Colour Patterns, Distribution and Food Plants of the Asian Bumblebee Bombus Bicoloratus (Hymenoptera: Apidae)

Total Page:16

File Type:pdf, Size:1020Kb

Colour Patterns, Distribution and Food Plants of the Asian Bumblebee Bombus Bicoloratus (Hymenoptera: Apidae) Apidologie (2019) 50:340–352 Original article * INRA, DIB and Springer-Verlag France SAS, part of Springer Nature, 2019 DOI: 10.1007/s13592-019-00648-1 Colour patterns, distribution and food plants of the Asian bumblebee Bombus bicoloratus (Hymenoptera: Apidae) 1 2 1 1 1 Guiling DING , Shiwen ZHANG , Jiaxing HUANG , Muhammad NAEEM , Jiandong AN 1Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture and Rural Affairs, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China 2Gansu Institute of Apiculture, Tianshui 741022 Gansu, China Received 11 November 2018 – Revised 13 February 2019 – Accepted 19 March 2019 Abstract – Bombus bicoloratus is an important pollinator of wild flowers in the oriental region. We confirmed a total of 451 specimens of B. bicoloratus from China based on DNA sequences from mitochondrial cytochrome oxidase subunit I (COI) barcodes. Bombus bicoloratus is distributed mainly in tropical and subtropical areas of southern China. This species exhibits a striking intraspecific colour-pattern polymorphism both in females and males. The distribution frequency of the different colour patterns is heavily skewed, with 50.9% of the workers sharing the same colour pattern that predominates in most locations. Workers from the islands of Hainan and Taiwan possess a very distinct colour pattern, and its spatial distribution is correlated with the climate factor irradiance. Bombus bicoloratus has been recorded to collect nectar and pollen from 14 plant families, indicating that this species is polylectic. This study will be helpful for recognising bumblebee species with variable colour patterns, especially B. bicoloratus ,inAsia. Bombus bicoloratus / Colour pattern / COI / Distribution / Food plants 1. INTRODUCTION An 2018). To date, 125 bumblebee species have been identified in China, representing 50% of the As important pollinators for wild plants and bumblebee species recorded worldwide (Williams crops, bumblebees provide vital pollination ser- et al. 2017;HuangandAn2018). Although China vices in natural and agricultural ecosystems is the greatest hotspot of bumblebee diversity in the (Pywelletal.2006; Velthuis and van Doorn world, the complex taxa of this country are insuf- 2006; Goulson et al. 2008; Julier and Roulston ficiently described. These taxa include species with 2009). Bumblebees are widely distributed, and ap- diverse intraspecific colour patterns and cryptic proximately 250 species have been described species that differ little in colour and morphology. worldwide (Williams 1998). With diverse land- Further detailed species identifications and descrip- forms and rich vegetation, China harbours the tions are needed to enhance both the conservation highest richness of bumblebee species in the world of various bumblebee species and our understand- (Williams 1998; Williams et al. 2009;Huangand ing of their roles as pollinators. A prominent feature of bumblebees is that they are covered with long and brightly coloured hairs Corresponding author: J. An, [email protected] that form different colour patterns (Williams 2007). Guiling Ding and Shiwen Zhang contributed equally to High variation in colour patterns occurs within this work. some species, and the high evolutionary rates of Manuscript editor: Marina Meixner colour patterns even exceed those of mitochondrial Colour patterns, distribution and food plants of the Asian bumblebee Bombus bicoloratus (Hymenoptera: Apidae) 341 genes (Duennes et al. 2012; Hines and Williams Williams et al. 2009;Anetal.2014; Huang et al. 2012; Huang et al. 2015b). In addition, colour 2015a). Bombus bicoloratus Smith was first de- patterns often converge among bumblebee species scribed in 1879 based on specimens from Taiwan depending on geography and habitat (Williams that were in the collection of the British Museum. 2007;Lozieretal.2013). The exceptional colour- The abdominal terga are entirely ferruginous or pattern diversity within species and the conver- fulvous except for a patch of black hairs on the gence among species have led to inaccurate de- basal middle portion of the first tergite (Frison scriptions of some bumblebee species, such as the 1934). Because of the distinct colour morphs of description of the Bombus lucorum complex B. bicoloratus from Taiwan, bumblebees from (Murray et al. 2008; Waters et al. 2011). Studies mainland China with yellow bands were previously have revealed that colour patterns cannot be used to described as a separate species, Bombus identify some bumblebee species (Carolan et al. kulingensis , which was grouped into the subgenus 2012; Williams et al. 2012). New colour patterns Senexibombus with B. bicoloratus (Williams have been discovered from expanded sample col- 1998; Cameron et al. 2007). Females of lections, and quantitative and systematic studies of B. bicoloratus from mainland China typically have colour variations are lacking, especially for those hairs on the thorax with yellow anterior and poste- species with multiple colour forms. rior bands, sometimes with narrow yellow thoracic The progress in the application of molecular bands intermixed with black. Metasomal terga 1–2 methods has made it much easier and more reliable and often most of tergum 3 are yellow, and tergum to identify species and estimate phylogenetic rela- 5 is orange-red (Williams et al. 2009). As a species tionships. Nuclear genes and mitochondrial se- that is widely distributed over middle-low altitudes quences have been used to obtain robust phyloge- in Taiwan, B. bicoloratus has been screened for netic information and have led to revisions in bum- artificial rearing, and 52% of wild queens can blebee systematics (Kawakita et al. 2004;Cameron produce small colonies (Ho et al. 2002). Although et al. 2007; Vesterlund et al. 2014). Due to the high B. bicoloratus has recently been reported in some rates of sequence changes in mitochondrial cyto- regions of China (Williams et al. 2009;Anetal. chrome oxidase subunit I (COI) and constraints on 2014), its distribution patterns, food plants and intraspecific divergence, COI barcodes provide an colour-pattern polymorphism have yet to be inves- easy and reliable solution for species discrimination tigated in detail. and phylogeny reconstruction (Hebert et al. 2003). In this study, with ample samples of Studies have demonstrated that COI barcoding is a B. bicoloratus collected in China in the last decade, cost-effective approach to resolve taxonomic un- we describe this species’ geographic distribution, certainty of bumblebee taxa. It has been used to summarise the diversity and spatial distribution of clarify the taxonomy of the cullumanus group, its colour patterns and document its food plants in which comprises three species highly similar in China. The results provide information essential for morphology, Bombus semenoviellus , Bombus the conservation of B. bicoloratus and for its unicus and Bombus cullumanus (Williams et al. potential application in commercial pollination. 2013). Furthermore, it has been applied to distin- guish the similarly coloured species in the subge- 2. MATERIALS AND METHODS nus Mendacibombus (Williams et al. 2016), iden- tify the cryptic species of the subgenus Bombus s. 2.1. Materials str. (Williams et al. 2012) and recognise species with variable colour patterns, such as Bombus A systematic survey of bumblebees in China koreanus (Huang et al. 2015b). has been ongoing since 2002 (Williams et al. Bombus bicoloratus is a medium-sized oriental 2017; Huang and An 2018). Bees were collected species with highly variable colour forms and a by sweeping with a nylon hand net. Detailed long tongue. This species was recently reported to information, including the name, elevation and belong to the subgenus Megabombus ,whichis location of the collection site, was recorded with considered very diverse in China (Williams 1998; a hand-held GPS (Garmin 60CS, China). The 342 G. Ding et al. collected bumblebees were pinned, labelled, dried (Thompson et al. 1994) to align these sequences and deposited in the Institute of Apicultural Re- and jModelTest v2.1.7 (Darriba et al. 2012)to search, Chinese Academy of Agricultural Sci- select the best nucleotide substitution model ac- ences (IAR-CAAS), Beijing, China. Among these cording to Akaike’s information criterion (AIC). collections, 506 B. bicoloratus –like specimens Species of the subgenera Thoracobombus and were preliminarily identified according to the keys Subterraneobombus were used as outgroup taxa. described by Williams et al. (2009) and An et al. A Bayesian tree was constructed using MrBayes (2014). The records of B. bicoloratus from Tai- v3.2.5 (Ronquist et al. 2012) with two runs of wan, which have been confirmed by the authors, 100,000,000 generations and a sampling frequen- were obtained from the website http://gaga.biodiv. cy of once every 1000 generations. The phyloge- tw/new23/cp03_76.htm. Photographs of the food netic tree was displayed and edited using FigTree plants visited by bumblebees were also collected, v1.4.3 (http://tree.bio.ed.ac.uk/software/figtree/). and the food plants were identified from these We used three methods for species delimita- photographs. tion. The aligned sequences were analysed using Automatic Barcode Gap Discovery (ABGD) soft- 2.2. Genetic analysis ware (Puillandre et al. 2012) with a transition/ transversion ratio of 2 and simple distance. The For each of the three castes (queens, workers Bayesian Poisson tree processes (bPTP) method and males), we selected
Recommended publications
  • Review of the Diet and Micro-Habitat Values for Wildlife and the Agronomic Potential of Selected Grassland Plant Species
    Report Number 697 Review of the diet and micro-habitat values for wildlifeand the agronomic potential of selected grassland plant species English Nature Research Reports working today for nature tomorrow English Nature Research Reports Number 697 Review of the diet and micro-habitat values for wildlife and the agronomic potential of selected grassland plant species S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A. Hopkins, A. Gundrey, R. Dunn & J. Tallowin Institute for Grassland and Environmental Research North Wyke Research Station, Okehampton, Devon EX20 2SB J. Vickery & S. Gough British Trust for Ornithology The Nunnery, Thetford, Norfolk IP24 2PU You may reproduce as many additional copies of this report as you like for non-commercial purposes, provided such copies stipulate that copyright remains with English Nature, Northminster House, Peterborough PE1 1UA. However, if you wish to use all or part of this report for commercial purposes, including publishing, you will need to apply for a licence by contacting the Enquiry Service at the above address. Please note this report may also contain third party copyright material. ISSN 0967-876X © Copyright English Nature 2006 Project officer Heather Robertson, Terrestrial Wildlife Team [email protected] Contractor(s) (where appropriate) S.R. Mortimer, R. Kessock-Philip, S.G. Potts, A.J. Ramsay, S.P.M. Roberts & B.A. Woodcock Centre for Agri-Environmental Research, University of Reading, PO Box 237, Earley Gate, Reading RG6 6AR A.
    [Show full text]
  • Ejt-719 Williams Altanchimeg Byvaltsev.Indd
    European Journal of Taxonomy 719: 1–120 ISSN 2118-9773 https://doi.org/10.5852/ejt.2020.719.1107 www.europeanjournaloftaxonomy.eu 2020 · Williams P.H. et al. This work is licensed under a Creative Commons Attribution License (CC BY 4.0). Monograph urn:lsid:zoobank.org:pub:A4500016-C219-4353-B81C-5E0BB520547F Widespread polytypic species or complexes of local species? Revising bumblebees of the subgenus Melanobombus world-wide (Hymenoptera, Apidae, Bombus) Paul H. WILLIAMS 1,*, Dorjsuren ALTANCHIMEG 2, Alexandr BYVALTSEV 3, Roland DE JONGHE 4, Saleem JAFFAR 5, George JAPOSHVILI 6, Sih KAHONO 7, Huan LIANG 8, Maurizio MEI 9, Alireza MONFARED 10, Tshering NIDUP 11, Rifat RAINA 12, Zongxin REN 13, Chawatat THANOOSING 14, Yanhui ZHAO 15 & Michael C. ORR 16 1,14 Natural History Museum, Cromwell Road, London SW7 5BD, UK. 2 Institute of General and Experimental Biology, Peace Avenue 54b, Ulaanbaatar 13330, Mongolia. 3 Novosibirsk State University, ul. Pirogova 2, Novosibirsk, 630090 Russia. 4 Langstraat 105, B-2260 Westerlo, Belgium. 5 South China Agricultural University, Guangzhou 510642, China. 6 Agricultural University of Georgia, 240 Agmashenebli Alley, Tbilisi, Georgia. 7 Indonesian Institute of Sciences (LIPI), Jakarta, Indonesia. 8,13,15 Kunming Institute of Botany (Chinese Academy of Sciences), 132 Lanhei Road, Kunming, Yunnan 650201, China. 9 Università di Roma ‘Sapienza’, Piazzale Valerio Massimo 6, Roma 00162, Italy. 10 Yasouj University, Zirtol, Yasouj, Iran. 11 Sherubtse College, Royal University of Bhutan, Trashigang, Bhutan. 12 Zoological Survey of India, Pali Road, Jodhpur 342005, Rajasthan, India. 16 Institute of Zoology (Chinese Academy of Sciences), 1 Beichen West Road, Chaoyang, Beijing 100101, China.
    [Show full text]
  • Bumblebee Conservator
    Volume 2, Issue 1: First Half 2014 Bumblebee Conservator Newsletter of the BumbleBee Specialist Group In this issue From the Chair From the Chair 1 A very happy and productive 2014 to everyone! We start this year having seen From the Editor 1 enormously encouraging progress in 2013. Our different regions have started from BBSG Executive Committee 2 very different positions, in terms of established knowledge of their bee faunas Regional Coordinators 2 as well as in terms of resources available, but members in all regions are actively moving forward. In Europe and North America, which have been fortunate to Bumblebee Specialist have the most specialists over the last century, we are achieving the first species Group Report 2013 3 assessments. Mesoamerica and South America are also very close, despite the huge Bumblebees in the News 9 areas to survey and the much less well known species. In Asia, with far more species, many of them poorly known, remarkably rapid progress is being made in sorting Research 13 out what is present and in building the crucial keys and distribution maps. In some Conservation News 20 regions there are very few people to tackle the task, sometimes in situations that Bibliography 21 make progress challenging and slow – their enthusiasm is especially appreciated! At this stage, broad discussion of problems and of the solutions developed from your experience will be especially important. This will direct the best assessments for focusing the future of bumblebee conservation. From the Editor Welcome to the second issue of the Bumblebee Conservator, the official newsletter of the Bumblebee Specialist Group.
    [Show full text]
  • Him., Apidae) De La Fauna Española
    UNIVERSIDAD COMPLUTENSE DE MADRID FACULTAD DE CIENCIAS BIOLÓGICAS TESIS DOCTORAL La subfamilia Bombinae (Him., Apidae) de la fauna española MEMORIA PARA OPTAR AL GRADO DE DOCTOR PRESENTADA POR Concepción Ornosa Gallego DIRECTOR: Salvador Vicente Peris Torres Madrid, 2015 © Concepción Ornosa Gallego, 1983 TP Conc«pcl6n Ornoaa GAllego ZC3> llllllllllll 5309867141 * UNIVERSIDAD COMPLUTENSE LA SUBFAMILIA BOMBINAB (HIM., APIDAE) DB LA FAUNA BSPAfiOLA mmcmm Depmrtamemte de Zoologie de Inrertebredos Artr6podoa Fecuited de Ciencles Bioidgicaa UnIveraided Coaplutenae de Madrid 1984 Coleccl6n Teals Doctorales. N* 203/84 Concepcion OrnosA Cmllego Edita e imprime la Editorial de la Universidad Compluten se de Madrid. Servicio de Reprograf(a Noviciado, 3 Madrid-8 Madrid, I984 Xerox 9200 XB 48O Dep6 sito Legal* M-2oAo4-i984 l l l W .. il Concepcion Ornosa Gallego U LA SUOFAPIILA BOPIBINAE (HIM., APIDAE) DE LA FAUNA ESPANOLA Tesis doctoral dirigida pgr: Dr. Salvador-V. Peris Torres Realizada en la Catedra de Entomologie Facultad de Biologia Universidad Complutense^d^ Madrid 1983 A la memoria de mi madré y 8 mi padre. Al concluir este trabajo, qulero expresar mi agradecimiento mas sincero a todas aquellas personas o institucdones que, de - un modo u otro, han hecho posible su realizacion. En primer lugar, al Dr. Péris, el director del mismo, que - fué quién me inicio en el mundo de la Entomologfa y en este gru - ■ • - po en particular. Al Dr. Espanol, al Dr. Escola, a la Ora. Mingo y al Dr. Mo ri sorrat por haberme facilitado la consulta de las colecciones a- su cargo. A las Catedras de Salamanca, de Murcia y de Santiago que me proporcionaron material para su estudio.
    [Show full text]
  • (Hymenoptera, Apoidea, Anthophila) in Serbia
    ZooKeys 1053: 43–105 (2021) A peer-reviewed open-access journal doi: 10.3897/zookeys.1053.67288 RESEARCH ARTICLE https://zookeys.pensoft.net Launched to accelerate biodiversity research Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia Sonja Mudri-Stojnić1, Andrijana Andrić2, Zlata Markov-Ristić1, Aleksandar Đukić3, Ante Vujić1 1 University of Novi Sad, Faculty of Sciences, Department of Biology and Ecology, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia 2 University of Novi Sad, BioSense Institute, Dr Zorana Đinđića 1, 21000 Novi Sad, Serbia 3 Scientific Research Society of Biology and Ecology Students “Josif Pančić”, Trg Dositeja Obradovića 2, 21000 Novi Sad, Serbia Corresponding author: Sonja Mudri-Stojnić ([email protected]) Academic editor: Thorleif Dörfel | Received 13 April 2021 | Accepted 1 June 2021 | Published 2 August 2021 http://zoobank.org/88717A86-19ED-4E8A-8F1E-9BF0EE60959B Citation: Mudri-Stojnić S, Andrić A, Markov-Ristić Z, Đukić A, Vujić A (2021) Contribution to the knowledge of the bee fauna (Hymenoptera, Apoidea, Anthophila) in Serbia. ZooKeys 1053: 43–105. https://doi.org/10.3897/zookeys.1053.67288 Abstract The current work represents summarised data on the bee fauna in Serbia from previous publications, collections, and field data in the period from 1890 to 2020. A total of 706 species from all six of the globally widespread bee families is recorded; of the total number of recorded species, 314 have been con- firmed by determination, while 392 species are from published data. Fourteen species, collected in the last three years, are the first published records of these taxa from Serbia:Andrena barbareae (Panzer, 1805), A.
    [Show full text]
  • First Chemical Analysis and Characterization of the Male
    First Chemical Analysis and Characterization of the Male Species-Specific Cephalic Labial-Gland Secretions of South American Bumblebees Nicolas Brasero, Baptiste Martinet, Klara Urbanova, Irena Valterova, Alexandra Torres, Wolfgang Hoffmann, Pierre Rasmont, Thomas Lecocq To cite this version: Nicolas Brasero, Baptiste Martinet, Klara Urbanova, Irena Valterova, Alexandra Torres, et al.. First Chemical Analysis and Characterization of the Male Species-Specific Cephalic Labial-Gland Secretions of South American Bumblebees. Chemistry and Biodiversity, Wiley, 2015, 12 (10), pp.1535-1546. 10.1002/cbdv.201400375. hal-01575790 HAL Id: hal-01575790 https://hal.univ-lorraine.fr/hal-01575790 Submitted on 11 Dec 2020 HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est archive for the deposit and dissemination of sci- destinée au dépôt et à la diffusion de documents entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non, lished or not. The documents may come from émanant des établissements d’enseignement et de teaching and research institutions in France or recherche français ou étrangers, des laboratoires abroad, or from public or private research centers. publics ou privés. 1 First chemical analysis and characterization of the male species-specific cephalic labial 2 gland secretions of South American bumblebee 3 Nicolas Braseroa*), Baptiste Martineta), Klára Urbanováb*), Irena Valterováb), Alexandra 4 Torresc), Wolfgang Hoffmannc), Pierre Rasmonta*), Thomas Lecocqa) 5
    [Show full text]
  • Early-Diverging Bumblebees from Across the Roof of the World: The
    Zootaxa 4204 (1): 001–072 ISSN 1175-5326 (print edition) http://www.mapress.com/j/zt/ Monograph ZOOTAXA Copyright © 2016 Magnolia Press ISSN 1175-5334 (online edition) http://doi.org/10.11646/zootaxa.4204.1.1 http://zoobank.org/urn:lsid:zoobank.org:pub:C050058A-774D-49C0-93F9-7A055B51C2A0 ZOOTAXA 4204 Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendacibombus revised from species’ gene coalescents and morphology (Hymenoptera, Apidae) PAUL H. WILLIAMS1,2,4, JIAXING HUANG1, PIERRE RASMONT3 & JIANDONG AN1,4 1Key Laboratory for Insect-Pollinator Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China. 2Department of Life Sciences, The Natural History Museum, Cromwell Road, London SW7 5BD, UK. 3Laboratoire de Zoologie, Universit de Mons, Place du Parc 20, B-7000 Mons, Belgium. 4Corresponding author. E-mail: [email protected]; [email protected]. Magnolia Press Auckland, New Zealand Accepted by V. Gonzalez: 12 Oct. 2016; published: 2 Dec. 2016 PAUL H. WILLIAMS, JIAXING HUANG, PIERRE RASMONT & JIANDONG AN Early-diverging bumblebees from across the roof of the world: the high-mountain subgenus Mendaci- bombus revised from species’ gene coalescents and morphology (Hymenoptera, Apidae) ( Zootaxa 4204) 72 pp.; 30 cm. 2 Dec. 2016 ISBN 978-1-77670-042-4 (paperback) ISBN 978-1-77670-043-1 (Online edition) FIRST PUBLISHED IN 2016 BY Magnolia Press P.O. Box 41-383 Auckland 1346 New Zealand e-mail: [email protected] http://www.mapress.com/j/zt © 2016 Magnolia Press All rights reserved. No part of this publication may be reproduced, stored, transmitted or disseminated, in any form, or by any means, without prior written permission from the publisher, to whom all requests to reproduce copyright material should be directed in writing.
    [Show full text]
  • Journal of the Society for British Entomology
    ti J>- c . 6 7S. 7t HARVARD UNIVERSITY LIBRARY OF THE Museum of Comparative Zoology MBS. COW. Z30L Limy MHINtt UNIVERSITY HKTfflTZPi LiBnAi.il JUL 14 196 Journal UNIVERSITY OF THE Society for British Entomology World List abbreviation:^. Soc. Brit. Ent. VOL. 5 EDITED BY J. H. MURGATROYD, F.L.S., F.Z.S., F.R.E.S. E. J. POPHAM, D.Sc., Ph.D., A.R.C.S., F.R.E.S. WITH THE ASSISTANCE OF W. A. F. BALFOUR-BROWNE, M.A., F.R.S.E., F.L.S., F.Z.S., F.R.E.S., F.S.B.E. W. D. HINCKS, M.Sc.j F.R.E.S. B. M. HOBBY, M.A., D.Phil., F.R.E.S. G. J. KERRICH, M.A., F.L.S., F.R.E.S. O. W. RICHARDS, M.A., D.Sc., F.R.E.S., F.S.B.E. W. H. T. TAMS 1 955- 1 957 BOURNEMOUTH AND MANCHESTER DATES OF PUBLICATION Vol. 5 Part 1 (1-46). .14* July, 1954 Part 2 (47-90). .15th November, 1954 Part 3 (91-118). 1955 Part 4 (119-142). 1955 Part 5 (143-178). 1956 Part 6 (179-198). 1956 Part 7 (199-230). 1957 CONTENTS PAGE Andrewes, C. H.: Helocera delecta Mg. and other uncommon Diptera in the Isle of Wight. 164 Bailey, R.: Observations on the size of galls formed on couch grass by a Chalcidoid of the genus Harmolita. 199 Brown, William L., Jnr.: The identity of the British Strongylognathus (Hym. Formicidae). 113 Chambers, V. H.: Further Hymenoptera records from Bedfordshire.
    [Show full text]
  • British Phenological Records Indicate High Diversity and Extinction Rates Among Late­Summer­Flying Pollinators
    British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators Article (Accepted Version) Balfour, Nicholas J, Ollerton, Jeff, Castellanos, Maria Clara and Ratnieks, Francis L W (2018) British phenological records indicate high diversity and extinction rates among late-summer-flying pollinators. Biological Conservation, 222. pp. 278-283. ISSN 0006-3207 This version is available from Sussex Research Online: http://sro.sussex.ac.uk/id/eprint/75609/ This document is made available in accordance with publisher policies and may differ from the published version or from the version of record. If you wish to cite this item you are advised to consult the publisher’s version. Please see the URL above for details on accessing the published version. Copyright and reuse: Sussex Research Online is a digital repository of the research output of the University. Copyright and all moral rights to the version of the paper presented here belong to the individual author(s) and/or other copyright owners. To the extent reasonable and practicable, the material made available in SRO has been checked for eligibility before being made available. Copies of full text items generally can be reproduced, displayed or performed and given to third parties in any format or medium for personal research or study, educational, or not-for-profit purposes without prior permission or charge, provided that the authors, title and full bibliographic details are credited, a hyperlink and/or URL is given for the original metadata page and the content is not changed in any way. http://sro.sussex.ac.uk 1 British phenological records indicate high diversity and extinction 2 rates among late-summer-flying pollinators 3 4 5 Nicholas J.
    [Show full text]
  • Entomologiske Meddelelser Entomologiske Meddelelser
    EntomologiskeEntomologiske MeddelelserMeddelelser BIND 83 : HEFTE 1 Juni 2015 KØBENHAVN Entomologiske Meddelelser Udgives af Entomologisk Forening i København og sendes gratis til alle medlemmer af denne forening. Abonnement kan tegnes af biblioteker, institutioner, boghandlere m.fl. Prisen herfor er 450 kr. årligt. Hvert år afsluttes et bind, der udsendes fordelt på 2 hefter. Anmodning om tegning af abonnement sendes til kassereren (se omslagets side 3).» Redaktør: Hans Peter Ravn, IGN, Københavns Universitet, Rolighedsvej 23, 1859 Frb. C. Manuskripter skal fremover sendes til: Knud Larsen, Røntoftevej 33, 2870 Dyssegård, [email protected] Entomologiske Meddelelser - a Danish journal of Entomology Is published by the Entomological Society of Copenhagen. The Journal brings both original and review papers in entomology, and appears with two issues a year. The papers appear chiefly in Danish with extensive abstracts in English of all information of value for international entomology. The journal is free of charge to members of the Entomological Society of Copenhagen. Membership costs 250 Danish kroner a year. School pupils and stu- dents may have membership for just 100 DKR, but they will receive a PDF-copy of the journal only. Application for membership and subscription orders should be sent to the secretary of the society, c/o Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, Denmark. Manuskriptets udformning m.v. Entomologiske Meddelelser optager først og fremmest originale afhandlinger og andre meddelelser om dansk entomologi (inkl.. Færøerne og Grønland). Hovedvægten lægges på artikler, der bidrager til kendskab til den danske entomofauna (insekter, spindlere, tusindben og skolopendere), til nordeuropæiske og arktiske insekters taksonomi, økologi, funktionsmorfologi, biogeografi, faunistik, m.v.
    [Show full text]
  • NL Bijen H20 Literatuur.Pdf
    HOOFDSTUK 20 LITERATUUR Achterberg, C. van Can Townes type malaise traps be im- Alford, D.V. Bumblebees. – Davis-Poynter, London. proved? Some recent developments. – Entomologische Berichten : Al-Ghzawi, A., S. Zaitoun, S. Mazary, M. Schindler & D. Witt- -. mann Diversity of bees (Hymenoptera, Apiformes) in extensive Achterberg, C. van & T.M.J. Peeters Naamgeving, verwant- orchards in the highlands of Jordan. – Arxius de Miscellània Zoològica schappen en diversiteit. – In: T.M.J. Peeters, C. van Achterberg, : -. W.R.B. Heitmans, W.F. Klein, V. Lefeber, A.J. van Loon, A.A. Mabe- Almeida, E.A.B. a Colletidae nesting biology (Hymenoptera: lis, H. Nieuwenhuijsen, M. Reemer, J. de Rond, J. Smit & H.H.W. Apoidea). – Apidologie : -. Velthuis, De wespen en mieren van Nederland (Hymenoptera: Acule- Almeida, E.A.B. b Revised species checklist of the Paracolletinae ata). Nederlandse Fauna . Nationaal Natuurhistorisch Museum Na- (Hymenoptera, Colletidae) of the Australian region, with the descrip- turalis, Uitgeverij & European Invertebrate Survey-Nederland, tion of new taxa. – Zootaxa : -. Leiden: -. Almeida, E.A.B. & B.N. Danforth Phylogeny of colletid bees Adriaens, T. & D. Laget To bee or not to bee. Mogelijkheden (Hymenopera: Colletidae) inferred from four nuclear genes. – Molecu- voor het houden van bijenvolken in natuurgebieden: een inschatting. lar Phylogenetics and Evolution : -. – Advies van het Instituut voor Natuur- en Bosonderzoek, Almeida, E.A.B., L. Packer & B.N. Danforth Phylogeny of the INBO.A... Xeromelissinae (Hymenoptera: Colletidae) based upon morphology Aizen, M.A. & L.D. Harder The global stock of domesticated and molecules. – Apidologie : -. honey bees is growing slower than agricultural demand for pollination. Almeida, E.A.B., M.R.
    [Show full text]
  • The Survey of Wild Bees (Hymenoptera, Apoidea) in Belgium and France
    FAO-report 2005 - Rasmont et al.. The survey of wild bees in Belgium and France. Page 1 The survey of wild bees (Hymenoptera, Apoidea) in Belgium and France by Pierre Rasmont*, Alain Pauly **, Michael Terzo*, Sebastien Patiny**, Denis Michez*, , Stephanie Iserbyt*, Yvan Barbier* ** & Eric Haubruge** *Laboratoire de Zoologie Université de Mons-Hainaut Avenue Maistriau, 19 B-7000 Mons (Belgique) **Zoologie générale et appliquée Faculté Universitaire des Sciences agronomiques de Gembloux B-5030 Gembloux (Belgique) Summary The Mons and Gembloux laboratories study the wild bees of Belgium and France more than 30 years, beside special contributions for other countries. A first report, published as early as 1980, listed 13 threathened wild bees species in Belgium and N. France. In 1991, this research team published a comprehensive report about the faunistic drift in Apoidea of Belgium by comparing the relative numbers of species before 1950 and since then. The change in the abundance was estimated by the Stroot & Depiereux statistical method. Of 360 species, 91 are decreasing (25.2%), 145 are stable (40.2%), 39 are expanding (10.8%), and 85 have an indeterminable status (rare species: 23.5%). The authors compared different hypotheses that could explain this global regression. As the regression mostly affected long-tongued species, it is likely due to the fall in availability of plants with long corollae (e.g. Lamiaceae, Fabaceae, Scrophulariaceae). The strong relative regression of cleptoparasites could be seen as the result of an absolute numerical decrease of all Apoidea. The relative regression of species nesting under ground could be explained by the lessened availability or suitability of open areas due to afforestation, urbanisation or agricultural intensification.
    [Show full text]