIL development................................................................................................................................................. 16 Fine mapping........................................................................................................................................................ 17 THE PROBLEM......................................................................................................................................................... 18 PREVIOUS FRUIT QUALITY RESEARCH AT PENN STATE UNIVERSITY .......................................................... 19 OVERVIEW OF EXPERIMENTS CONDUCTED IN THIS THESIS PROJECT .......................................................... 20 REFERENCES............................................................................................................................................................ 20 CHAPTER II. MAPPING OF QTLS CONTROLLING TOMATO LYCOPENE CONTENT FROM S. PIMPINELLIFOLIUM LA2093........................................................................................................ 28 A NOTE ON THIS CHAPTER ................................................................................................................................... 28 ABSTRACT ................................................................................................................................................................ 29 INTRODUCTION ....................................................................................................................................................... 30 MATERIALS AND METHODS.................................................................................................................................. 32 RESULTS ................................................................................................................................................................... 34 CIM analyses based on HPLC measurement ........................................................................................... 34 CIM analyses based on spectrophotometer measurement............................................................... 38 CIM analyses based on colorimeter data modeling............................................................................. 39 Heritability and correlations with other fruit Quality traits........................................................... 41 DISCUSSION.............................................................................................................................................................. 41 Comparison with previous QTL mapping studies................................................................................. 41 Segregation distortion ..................................................................................................................................... 43 Method of trait measurement....................................................................................................................... 44 Implications for tomato breeding and future experimentation .................................................... 45 ACKNOWLEDGMENTS............................................................................................................................................. 47 REFERENCES............................................................................................................................................................ 48 TABLES AND FIGURES ............................................................................................................................................ 53 CHAPTER III. VALIDATION AND ISOLATION OF HIGHLYCOPENE QTL LYC12.1 VIA MARKERASSISTED SELECTION AND NIL DEVELOPMENT .................................................... 60 iv ABSTRACT ................................................................................................................................................................ 60 INTRODUCTION ....................................................................................................................................................... 61 MATERIALS AND METHODS.................................................................................................................................. 63 RESULTS AND DISCUSSION.................................................................................................................................... 66 37BC2 lycopene analysis ................................................................................................................................